This commit is contained in:
erenup 2021-09-02 09:43:53 +08:00
parent e8e4abdfb5
commit 806baa18e0
3 changed files with 4 additions and 2096 deletions

View File

@ -1,923 +0,0 @@
# Pytorch编写完整的Transformer
本文涉及的jupter notebook在[Pytorch编写完整的Transformer](https://github.com/datawhalechina/learn-nlp-with-transformers/blob/main/docs/%E7%AF%87%E7%AB%A02-Transformer%E7%9B%B8%E5%85%B3%E5%8E%9F%E7%90%86/2.2.1-Pytorch%E7%BC%96%E5%86%99%E5%AE%8C%E6%95%B4%E7%9A%84Transformer.ipynb)
在阅读完[2.2-图解transformer](./篇章2-Transformer相关原理/2.2-图解transformer.md)之后希望大家能对transformer各个模块的设计和计算有一个形象的认识本小节我们基于pytorch来实现一个Transformer帮助大家进一步学习这个复杂的模型。
**章节**
- [词嵌入](#embed)
- [位置编码](#pos)
- [多头注意力](#multihead)
- [搭建Transformer](#build)
![](./pictures/0-1-transformer-arc.png)
Transformer结构图
## **<div id='embed'>词嵌入</div>**
如上图所示Transformer图里左边的是Encoder右边是Decoder部分。Encoder输入源语言序列Decoder里面输入需要被翻译的语言文本在训练时。一个文本常有许多序列组成常见操作为将序列进行一些预处理如词切分等变成列表一个序列的列表的元素通常为词表中不可切分的最小词整个文本就是一个大列表元素为一个一个由序列组成的列表。如一个序列经过切分后变为["am", "##ro", "##zi", "meets", "his", "father"],接下来按照它们在词表中对应的索引进行转换,假设结果如[23, 94, 13, 41, 27, 96]。假如整个文本一共100个句子那么就有100个列表为它的元素因为每个序列的长度不一需要设定最大长度这里不妨设为128那么将整个文本转换为数组之后形状即为100 x 128这就对应着batch_size和seq_length。
输入之后,紧接着进行词嵌入处理,词嵌入就是将每一个词用预先训练好的向量进行映射。
词嵌入在torch里基于`torch.nn.Embedding`实现,实例化时需要设置的参数为词表的大小和被映射的向量的维度比如`embed = nn.Embedding(10,8)`。向量的维度通俗来说就是向量里面有多少个数。注意第一个参数是词表的大小如果你目前最多有8个词通常填写10多一个位置留给unk和pad你后面万一进入与这8个词不同的词就映射到unk上序列padding的部分就映射到pad上。
假如我们打算映射到8维num_features或者embed_dim那么整个文本的形状变为100 x 128 x 8。接下来举个小例子解释一下假设我们词表一共有10个词(算上unk和pad)文本里有2个句子每个句子有4个词我们想要把每个词映射到8维的向量。于是248对应于batch_size, seq_length, embed_dim如果batch在第一维的话
另外一般深度学习任务只改变num_features所以讲维度一般是针对最后特征所在的维度。
开始编程:
所有需要的包的导入:
```python
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn.init import xavier_uniform_
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
import torch.nn.functional as F
from typing import Optional, Tuple, Any
from typing import List, Optional, Tuple
import math
import warnings
```
```python
X = torch.zeros((2,4),dtype=torch.long)
embed = nn.Embedding(10,8)
print(embed(X).shape)
```
## **<div id='pos'>位置编码</div>**
词嵌入之后紧接着就是位置编码位置编码用以区分不同词以及同词不同特征之间的关系。代码中需要注意X_只是初始化的矩阵并不是输入进来的完成位置编码之后会加一个dropout。另外位置编码是最后加上去的因此输入输出形状不变。
```python
Tensor = torch.Tensor
def positional_encoding(X, num_features, dropout_p=0.1, max_len=512) -> Tensor:
r'''
给输入加入位置编码
参数:
- num_features: 输入进来的维度
- dropout_p: dropout的概率当其为非零时执行dropout
- max_len: 句子的最大长度默认512
形状:
- 输入: [batch_size, seq_length, num_features]
- 输出: [batch_size, seq_length, num_features]
例子:
>>> X = torch.randn((2,4,10))
>>> X = positional_encoding(X, 10)
>>> print(X.shape)
>>> torch.Size([2, 4, 10])
'''
dropout = nn.Dropout(dropout_p)
P = torch.zeros((1,max_len,num_features))
X_ = torch.arange(max_len,dtype=torch.float32).reshape(-1,1) / torch.pow(
10000,
torch.arange(0,num_features,2,dtype=torch.float32) /num_features)
P[:,:,0::2] = torch.sin(X_)
P[:,:,1::2] = torch.cos(X_)
X = X + P[:,:X.shape[1],:].to(X.device)
return dropout(X)
```
```python
# 位置编码例子
X = torch.randn((2,4,10))
X = positional_encoding(X, 10)
print(X.shape)
```
## **<div id='multihead'>多头注意力机制</div>**
### 拆开看多头注意力机制
**完整版本可运行的多头注意里机制的class在后面[完整的多头注意力机制-MultiheadAttentionion](#mha) 再回来依次看下面的解释。**
多头注意力类主要成分是参数初始化、multi_head_attention_forward
#### 初始化参数
```python
if self._qkv_same_embed_dim is False:
# 初始化前后形状维持不变
# (seq_length x embed_dim) x (embed_dim x embed_dim) ==> (seq_length x embed_dim)
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim)))
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim)))
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim)))
self.register_parameter('in_proj_weight', None)
else:
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim)))
self.register_parameter('q_proj_weight', None)
self.register_parameter('k_proj_weight', None)
self.register_parameter('v_proj_weight', None)
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
# 后期会将所有头的注意力拼接在一起然后乘上权重矩阵输出
# out_proj是为了后期准备的
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self._reset_parameters()
```
torch.empty是按照所给的形状形成对应的tensor特点是填充的值还未初始化类比torch.randn标准正态分布这就是一种初始化的方式。在PyTorch中变量类型是tensor的话是无法修改值的而Parameter()函数可以看作为一种类型转变函数将不可改值的tensor转换为可训练可修改的模型参数即与model.parameters绑定在一起register_parameter的意思是是否将这个参数放到model.parametersNone的意思是没有这个参数。
这里有个if判断用以判断q,k,v的最后一维是否一致若一致则一个大的权重矩阵全部乘然后分割出来若不是则各初始化各的其实初始化是不会改变原来的形状的如![](http://latex.codecogs.com/svg.latex?q=qW_q+b_q),见注释)。
可以发现最后有一个_reset_parameters()函数这个是用来初始化参数数值的。xavier_uniform意思是从[连续型均匀分布](https://zh.wikipedia.org/wiki/%E9%80%A3%E7%BA%8C%E5%9E%8B%E5%9D%87%E5%8B%BB%E5%88%86%E5%B8%83)里面随机取样出值来作为初始化的值xavier_normal_取样的分布是正态分布。正因为初始化值在训练神经网络的时候很重要所以才需要这两个函数。
constant_意思是用所给值来填充输入的向量。
另外在PyTorch的源码里似乎projection代表是一种线性变换的意思in_proj_bias的意思就是一开始的线性变换的偏置
```python
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
```
#### multi_head_attention_forward
这个函数如下代码所示主要分成3个部分
- query, key, value通过_in_projection_packed变换得到q,k,v
- 遮挡机制
- 点积注意力
```python
import torch
Tensor = torch.Tensor
def multi_head_attention_forward(
query: Tensor,
key: Tensor,
value: Tensor,
num_heads: int,
in_proj_weight: Tensor,
in_proj_bias: Optional[Tensor],
dropout_p: float,
out_proj_weight: Tensor,
out_proj_bias: Optional[Tensor],
training: bool = True,
key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[Tensor] = None,
use_seperate_proj_weight = None,
q_proj_weight: Optional[Tensor] = None,
k_proj_weight: Optional[Tensor] = None,
v_proj_weight: Optional[Tensor] = None,
) -> Tuple[Tensor, Optional[Tensor]]:
r'''
形状:
输入:
- query`(L, N, E)`
- key: `(S, N, E)`
- value: `(S, N, E)`
- key_padding_mask: `(N, S)`
- attn_mask: `(L, S)` or `(N * num_heads, L, S)`
输出:
- attn_output:`(L, N, E)`
- attn_output_weights:`(N, L, S)`
'''
tgt_len, bsz, embed_dim = query.shape
src_len, _, _ = key.shape
head_dim = embed_dim // num_heads
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
if attn_mask is not None:
if attn_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
attn_mask = attn_mask.to(torch.bool)
else:
assert attn_mask.is_floating_point() or attn_mask.dtype == torch.bool, \
f"Only float, byte, and bool types are supported for attn_mask, not {attn_mask.dtype}"
if attn_mask.dim() == 2:
correct_2d_size = (tgt_len, src_len)
if attn_mask.shape != correct_2d_size:
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
attn_mask = attn_mask.unsqueeze(0)
elif attn_mask.dim() == 3:
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
if attn_mask.shape != correct_3d_size:
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
else:
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
key_padding_mask = key_padding_mask.to(torch.bool)
# reshape q,k,v将Batch放在第一维以适合点积注意力
# 同时为多头机制,将不同的头拼在一起组成一层
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if key_padding_mask is not None:
assert key_padding_mask.shape == (bsz, src_len), \
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
if attn_mask is None:
attn_mask = key_padding_mask
elif attn_mask.dtype == torch.bool:
attn_mask = attn_mask.logical_or(key_padding_mask)
else:
attn_mask = attn_mask.masked_fill(key_padding_mask, float("-inf"))
# 若attn_mask值是布尔值则将mask转换为float
if attn_mask is not None and attn_mask.dtype == torch.bool:
new_attn_mask = torch.zeros_like(attn_mask, dtype=torch.float)
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
attn_mask = new_attn_mask
# 若training为True时才应用dropout
if not training:
dropout_p = 0.0
attn_output, attn_output_weights = _scaled_dot_product_attention(q, k, v, attn_mask, dropout_p)
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = nn.functional.linear(attn_output, out_proj_weight, out_proj_bias)
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / num_heads
else:
return attn_output, None
```
##### query, key, value通过_in_projection_packed变换得到q,k,v
```
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
```
对于`nn.functional.linear`函数,其实就是一个线性变换,与`nn.Linear`不同的是,前者可以提供权重矩阵和偏置,执行![](http://latex.codecogs.com/svg.latex?y=xW^T+b),而后者是可以自由决定输出的维度。
```python
def _in_projection_packed(
q: Tensor,
k: Tensor,
v: Tensor,
w: Tensor,
b: Optional[Tensor] = None,
) -> List[Tensor]:
r"""
用一个大的权重参数矩阵进行线性变换
参数:
q, k, v: 对自注意来说三者都是src对于seq2seq模型k和v是一致的tensor。
但它们的最后一维(num_features或者叫做embed_dim)都必须保持一致。
w: 用以线性变换的大矩阵按照q,k,v的顺序压在一个tensor里面。
b: 用以线性变换的偏置按照q,k,v的顺序压在一个tensor里面。
形状:
输入:
- q: shape:`(..., E)`E是词嵌入的维度下面出现的E均为此意
- k: shape:`(..., E)`
- v: shape:`(..., E)`
- w: shape:`(E * 3, E)`
- b: shape:`E * 3`
输出:
- 输出列表 :`[q', k', v']`q,k,v经过线性变换前后的形状都一致。
"""
E = q.size(-1)
# 若为自注意则q = k = v = src因此它们的引用变量都是src
# 即k is v和q is k结果均为True
# 若为seq2seqk = v因而k is v的结果是True
if k is v:
if q is k:
return F.linear(q, w, b).chunk(3, dim=-1)
else:
# seq2seq模型
w_q, w_kv = w.split([E, E * 2])
if b is None:
b_q = b_kv = None
else:
b_q, b_kv = b.split([E, E * 2])
return (F.linear(q, w_q, b_q),) + F.linear(k, w_kv, b_kv).chunk(2, dim=-1)
else:
w_q, w_k, w_v = w.chunk(3)
if b is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = b.chunk(3)
return F.linear(q, w_q, b_q), F.linear(k, w_k, b_k), F.linear(v, w_v, b_v)
# q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
```
***
##### 遮挡机制
对于attn_mask来说若为2D形状如`(L, S)`L和S分别代表着目标语言和源语言序列长度若为3D,形状如`(N * num_heads, L, S)`N代表着batch_sizenum_heads代表注意力头的数目。若为attn_mask的dtype为ByteTensor非0的位置会被忽略不做注意力若为BoolTensorTrue对应的位置会被忽略若为数值则会直接加到attn_weights。
因为在decoder解码的时候只能看该位置和它之前的如果看后面就犯规了所以需要attn_mask遮挡住。
下面函数直接复制PyTorch的意思是确保不同维度的mask形状正确以及不同类型的转换
```python
if attn_mask is not None:
if attn_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
attn_mask = attn_mask.to(torch.bool)
else:
assert attn_mask.is_floating_point() or attn_mask.dtype == torch.bool, \
f"Only float, byte, and bool types are supported for attn_mask, not {attn_mask.dtype}"
# 对不同维度的形状判定
if attn_mask.dim() == 2:
correct_2d_size = (tgt_len, src_len)
if attn_mask.shape != correct_2d_size:
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
attn_mask = attn_mask.unsqueeze(0)
elif attn_mask.dim() == 3:
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
if attn_mask.shape != correct_3d_size:
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
else:
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
```
与`attn_mask`不同的是,`key_padding_mask`是用来遮挡住key里面的值详细来说应该是`<PAD>`被忽略的情况与attn_mask一致。
```python
# 将key_padding_mask值改为布尔值
if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
key_padding_mask = key_padding_mask.to(torch.bool)
```
先介绍两个小函数,`logical_or`输入两个tensor并对这两个tensor里的值做`逻辑或`运算只有当两个值均为0的时候才为`False`,其他时候均为`True`,另一个是`masked_fill`输入是一个mask和用以填充的值。mask由10组成0的位置值维持不变1的位置用新值填充。
```python
a = torch.tensor([0,1,10,0],dtype=torch.int8)
b = torch.tensor([4,0,1,0],dtype=torch.int8)
print(torch.logical_or(a,b))
# tensor([ True, True, True, False])
```
```python
r = torch.tensor([[0,0,0,0],[0,0,0,0]])
mask = torch.tensor([[1,1,1,1],[0,0,0,0]])
print(r.masked_fill(mask,1))
# tensor([[1, 1, 1, 1],
# [0, 0, 0, 0]])
```
其实attn_mask和key_padding_mask有些时候对象是一致的所以有时候可以合起来看。`-inf`做softmax之后值为0即被忽略。
```python
if key_padding_mask is not None:
assert key_padding_mask.shape == (bsz, src_len), \
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
# 若attn_mask为空直接用key_padding_mask
if attn_mask is None:
attn_mask = key_padding_mask
elif attn_mask.dtype == torch.bool:
attn_mask = attn_mask.logical_or(key_padding_mask)
else:
attn_mask = attn_mask.masked_fill(key_padding_mask, float("-inf"))
# 若attn_mask值是布尔值则将mask转换为float
if attn_mask is not None and attn_mask.dtype == torch.bool:
new_attn_mask = torch.zeros_like(attn_mask, dtype=torch.float)
new_attn_mask.masked_fill_(attn_mask, float("-inf"))
attn_mask = new_attn_mask
```
***
##### 点积注意力
```python
from typing import Optional, Tuple, Any
def _scaled_dot_product_attention(
q: Tensor,
k: Tensor,
v: Tensor,
attn_mask: Optional[Tensor] = None,
dropout_p: float = 0.0,
) -> Tuple[Tensor, Tensor]:
r'''
在query, key, value上计算点积注意力若有注意力遮盖则使用并且应用一个概率为dropout_p的dropout
参数:
- q: shape:`(B, Nt, E)` B代表batch size Nt是目标语言序列长度E是嵌入后的特征维度
- key: shape:`(B, Ns, E)` Ns是源语言序列长度
- value: shape:`(B, Ns, E)`与key形状一样
- attn_mask: 要么是3D的tensor形状为:`(B, Nt, Ns)`或者2D的tensor形状如:`(Nt, Ns)`
- Output: attention values: shape:`(B, Nt, E)`与q的形状一致;attention weights: shape:`(B, Nt, Ns)`
例子:
>>> q = torch.randn((2,3,6))
>>> k = torch.randn((2,4,6))
>>> v = torch.randn((2,4,6))
>>> out = scaled_dot_product_attention(q, k, v)
>>> out[0].shape, out[1].shape
>>> torch.Size([2, 3, 6]) torch.Size([2, 3, 4])
'''
B, Nt, E = q.shape
q = q / math.sqrt(E)
# (B, Nt, E) x (B, E, Ns) -> (B, Nt, Ns)
attn = torch.bmm(q, k.transpose(-2,-1))
if attn_mask is not None:
attn += attn_mask
# attn意味着目标序列的每个词对源语言序列做注意力
attn = F.softmax(attn, dim=-1)
if dropout_p:
attn = F.dropout(attn, p=dropout_p)
# (B, Nt, Ns) x (B, Ns, E) -> (B, Nt, E)
output = torch.bmm(attn, v)
return output, attn
```
### **<div id='mha'>完整的多头注意力机制-MultiheadAttention</div>**
[点击快速回到:拆开看多头注意力机制](#拆开看多头注意力机制)
```python
class MultiheadAttention(nn.Module):
r'''
参数:
embed_dim: 词嵌入的维度
num_heads: 平行头的数量
batch_first: 若`True`,则为(batch, seq, feture),若为`False`,则为(seq, batch, feature)
例子:
>>> multihead_attn = MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
'''
def __init__(self, embed_dim, num_heads, dropout=0., bias=True,
kdim=None, vdim=None, batch_first=False) -> None:
# factory_kwargs = {'device': device, 'dtype': dtype}
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if self._qkv_same_embed_dim is False:
self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim)))
self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim)))
self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim)))
self.register_parameter('in_proj_weight', None)
else:
self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim)))
self.register_parameter('q_proj_weight', None)
self.register_parameter('k_proj_weight', None)
self.register_parameter('v_proj_weight', None)
if bias:
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim))
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self._reset_parameters()
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None,
need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
if self.batch_first:
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
if not self._qkv_same_embed_dim:
attn_output, attn_output_weights = multi_head_attention_forward(
query, key, value, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight)
else:
attn_output, attn_output_weights = multi_head_attention_forward(
query, key, value, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask)
if self.batch_first:
return attn_output.transpose(1, 0), attn_output_weights
else:
return attn_output, attn_output_weights
```
接下来可以实践一下,并且把位置编码加起来,可以发现加入位置编码和进行多头注意力的前后形状都是不会变的
```python
# 因为batch_first为False,所以src的shape`(seq, batch, embed_dim)`
src = torch.randn((2,4,100))
src = positional_encoding(src,100,0.1)
print(src.shape)
multihead_attn = MultiheadAttention(100, 4, 0.1)
attn_output, attn_output_weights = multihead_attn(src,src,src)
print(attn_output.shape, attn_output_weights.shape)
# torch.Size([2, 4, 100])
# torch.Size([2, 4, 100]) torch.Size([4, 2, 2])
```
torch.Size([2, 4, 100])
torch.Size([2, 4, 100]) torch.Size([4, 2, 2])
***
## **<div id='build'>TransformerEncoderLayer</div>**
- Encoder Layer
![](./pictures/2-2-1-encoder.png)
```python
class TransformerEncoderLayer(nn.Module):
r'''
参数:
d_model: 词嵌入的维度(必备)
nhead: 多头注意力中平行头的数目(必备)
dim_feedforward: 全连接层的神经元的数目又称经过此层输入的维度Default = 2048
dropout: dropout的概率Default = 0.1
activation: 两个线性层中间的激活函数默认relu或gelu
lay_norm_eps: layer normalization中的微小量防止分母为0Default = 1e-5
batch_first: 若`True`,则为(batch, seq, feture),若为`False`,则为(seq, batch, feature)DefaultFalse
例子:
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.randn((32, 10, 512))
>>> out = encoder_layer(src)
'''
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=F.relu,
layer_norm_eps=1e-5, batch_first=False) -> None:
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = activation
def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
src = positional_encoding(src, src.shape[-1])
src2 = self.self_attn(src, src, src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout(src2)
src = self.norm2(src)
return src
```
```python
# 用小例子看一下
encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
src = torch.randn((32, 10, 512))
out = encoder_layer(src)
print(out.shape)
# torch.Size([32, 10, 512])
```
## Transformer layer组成Encoder
```python
class TransformerEncoder(nn.Module):
r'''
参数:
encoder_layer必备
num_layers encoder_layer的层数必备
norm: 归一化的选择(可选)
例子:
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.randn((10, 32, 512))
>>> out = transformer_encoder(src)
'''
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layer = encoder_layer
self.num_layers = num_layers
self.norm = norm
def forward(self, src: Tensor, mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
output = positional_encoding(src, src.shape[-1])
for _ in range(self.num_layers):
output = self.layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
if self.norm is not None:
output = self.norm(output)
return output
```
```python
# 例子
encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
src = torch.randn((10, 32, 512))
out = transformer_encoder(src)
print(out.shape)
# torch.Size([10, 32, 512])
```
***
## Decoder Layer:
```python
class TransformerDecoderLayer(nn.Module):
r'''
参数:
d_model: 词嵌入的维度(必备)
nhead: 多头注意力中平行头的数目(必备)
dim_feedforward: 全连接层的神经元的数目又称经过此层输入的维度Default = 2048
dropout: dropout的概率Default = 0.1
activation: 两个线性层中间的激活函数默认relu或gelu
lay_norm_eps: layer normalization中的微小量防止分母为0Default = 1e-5
batch_first: 若`True`,则为(batch, seq, feture),若为`False`,则为(seq, batch, feature)DefaultFalse
例子:
>>> decoder_layer = TransformerDecoderLayer(d_model=512, nhead=8)
>>> memory = torch.randn((10, 32, 512))
>>> tgt = torch.randn((20, 32, 512))
>>> out = decoder_layer(tgt, memory)
'''
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation=F.relu,
layer_norm_eps=1e-5, batch_first=False) -> None:
super(TransformerDecoderLayer, self).__init__()
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first)
self.multihead_attn = MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=batch_first)
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.dropout3 = nn.Dropout(dropout)
self.activation = activation
def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None) -> Tensor:
r'''
参数:
tgt: 目标语言序列(必备)
memory: 从最后一个encoder_layer跑出的句子必备
tgt_mask: 目标语言序列的mask可选
memory_mask可选
tgt_key_padding_mask可选
memory_key_padding_mask可选
'''
tgt2 = self.self_attn(tgt, tgt, tgt, attn_mask=tgt_mask,
key_padding_mask=tgt_key_padding_mask)[0]
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
tgt2 = self.multihead_attn(tgt, memory, memory, attn_mask=memory_mask,
key_padding_mask=memory_key_padding_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout3(tgt2)
tgt = self.norm3(tgt)
return tgt
```
```python
# 可爱的小例子
decoder_layer = nn.TransformerDecoderLayer(d_model=512, nhead=8)
memory = torch.randn((10, 32, 512))
tgt = torch.randn((20, 32, 512))
out = decoder_layer(tgt, memory)
print(out.shape)
# torch.Size([20, 32, 512])
```
```python
## Decoder
```
```python
class TransformerDecoder(nn.Module):
r'''
参数:
decoder_layer必备
num_layers: decoder_layer的层数必备
norm: 归一化选择
例子:
>>> decoder_layer =TransformerDecoderLayer(d_model=512, nhead=8)
>>> transformer_decoder = TransformerDecoder(decoder_layer, num_layers=6)
>>> memory = torch.rand(10, 32, 512)
>>> tgt = torch.rand(20, 32, 512)
>>> out = transformer_decoder(tgt, memory)
'''
def __init__(self, decoder_layer, num_layers, norm=None):
super(TransformerDecoder, self).__init__()
self.layer = decoder_layer
self.num_layers = num_layers
self.norm = norm
def forward(self, tgt: Tensor, memory: Tensor, tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None, tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None) -> Tensor:
output = tgt
for _ in range(self.num_layers):
output = self.layer(output, memory, tgt_mask=tgt_mask,
memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask)
if self.norm is not None:
output = self.norm(output)
return output
```
```python
# 可爱的小例子
decoder_layer =TransformerDecoderLayer(d_model=512, nhead=8)
transformer_decoder = TransformerDecoder(decoder_layer, num_layers=6)
memory = torch.rand(10, 32, 512)
tgt = torch.rand(20, 32, 512)
out = transformer_decoder(tgt, memory)
print(out.shape)
# torch.Size([20, 32, 512])
```
总结一下其实经过位置编码多头注意力Encoder Layer和Decoder Layer形状不会变的而Encoder和Decoder分别与src和tgt形状一致
## Transformer
```python
class Transformer(nn.Module):
r'''
参数:
d_model: 词嵌入的维度必备Default=512
nhead: 多头注意力中平行头的数目必备Default=8
num_encoder_layers:编码层层数Default=8
num_decoder_layers:解码层层数Default=8
dim_feedforward: 全连接层的神经元的数目又称经过此层输入的维度Default = 2048
dropout: dropout的概率Default = 0.1
activation: 两个线性层中间的激活函数默认relu或gelu
custom_encoder: 自定义encoderDefault=None
custom_decoder: 自定义decoderDefault=None
lay_norm_eps: layer normalization中的微小量防止分母为0Default = 1e-5
batch_first: 若`True`,则为(batch, seq, feture),若为`False`,则为(seq, batch, feature)DefaultFalse
例子:
>>> transformer_model = Transformer(nhead=16, num_encoder_layers=12)
>>> src = torch.rand((10, 32, 512))
>>> tgt = torch.rand((20, 32, 512))
>>> out = transformer_model(src, tgt)
'''
def __init__(self, d_model: int = 512, nhead: int = 8, num_encoder_layers: int = 6,
num_decoder_layers: int = 6, dim_feedforward: int = 2048, dropout: float = 0.1,
activation = F.relu, custom_encoder: Optional[Any] = None, custom_decoder: Optional[Any] = None,
layer_norm_eps: float = 1e-5, batch_first: bool = False) -> None:
super(Transformer, self).__init__()
if custom_encoder is not None:
self.encoder = custom_encoder
else:
encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout,
activation, layer_norm_eps, batch_first)
encoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers)
if custom_decoder is not None:
self.decoder = custom_decoder
else:
decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout,
activation, layer_norm_eps, batch_first)
decoder_norm = nn.LayerNorm(d_model, eps=layer_norm_eps)
self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
self._reset_parameters()
self.d_model = d_model
self.nhead = nhead
self.batch_first = batch_first
def forward(self, src: Tensor, tgt: Tensor, src_mask: Optional[Tensor] = None, tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None, memory_key_padding_mask: Optional[Tensor] = None) -> Tensor:
r'''
参数:
src: 源语言序列送入Encoder必备
tgt: 目标语言序列送入Decoder必备
src_mask: (可选)
tgt_mask: (可选)
memory_mask: (可选)
src_key_padding_mask: (可选)
tgt_key_padding_mask: (可选)
memory_key_padding_mask: (可选)
形状:
- src: shape:`(S, N, E)`, `(N, S, E)` if batch_first.
- tgt: shape:`(T, N, E)`, `(N, T, E)` if batch_first.
- src_mask: shape:`(S, S)`.
- tgt_mask: shape:`(T, T)`.
- memory_mask: shape:`(T, S)`.
- src_key_padding_mask: shape:`(N, S)`.
- tgt_key_padding_mask: shape:`(N, T)`.
- memory_key_padding_mask: shape:`(N, S)`.
[src/tgt/memory]_mask确保有些位置不被看到如做decode的时候只能看该位置及其以前的而不能看后面的。
若为ByteTensor非0的位置会被忽略不做注意力若为BoolTensorTrue对应的位置会被忽略
若为数值则会直接加到attn_weights
[src/tgt/memory]_key_padding_mask 使得key里面的某些元素不参与attention计算三种情况同上
- output: shape:`(T, N, E)`, `(N, T, E)` if batch_first.
注意:
src和tgt的最后一维需要等于d_modelbatch的那一维需要相等
例子:
>>> output = transformer_model(src, tgt, src_mask=src_mask, tgt_mask=tgt_mask)
'''
memory = self.encoder(src, mask=src_mask, src_key_padding_mask=src_key_padding_mask)
output = self.decoder(tgt, memory, tgt_mask=tgt_mask, memory_mask=memory_mask,
tgt_key_padding_mask=tgt_key_padding_mask,
memory_key_padding_mask=memory_key_padding_mask)
return output
def generate_square_subsequent_mask(self, sz: int) -> Tensor:
r'''产生关于序列的mask被遮住的区域赋值`-inf`,未被遮住的区域赋值为`0`'''
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))
return mask
def _reset_parameters(self):
r'''用正态分布初始化参数'''
for p in self.parameters():
if p.dim() > 1:
xavier_uniform_(p)
```
```python
# 小例子
transformer_model = Transformer(nhead=16, num_encoder_layers=12)
src = torch.rand((10, 32, 512))
tgt = torch.rand((20, 32, 512))
out = transformer_model(src, tgt)
print(out.shape)
# torch.Size([20, 32, 512])
```
到此为止PyTorch的Transformer库我们已经全部实现相比于官方的版本手写的这个少了较多的判定语句。
## 致谢
本文由台运鹏撰写本项目成员重新组织和整理。最后期待您的阅读反馈和star谢谢。

View File

@ -4,3 +4,7 @@ notebook
torch==1.9.0
sklearn
scipy
matplotlib
torchtext
seaborn
spacy