format code using back
This commit is contained in:
parent
8a337f91a9
commit
cf23412bfd
|
@ -1,4 +1,4 @@
|
|||
# SPDX-FileCopyrightText: 2022-present Wang Xin <xinwang614@gmail.com>
|
||||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
__version__ = '0.0.2'
|
||||
__version__ = "0.0.2"
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
# SPDX-License-Identifier: MIT
|
||||
import sys
|
||||
|
||||
if __name__ == '__main__':
|
||||
if __name__ == "__main__":
|
||||
from .cli import run
|
||||
|
||||
sys.exit(run())
|
||||
|
|
|
@ -2,19 +2,36 @@
|
|||
#
|
||||
# SPDX-License-Identifier: MIT
|
||||
import argparse
|
||||
|
||||
from labelme2yolo.l2y import Labelme2YOLO
|
||||
|
||||
|
||||
def run():
|
||||
parser = argparse.ArgumentParser("labelme2yolo")
|
||||
parser.add_argument('--json_dir', type=str,
|
||||
help='Please input the path of the labelme json files.')
|
||||
parser.add_argument('--val_size', type=float, nargs='?', default=None,
|
||||
help='Please input the validation dataset size, for example 0.1 ')
|
||||
parser.add_argument('--test_size', type=float, nargs='?', default=None,
|
||||
help='Please input the validation dataset size, for example 0.1 ')
|
||||
parser.add_argument('--json_name', type=str, nargs='?', default=None,
|
||||
help='If you put json name, it would convert only one json file to YOLO.')
|
||||
parser.add_argument(
|
||||
"--json_dir", type=str, help="Please input the path of the labelme json files."
|
||||
)
|
||||
parser.add_argument(
|
||||
"--val_size",
|
||||
type=float,
|
||||
nargs="?",
|
||||
default=None,
|
||||
help="Please input the validation dataset size, for example 0.1 ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--test_size",
|
||||
type=float,
|
||||
nargs="?",
|
||||
default=None,
|
||||
help="Please input the validation dataset size, for example 0.1 ",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--json_name",
|
||||
type=str,
|
||||
nargs="?",
|
||||
default=None,
|
||||
help="If you put json name, it would convert only one json file to YOLO.",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
if not args.json_dir:
|
||||
|
|
|
@ -4,21 +4,21 @@ Created on Aug 18, 2021
|
|||
@author: xiaosonh
|
||||
@author: GreatV(Wang Xin)
|
||||
"""
|
||||
import os
|
||||
import shutil
|
||||
import math
|
||||
import base64
|
||||
import io
|
||||
import json
|
||||
import math
|
||||
import os
|
||||
import shutil
|
||||
from collections import OrderedDict
|
||||
from multiprocessing import Pool
|
||||
import json
|
||||
|
||||
import cv2
|
||||
from sklearn.model_selection import train_test_split
|
||||
import numpy as np
|
||||
import PIL.ExifTags
|
||||
import PIL.Image
|
||||
import PIL.ImageOps
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
# copy form https://github.com/wkentaro/labelme/blob/main/labelme/utils/image.py
|
||||
|
@ -80,81 +80,87 @@ def get_label_id_map(json_dir):
|
|||
label_set = set()
|
||||
|
||||
for file_name in os.listdir(json_dir):
|
||||
if file_name.endswith('json'):
|
||||
if file_name.endswith("json"):
|
||||
json_path = os.path.join(json_dir, file_name)
|
||||
data = json.load(open(json_path))
|
||||
for shape in data['shapes']:
|
||||
label_set.add(shape['label'])
|
||||
for shape in data["shapes"]:
|
||||
label_set.add(shape["label"])
|
||||
|
||||
return OrderedDict([(label, label_id)
|
||||
for label_id, label in enumerate(label_set)])
|
||||
return OrderedDict([(label, label_id) for label_id, label in enumerate(label_set)])
|
||||
|
||||
|
||||
def save_yolo_label(json_name, label_dir_path, target_dir, yolo_obj_list):
|
||||
txt_path = os.path.join(label_dir_path,
|
||||
target_dir,
|
||||
json_name.replace('.json', '.txt'))
|
||||
txt_path = os.path.join(
|
||||
label_dir_path, target_dir, json_name.replace(".json", ".txt")
|
||||
)
|
||||
|
||||
with open(txt_path, 'w+') as f:
|
||||
with open(txt_path, "w+") as f:
|
||||
for yolo_obj_idx, yolo_obj in enumerate(yolo_obj_list):
|
||||
yolo_obj_line = '%s %s %s %s %s\n' % yolo_obj \
|
||||
if yolo_obj_idx + 1 != len(yolo_obj_list) else \
|
||||
'%s %s %s %s %s' % yolo_obj
|
||||
yolo_obj_line = (
|
||||
"%s %s %s %s %s\n" % yolo_obj
|
||||
if yolo_obj_idx + 1 != len(yolo_obj_list)
|
||||
else "%s %s %s %s %s" % yolo_obj
|
||||
)
|
||||
f.write(yolo_obj_line)
|
||||
|
||||
|
||||
def save_yolo_image(json_data, json_name, image_dir_path, target_dir):
|
||||
img_name = json_name.replace('.json', '.png')
|
||||
img_name = json_name.replace(".json", ".png")
|
||||
img_path = os.path.join(image_dir_path, target_dir, img_name)
|
||||
|
||||
if not os.path.exists(img_path):
|
||||
img = img_b64_to_arr(json_data['imageData'])
|
||||
img = img_b64_to_arr(json_data["imageData"])
|
||||
PIL.Image.fromarray(img).save(img_path)
|
||||
|
||||
return img_path
|
||||
|
||||
|
||||
class Labelme2YOLO(object):
|
||||
|
||||
def __init__(self, json_dir):
|
||||
self._json_dir = json_dir
|
||||
|
||||
self._label_id_map = get_label_id_map(self._json_dir)
|
||||
|
||||
def _make_train_val_dir(self):
|
||||
self._label_dir_path = os.path.join(self._json_dir,
|
||||
'YOLODataset/labels/')
|
||||
self._image_dir_path = os.path.join(self._json_dir,
|
||||
'YOLODataset/images/')
|
||||
self._label_dir_path = os.path.join(self._json_dir, "YOLODataset/labels/")
|
||||
self._image_dir_path = os.path.join(self._json_dir, "YOLODataset/images/")
|
||||
|
||||
for yolo_path in (os.path.join(self._label_dir_path + 'train/'),
|
||||
os.path.join(self._label_dir_path + 'val/'),
|
||||
os.path.join(self._label_dir_path + 'test/'),
|
||||
os.path.join(self._image_dir_path + 'train/'),
|
||||
os.path.join(self._image_dir_path + 'val/'),
|
||||
os.path.join(self._image_dir_path + 'test/')):
|
||||
for yolo_path in (
|
||||
os.path.join(self._label_dir_path + "train/"),
|
||||
os.path.join(self._label_dir_path + "val/"),
|
||||
os.path.join(self._label_dir_path + "test/"),
|
||||
os.path.join(self._image_dir_path + "train/"),
|
||||
os.path.join(self._image_dir_path + "val/"),
|
||||
os.path.join(self._image_dir_path + "test/"),
|
||||
):
|
||||
if os.path.exists(yolo_path):
|
||||
shutil.rmtree(yolo_path)
|
||||
|
||||
os.makedirs(yolo_path)
|
||||
|
||||
def _train_test_split(self, folders, json_names, val_size, test_size):
|
||||
if len(folders) > 0 and 'train' in folders and 'val' in folders and 'test' in folders:
|
||||
train_json_names = self.get_json_names('train/')
|
||||
val_json_names = self.get_json_names('val/')
|
||||
test_json_names = self.get_json_names('test/')
|
||||
if (
|
||||
len(folders) > 0
|
||||
and "train" in folders
|
||||
and "val" in folders
|
||||
and "test" in folders
|
||||
):
|
||||
train_json_names = self.get_json_names("train/")
|
||||
val_json_names = self.get_json_names("val/")
|
||||
test_json_names = self.get_json_names("test/")
|
||||
|
||||
return train_json_names, val_json_names, test_json_names
|
||||
|
||||
train_indexes, val_indexes = train_test_split(range(len(json_names)),
|
||||
test_size=val_size)
|
||||
train_indexes, val_indexes = train_test_split(
|
||||
range(len(json_names)), test_size=val_size
|
||||
)
|
||||
tmp_train_len = len(train_indexes)
|
||||
test_indexes = []
|
||||
if test_size:
|
||||
train_indexes, test_indexes = train_test_split(
|
||||
range(tmp_train_len), test_size=test_size / (1 - val_size))
|
||||
train_json_names = [json_names[train_idx]
|
||||
for train_idx in train_indexes]
|
||||
range(tmp_train_len), test_size=test_size / (1 - val_size)
|
||||
)
|
||||
train_json_names = [json_names[train_idx] for train_idx in train_indexes]
|
||||
val_json_names = [json_names[val_idx] for val_idx in val_indexes]
|
||||
test_json_names = [json_names[test_idx] for test_idx in test_indexes]
|
||||
|
||||
|
@ -162,90 +168,93 @@ class Labelme2YOLO(object):
|
|||
|
||||
def get_json_names(self, data_type: str):
|
||||
data_folder = os.path.join(self._json_dir, data_type)
|
||||
data_json_names = [data_sample_name + '.json'
|
||||
for data_sample_name in os.listdir(data_folder)
|
||||
if os.path.isdir(os.path.join(data_folder, data_sample_name))]
|
||||
data_json_names = [
|
||||
data_sample_name + ".json"
|
||||
for data_sample_name in os.listdir(data_folder)
|
||||
if os.path.isdir(os.path.join(data_folder, data_sample_name))
|
||||
]
|
||||
return data_json_names
|
||||
|
||||
def convert(self, val_size, test_size):
|
||||
json_names = [file_name for file_name in os.listdir(self._json_dir)
|
||||
if os.path.isfile(os.path.join(self._json_dir, file_name)) and
|
||||
file_name.endswith('.json')]
|
||||
folders = [file_name for file_name in os.listdir(self._json_dir)
|
||||
if os.path.isdir(os.path.join(self._json_dir, file_name))]
|
||||
json_names = [
|
||||
file_name
|
||||
for file_name in os.listdir(self._json_dir)
|
||||
if os.path.isfile(os.path.join(self._json_dir, file_name))
|
||||
and file_name.endswith(".json")
|
||||
]
|
||||
folders = [
|
||||
file_name
|
||||
for file_name in os.listdir(self._json_dir)
|
||||
if os.path.isdir(os.path.join(self._json_dir, file_name))
|
||||
]
|
||||
train_json_names, val_json_names, test_json_names = self._train_test_split(
|
||||
folders, json_names, val_size, test_size)
|
||||
folders, json_names, val_size, test_size
|
||||
)
|
||||
|
||||
self._make_train_val_dir()
|
||||
|
||||
# convert labelme object to yolo format object, and save them to files
|
||||
# also get image from labelme json file and save them under images folder
|
||||
for target_dir, json_names in zip(('train/', 'val/', 'test/'),
|
||||
(train_json_names, val_json_names, test_json_names)):
|
||||
for target_dir, json_names in zip(
|
||||
("train/", "val/", "test/"),
|
||||
(train_json_names, val_json_names, test_json_names),
|
||||
):
|
||||
pool = Pool(os.cpu_count() - 1)
|
||||
for json_name in json_names:
|
||||
pool.apply_async(self.covert_json_to_text,
|
||||
args=(target_dir, json_name))
|
||||
pool.apply_async(self.covert_json_to_text, args=(target_dir, json_name))
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
print('Generating dataset.yaml file ...')
|
||||
print("Generating dataset.yaml file ...")
|
||||
self._save_dataset_yaml()
|
||||
|
||||
def covert_json_to_text(self, target_dir, json_name):
|
||||
json_path = os.path.join(self._json_dir, json_name)
|
||||
json_data = json.load(open(json_path))
|
||||
|
||||
print('Converting %s for %s ...' %
|
||||
(json_name, target_dir.replace('/', '')))
|
||||
print("Converting %s for %s ..." % (json_name, target_dir.replace("/", "")))
|
||||
|
||||
img_path = save_yolo_image(json_data,
|
||||
json_name,
|
||||
self._image_dir_path,
|
||||
target_dir)
|
||||
img_path = save_yolo_image(
|
||||
json_data, json_name, self._image_dir_path, target_dir
|
||||
)
|
||||
|
||||
yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
|
||||
save_yolo_label(json_name,
|
||||
self._label_dir_path,
|
||||
target_dir,
|
||||
yolo_obj_list)
|
||||
save_yolo_label(json_name, self._label_dir_path, target_dir, yolo_obj_list)
|
||||
|
||||
def convert_one(self, json_name):
|
||||
json_path = os.path.join(self._json_dir, json_name)
|
||||
json_data = json.load(open(json_path))
|
||||
|
||||
print('Converting %s ...' % json_name)
|
||||
print("Converting %s ..." % json_name)
|
||||
|
||||
img_path = save_yolo_image(json_data, json_name,
|
||||
self._json_dir, '')
|
||||
img_path = save_yolo_image(json_data, json_name, self._json_dir, "")
|
||||
|
||||
yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
|
||||
save_yolo_label(json_name, self._json_dir,
|
||||
'', yolo_obj_list)
|
||||
save_yolo_label(json_name, self._json_dir, "", yolo_obj_list)
|
||||
|
||||
def _get_yolo_object_list(self, json_data, img_path):
|
||||
yolo_obj_list = []
|
||||
|
||||
img_h, img_w, _ = cv2.imread(img_path).shape
|
||||
for shape in json_data['shapes']:
|
||||
for shape in json_data["shapes"]:
|
||||
# labelme circle shape is different from others
|
||||
# it only has 2 points, 1st is circle center, 2nd is drag end point
|
||||
if shape['shape_type'] == 'circle':
|
||||
yolo_obj = self._get_circle_shape_yolo_object(
|
||||
shape, img_h, img_w)
|
||||
if shape["shape_type"] == "circle":
|
||||
yolo_obj = self._get_circle_shape_yolo_object(shape, img_h, img_w)
|
||||
else:
|
||||
yolo_obj = self._get_other_shape_yolo_object(
|
||||
shape, img_h, img_w)
|
||||
yolo_obj = self._get_other_shape_yolo_object(shape, img_h, img_w)
|
||||
|
||||
yolo_obj_list.append(yolo_obj)
|
||||
|
||||
return yolo_obj_list
|
||||
|
||||
def _get_circle_shape_yolo_object(self, shape, img_h, img_w):
|
||||
obj_center_x, obj_center_y = shape['points'][0]
|
||||
obj_center_x, obj_center_y = shape["points"][0]
|
||||
|
||||
radius = math.sqrt((obj_center_x - shape['points'][1][0]) ** 2 +
|
||||
(obj_center_y - shape['points'][1][1]) ** 2)
|
||||
radius = math.sqrt(
|
||||
(obj_center_x - shape["points"][1][0]) ** 2
|
||||
+ (obj_center_y - shape["points"][1][1]) ** 2
|
||||
)
|
||||
obj_w = 2 * radius
|
||||
obj_h = 2 * radius
|
||||
|
||||
|
@ -254,45 +263,42 @@ class Labelme2YOLO(object):
|
|||
yolo_w = round(float(obj_w / img_w), 6)
|
||||
yolo_h = round(float(obj_h / img_h), 6)
|
||||
|
||||
label_id = self._label_id_map[shape['label']]
|
||||
label_id = self._label_id_map[shape["label"]]
|
||||
|
||||
return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h
|
||||
|
||||
def _get_other_shape_yolo_object(self, shape, img_h, img_w):
|
||||
def __get_object_desc(obj_port_list):
|
||||
def __get_dist(int_list): return max(int_list) - min(int_list)
|
||||
def __get_dist(int_list):
|
||||
return max(int_list) - min(int_list)
|
||||
|
||||
x_lists = [port[0] for port in obj_port_list]
|
||||
y_lists = [port[1] for port in obj_port_list]
|
||||
|
||||
return min(x_lists), __get_dist(x_lists), min(y_lists), __get_dist(y_lists)
|
||||
|
||||
obj_x_min, obj_w, obj_y_min, obj_h = __get_object_desc(shape['points'])
|
||||
obj_x_min, obj_w, obj_y_min, obj_h = __get_object_desc(shape["points"])
|
||||
|
||||
yolo_center_x = round(float((obj_x_min + obj_w / 2.0) / img_w), 6)
|
||||
yolo_center_y = round(float((obj_y_min + obj_h / 2.0) / img_h), 6)
|
||||
yolo_w = round(float(obj_w / img_w), 6)
|
||||
yolo_h = round(float(obj_h / img_h), 6)
|
||||
|
||||
label_id = self._label_id_map[shape['label']]
|
||||
label_id = self._label_id_map[shape["label"]]
|
||||
|
||||
return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h
|
||||
|
||||
def _save_dataset_yaml(self):
|
||||
yaml_path = os.path.join(
|
||||
self._json_dir, 'YOLODataset', 'dataset.yaml')
|
||||
yaml_path = os.path.join(self._json_dir, "YOLODataset", "dataset.yaml")
|
||||
|
||||
with open(yaml_path, 'w+') as yaml_file:
|
||||
yaml_file.write('train: %s\n' %
|
||||
os.path.join(self._image_dir_path, 'train'))
|
||||
yaml_file.write('val: %s\n\n' %
|
||||
os.path.join(self._image_dir_path, 'val'))
|
||||
yaml_file.write('test: %s\n\n' %
|
||||
os.path.join(self._image_dir_path, 'test'))
|
||||
yaml_file.write('nc: %i\n\n' % len(self._label_id_map))
|
||||
with open(yaml_path, "w+") as yaml_file:
|
||||
yaml_file.write("train: %s\n" % os.path.join(self._image_dir_path, "train"))
|
||||
yaml_file.write("val: %s\n\n" % os.path.join(self._image_dir_path, "val"))
|
||||
yaml_file.write("test: %s\n\n" % os.path.join(self._image_dir_path, "test"))
|
||||
yaml_file.write("nc: %i\n\n" % len(self._label_id_map))
|
||||
|
||||
names_str = ''
|
||||
names_str = ""
|
||||
for label, _ in self._label_id_map.items():
|
||||
names_str += "'%s', " % label
|
||||
names_str = names_str.rstrip(', ')
|
||||
yaml_file.write('names: [%s]' % names_str)
|
||||
names_str = names_str.rstrip(", ")
|
||||
yaml_file.write("names: [%s]" % names_str)
|
||||
|
|
Loading…
Reference in New Issue