From e92cd533f08c8606454c86c26925bdcd2b3b95c6 Mon Sep 17 00:00:00 2001 From: mba1398 Date: Thu, 17 Dec 2020 22:46:27 +0800 Subject: [PATCH] =?UTF-8?q?Update=20Task05=EF=BC=9ASQL=E9=AB=98=E7=BA=A7?= =?UTF-8?q?=E5=A4=84=E7=90=86.md?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- Task05:SQL高级处理.md | 16 ++++++++-------- 1 file changed, 8 insertions(+), 8 deletions(-) diff --git a/Task05:SQL高级处理.md b/Task05:SQL高级处理.md index 960430f..f966760 100644 --- a/Task05:SQL高级处理.md +++ b/Task05:SQL高级处理.md @@ -27,7 +27,7 @@ SELECT product_name ,sale_price ,RANK() OVER (PARTITION BY product_type ORDER BY sale_price) AS ranking - FROM Product   + FROM product   ``` 得到的结果是: @@ -84,7 +84,7 @@ SELECT product_name ,RANK() OVER (ORDER BY sale_price) AS ranking ,DENSE_RANK() OVER (ORDER BY sale_price) AS dense_ranking ,ROW_NUMBER() OVER (ORDER BY sale_price) AS row_num - FROM Product   + FROM product   ``` ![图片](https://github.com/datawhalechina/team-learning-sql/blob/main/img/ch05/ch0503.png) @@ -102,7 +102,7 @@ SELECT product_id ,sale_price ,SUM(sale_price) OVER (ORDER BY product_id) AS current_sum ,AVG(sale_price) OVER (ORDER BY product_id) AS current_avg   - FROM Product;   + FROM product;   ``` ![图片](https://github.com/datawhalechina/team-learning-sql/blob/main/img/ch05/ch0504.png) @@ -142,7 +142,7 @@ SELECT product_id ,AVG(sale_price) OVER (ORDER BY product_id ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS moving_avg - FROM Product   + FROM product   ``` **执行结果:** @@ -171,7 +171,7 @@ ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING: SELECT product_type ,regist_date ,SUM(sale_price) AS sum_price - FROM Product + FROM product GROUP BY product_type, regist_date WITH ROLLUP   ``` 得到的结果为: @@ -190,18 +190,18 @@ ROLLUP 可以对多列进行汇总求小计和合计。 ## **5.1** -请说出针对本章中使用的 Product(商品)表执行如下 SELECT 语句所能得到的结果。 +请说出针对本章中使用的 product(商品)表执行如下 SELECT 语句所能得到的结果。 ```sql SELECT product_id ,product_name ,sale_price ,MAX(sale_price) OVER (ORDER BY product_id) AS Current_max_price - FROM Product + FROM product ``` ## **5.2** -继续使用Product表,计算出按照登记日期(regist_date)升序进行排列的各日期的销售单价(sale_price)的总额。排序是需要将登记日期为NULL 的“运动 T 恤”记录排在第 1 位(也就是将其看作比其他日期都早) +继续使用product表,计算出按照登记日期(regist_date)升序进行排列的各日期的销售单价(sale_price)的总额。排序是需要将登记日期为NULL 的“运动 T 恤”记录排在第 1 位(也就是将其看作比其他日期都早) ## **5.3**