update export data format: yolo polygon format

This commit is contained in:
greatx 2022-11-25 10:14:06 +08:00
parent ee76d5da04
commit 639cbcad0d
3 changed files with 111 additions and 109 deletions

View File

@ -8,6 +8,11 @@
Help converting LabelMe Annotation Tool JSON format to YOLO text file format.
If you've already marked your segmentation dataset by LabelMe, it's easy to use this tool to help converting to YOLO format dataset.
---------
## New
- export data as yolo polygon annotation (for YOLOv5 v7.0 segmentation)
## Parameters Explain
**--json_dir** LabelMe JSON files folder path.

View File

@ -1,4 +1,4 @@
# SPDX-FileCopyrightText: 2022-present Wang Xin <xinwang614@gmail.com>
#
# SPDX-License-Identifier: MIT
__version__ = '0.0.1'
__version__ = '0.0.5'

View File

@ -123,214 +123,211 @@ def apply_exif_orientation(image):
else:
return image
class Labelme2YOLO(object):
def __init__(self, json_dir):
self._json_dir = json_dir
self._label_id_map = self._get_label_id_map(self._json_dir)
def _make_train_val_dir(self):
self._label_dir_path = os.path.join(self._json_dir,
self._label_dir_path = os.path.join(self._json_dir,
'YOLODataset/labels/')
self._image_dir_path = os.path.join(self._json_dir,
self._image_dir_path = os.path.join(self._json_dir,
'YOLODataset/images/')
for yolo_path in (os.path.join(self._label_dir_path + 'train/'),
for yolo_path in (os.path.join(self._label_dir_path + 'train/'),
os.path.join(self._label_dir_path + 'val/'),
os.path.join(self._label_dir_path + 'test/'),
os.path.join(self._image_dir_path + 'train/'),
os.path.join(self._image_dir_path + 'train/'),
os.path.join(self._image_dir_path + 'val/'),
os.path.join(self._image_dir_path + 'test/')):
if os.path.exists(yolo_path):
shutil.rmtree(yolo_path)
os.makedirs(yolo_path)
os.makedirs(yolo_path)
def _get_label_id_map(self, json_dir):
label_set = set()
for file_name in os.listdir(json_dir):
if file_name.endswith('json'):
json_path = os.path.join(json_dir, file_name)
data = json.load(open(json_path))
for shape in data['shapes']:
label_set.add(shape['label'])
return OrderedDict([(label, label_id) \
return OrderedDict([(label, label_id)
for label_id, label in enumerate(label_set)])
def _train_test_split(self, folders, json_names, val_size, test_size):
if len(folders) > 0 and 'train' in folders and 'val' in folders and 'test' in folders:
train_folder = os.path.join(self._json_dir, 'train/')
train_json_names = [train_sample_name + '.json' \
for train_sample_name in os.listdir(train_folder) \
train_json_names = [train_sample_name + '.json'
for train_sample_name in os.listdir(train_folder)
if os.path.isdir(os.path.join(train_folder, train_sample_name))]
val_folder = os.path.join(self._json_dir, 'val/')
val_json_names = [val_sample_name + '.json' \
for val_sample_name in os.listdir(val_folder) \
val_json_names = [val_sample_name + '.json'
for val_sample_name in os.listdir(val_folder)
if os.path.isdir(os.path.join(val_folder, val_sample_name))]
test_folder = os.path.join(self._json_dir, 'test/')
test_json_names = [test_sample_name + '.json' \
for test_sample_name in os.listdir(test_folder) \
if os.path.isdir(os.path.join(test_folder, test_sample_name))]
test_json_names = [test_sample_name + '.json'
for test_sample_name in os.listdir(test_folder)
if os.path.isdir(os.path.join(test_folder, test_sample_name))]
return train_json_names, val_json_names, test_json_names
train_idxs, val_idxs = train_test_split(range(len(json_names)),
train_idxs, val_idxs = train_test_split(range(len(json_names)),
test_size=val_size)
tmp_train_len = len(train_idxs)
test_idxs = []
if test_size > 1e-8:
train_idxs, test_idxs = train_test_split(range(tmp_train_len), test_size=test_size / (1 - val_size))
train_idxs, test_idxs = train_test_split(
range(tmp_train_len), test_size=test_size / (1 - val_size))
train_json_names = [json_names[train_idx] for train_idx in train_idxs]
val_json_names = [json_names[val_idx] for val_idx in val_idxs]
test_json_names = [json_names[test_idx] for test_idx in test_idxs]
return train_json_names, val_json_names, test_json_names
def convert(self, val_size, test_size):
json_names = [file_name for file_name in os.listdir(self._json_dir) \
if os.path.isfile(os.path.join(self._json_dir, file_name)) and \
json_names = [file_name for file_name in os.listdir(self._json_dir)
if os.path.isfile(os.path.join(self._json_dir, file_name)) and
file_name.endswith('.json')]
folders = [file_name for file_name in os.listdir(self._json_dir) \
if os.path.isdir(os.path.join(self._json_dir, file_name))]
train_json_names, val_json_names, test_json_names = self._train_test_split(folders, json_names, val_size, test_size)
folders = [file_name for file_name in os.listdir(self._json_dir)
if os.path.isdir(os.path.join(self._json_dir, file_name))]
train_json_names, val_json_names, test_json_names = self._train_test_split(
folders, json_names, val_size, test_size)
self._make_train_val_dir()
# convert labelme object to yolo format object, and save them to files
# also get image from labelme json file and save them under images folder
for target_dir, json_names in zip(('train/', 'val/', 'test/'),
for target_dir, json_names in zip(('train/', 'val/', 'test/'),
(train_json_names, val_json_names, test_json_names)):
pool = Pool(os.cpu_count() - 1)
for json_name in json_names:
pool.apply_async(self.covert_json_to_text, args=(target_dir, json_name))
pool.apply_async(self.covert_json_to_text,
args=(target_dir, json_name))
pool.close()
pool.join()
print('Generating dataset.yaml file ...')
self._save_dataset_yaml()
def covert_json_to_text(self, target_dir, json_name):
json_path = os.path.join(self._json_dir, json_name)
json_data = json.load(open(json_path))
print('Converting %s for %s ...' % (json_name, target_dir.replace('/', '')))
img_path = self._save_yolo_image(json_data,
json_name,
self._image_dir_path,
target_dir)
print('Converting %s for %s ...' %
(json_name, target_dir.replace('/', '')))
img_path = self._save_yolo_image(json_data,
json_name,
self._image_dir_path,
target_dir)
yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
self._save_yolo_label(json_name,
self._label_dir_path,
target_dir,
yolo_obj_list)
self._save_yolo_label(json_name,
self._label_dir_path,
target_dir,
yolo_obj_list)
def convert_one(self, json_name):
json_path = os.path.join(self._json_dir, json_name)
json_data = json.load(open(json_path))
print('Converting %s ...' % json_name)
img_path = self._save_yolo_image(json_data, json_name,
img_path = self._save_yolo_image(json_data, json_name,
self._json_dir, '')
yolo_obj_list = self._get_yolo_object_list(json_data, img_path)
self._save_yolo_label(json_name, self._json_dir,
self._save_yolo_label(json_name, self._json_dir,
'', yolo_obj_list)
def _get_yolo_object_list(self, json_data, img_path):
yolo_obj_list = []
img_h, img_w, _ = cv2.imread(img_path).shape
for shape in json_data['shapes']:
# labelme circle shape is different from others
# it only has 2 points, 1st is circle center, 2nd is drag end point
if shape['shape_type'] == 'circle':
yolo_obj = self._get_circle_shape_yolo_object(shape, img_h, img_w)
yolo_obj = self._get_circle_shape_yolo_object(
shape, img_h, img_w)
else:
yolo_obj = self._get_other_shape_yolo_object(shape, img_h, img_w)
yolo_obj = self._get_other_shape_yolo_object(
shape, img_h, img_w)
yolo_obj_list.append(yolo_obj)
return yolo_obj_list
def _get_circle_shape_yolo_object(self, shape, img_h, img_w):
obj_center_x, obj_center_y = shape['points'][0]
radius = math.sqrt((obj_center_x - shape['points'][1][0]) ** 2 +
radius = math.sqrt((obj_center_x - shape['points'][1][0]) ** 2 +
(obj_center_y - shape['points'][1][1]) ** 2)
obj_w = 2 * radius
obj_h = 2 * radius
yolo_center_x= round(float(obj_center_x / img_w), 6)
yolo_center_x = round(float(obj_center_x / img_w), 6)
yolo_center_y = round(float(obj_center_y / img_h), 6)
yolo_w = round(float(obj_w / img_w), 6)
yolo_h = round(float(obj_h / img_h), 6)
label_id = self._label_id_map[shape['label']]
return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h
def _get_other_shape_yolo_object(self, shape, img_h, img_w):
def __get_object_desc(obj_port_list):
__get_dist = lambda int_list: max(int_list) - min(int_list)
x_lists = [port[0] for port in obj_port_list]
y_lists = [port[1] for port in obj_port_list]
return min(x_lists), __get_dist(x_lists), min(y_lists), __get_dist(y_lists)
obj_x_min, obj_w, obj_y_min, obj_h = __get_object_desc(shape['points'])
yolo_center_x= round(float((obj_x_min + obj_w / 2.0) / img_w), 6)
yolo_center_y = round(float((obj_y_min + obj_h / 2.0) / img_h), 6)
yolo_w = round(float(obj_w / img_w), 6)
yolo_h = round(float(obj_h / img_h), 6)
point_list = shape['points']
points = np.zeros(2 * len(point_list))
points[::2] = [float(point[0]) / img_w for point in point_list]
points[1::2] = [float(point[1]) / img_h for point in point_list]
label_id = self._label_id_map[shape['label']]
return label_id, yolo_center_x, yolo_center_y, yolo_w, yolo_h
return (label_id, points.tolist())
def _save_yolo_label(self, json_name, label_dir_path, target_dir, yolo_obj_list):
txt_path = os.path.join(label_dir_path,
target_dir,
txt_path = os.path.join(label_dir_path,
target_dir,
json_name.replace('.json', '.txt'))
with open(txt_path, 'w+') as f:
for yolo_obj_idx, yolo_obj in enumerate(yolo_obj_list):
yolo_obj_line = '%s %s %s %s %s\n' % yolo_obj \
if yolo_obj_idx + 1 != len(yolo_obj_list) else \
'%s %s %s %s %s' % yolo_obj
for yolo_obj in yolo_obj_list:
label, points = yolo_obj
points = [str(item) for item in points]
yolo_obj_line = f"{label} {' '.join(points)}\n"
f.write(yolo_obj_line)
def _save_yolo_image(self, json_data, json_name, image_dir_path, target_dir):
img_name = json_name.replace('.json', '.png')
img_path = os.path.join(image_dir_path, target_dir,img_name)
img_path = os.path.join(image_dir_path, target_dir, img_name)
if not os.path.exists(img_path):
img = img_b64_to_arr(json_data['imageData'])
PIL.Image.fromarray(img).save(img_path)
return img_path
def _save_dataset_yaml(self):
yaml_path = os.path.join(self._json_dir, 'YOLODataset/', 'dataset.yaml')
yaml_path = os.path.join(
self._json_dir, 'YOLODataset/', 'dataset.yaml')
with open(yaml_path, 'w+') as yaml_file:
yaml_file.write('train: %s\n' % \
yaml_file.write('train: %s\n' %
os.path.join(self._image_dir_path, 'train/'))
yaml_file.write('val: %s\n\n' % \
yaml_file.write('val: %s\n' %
os.path.join(self._image_dir_path, 'val/'))
yaml_file.write('test: %s\n\n' % \
yaml_file.write('test: %s\n' %
os.path.join(self._image_dir_path, 'test/'))
yaml_file.write('nc: %i\n\n' % len(self._label_id_map))
yaml_file.write('nc: %i\n' % len(self._label_id_map))
names_str = ''
for label, _ in self._label_id_map.items():
names_str += "'%s', " % label