Updates the requirements on [pillow](https://github.com/python-pillow/Pillow) to permit the latest version. - [Release notes](https://github.com/python-pillow/Pillow/releases) - [Changelog](https://github.com/python-pillow/Pillow/blob/main/CHANGES.rst) - [Commits](https://github.com/python-pillow/Pillow/compare/9.2.0...10.3.0) --- updated-dependencies: - dependency-name: pillow dependency-type: direct:production ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com> |
||
---|---|---|
.github | ||
src/labelme2yolo | ||
tests | ||
.gitignore | ||
.pylintrc | ||
LICENSE | ||
README.md | ||
pyproject.toml | ||
requirements.txt |
README.md
Labelme2YOLO
Labelme2YOLO is a powerful tool for converting LabelMe's JSON format to YOLOv5 dataset format. This tool can also be used for YOLOv5/YOLOv8 segmentation datasets, if you have already made your segmentation dataset with LabelMe, it is easy to use this tool to help convert to YOLO format dataset.
New Features
- export data as yolo polygon annotation (for YOLOv5 & YOLOV8 segmentation)
- Now you can choose the output format of the label text. The two available alternatives are
polygon
and bounding box (bbox
).
Installation
pip install labelme2yolo
Arguments
--json_dir LabelMe JSON files folder path.
--val_size (Optional) Validation dataset size, for example 0.2 means 20% for validation.
--test_size (Optional) Test dataset size, for example 0.1 means 10% for Test.
--json_name (Optional) Convert single LabelMe JSON file.
--output_format (Optional) The output format of label.
--label_list (Optional) The pre-assigned category labels.
How to Use
1. Converting JSON files and splitting training, validation datasets
You may need to place all LabelMe JSON files under labelme_json_dir and then run the following command:
labelme2yolo --json_dir /path/to/labelme_json_dir/
This tool will generate dataset labels and images with YOLO format in different folders, such as
/path/to/labelme_json_dir/YOLODataset/labels/train/
/path/to/labelme_json_dir/YOLODataset/labels/val/
/path/to/labelme_json_dir/YOLODataset/images/train/
/path/to/labelme_json_dir/YOLODataset/images/val/
/path/to/labelme_json_dir/YOLODataset/dataset.yaml
2. Converting JSON files and splitting training, validation, and test datasets with --val_size and --test_size
You may need to place all LabelMe JSON files under labelme_json_dir and then run the following command:
labelme2yolo --json_dir /path/to/labelme_json_dir/ --val_size 0.15 --test_size 0.15
This tool will generate dataset labels and images with YOLO format in different folders, such as
/path/to/labelme_json_dir/YOLODataset/labels/train/
/path/to/labelme_json_dir/YOLODataset/labels/test/
/path/to/labelme_json_dir/YOLODataset/labels/val/
/path/to/labelme_json_dir/YOLODataset/images/train/
/path/to/labelme_json_dir/YOLODataset/images/test/
/path/to/labelme_json_dir/YOLODataset/images/val/
/path/to/labelme_json_dir/YOLODataset/dataset.yaml
How to build package/wheel
- install hatch
- Run the following command:
hatch build
License
Forked from rooneysh/Labelme2YOLO
labelme2yolo
is distributed under the terms of the MIT license.