235 lines
7.5 KiB
C++
235 lines
7.5 KiB
C++
#pragma once
|
|
#include <vector>
|
|
#include <random>
|
|
#include <algorithm>
|
|
#include <mc_runtime.h>
|
|
#include <maca_fp16.h>
|
|
#include <iostream>
|
|
#include <chrono>
|
|
#include <cmath>
|
|
|
|
// 引入模块化头文件
|
|
#include "yaml_reporter.h"
|
|
#include "performance_utils.h"
|
|
|
|
// ============================================================================
|
|
// 测试配置常量
|
|
// ============================================================================
|
|
#ifndef RUN_FULL_TEST
|
|
const int TEST_SIZES[] = {1000000, 134217728}; // 1M, 128M, 512M, 1G
|
|
#else
|
|
const int TEST_SIZES[] = {1000000, 134217728, 536870912, 1073741824}; // 1M, 128M, 512M, 1G
|
|
#endif
|
|
|
|
const int NUM_TEST_SIZES = sizeof(TEST_SIZES) / sizeof(TEST_SIZES[0]);
|
|
|
|
// 性能测试重复次数
|
|
constexpr int WARMUP_ITERATIONS = 5;
|
|
constexpr int BENCHMARK_ITERATIONS = 10;
|
|
|
|
|
|
// ============================================================================
|
|
// 错误检查宏
|
|
// ============================================================================
|
|
#define MACA_CHECK(call) \
|
|
do { \
|
|
mcError_t error = call; \
|
|
if (error != mcSuccess) { \
|
|
std::cerr << "MACA error at " << __FILE__ << ":" << __LINE__ \
|
|
<< " - " << mcGetErrorString(error) << std::endl; \
|
|
exit(1); \
|
|
} \
|
|
} while(0)
|
|
|
|
// ============================================================================
|
|
// 测试数据生成器
|
|
// ============================================================================
|
|
class TestDataGenerator {
|
|
private:
|
|
std::mt19937 rng;
|
|
|
|
public:
|
|
TestDataGenerator(uint32_t seed = 42) : rng(seed) {}
|
|
|
|
// 生成随机float数组
|
|
std::vector<float> generateRandomFloats(int size, float min_val = -1000.0f, float max_val = 1000.0f) {
|
|
std::vector<float> data(size);
|
|
std::uniform_real_distribution<float> dist(min_val, max_val);
|
|
for (int i = 0; i < size; i++) {
|
|
data[i] = dist(rng);
|
|
}
|
|
return data;
|
|
}
|
|
|
|
// 生成随机half数组
|
|
std::vector<half> generateRandomHalfs(int size, float min_val = -100.0f, float max_val = 100.0f) {
|
|
std::vector<half> data(size);
|
|
std::uniform_real_distribution<float> dist(min_val, max_val);
|
|
for (int i = 0; i < size; i++) {
|
|
data[i] = __float2half(dist(rng));
|
|
}
|
|
return data;
|
|
}
|
|
|
|
// 生成随机uint32_t数组
|
|
std::vector<uint32_t> generateRandomUint32(int size) {
|
|
std::vector<uint32_t> data(size);
|
|
for (int i = 0; i < size; i++) {
|
|
data[i] = static_cast<uint32_t>(i); // 使用索引作为值,便于验证稳定排序
|
|
}
|
|
return data;
|
|
}
|
|
|
|
// 生成随机int64_t数组
|
|
std::vector<int64_t> generateRandomInt64(int size) {
|
|
std::vector<int64_t> data(size);
|
|
for (int i = 0; i < size; i++) {
|
|
data[i] = static_cast<int64_t>(i);
|
|
}
|
|
return data;
|
|
}
|
|
|
|
// 生成包含NaN和Inf的测试数据 (half版本)
|
|
std::vector<half> generateSpecialHalfs(int size) {
|
|
std::vector<half> data = generateRandomHalfs(size, -10.0f, 10.0f);
|
|
if (size > 100) {
|
|
data[10] = __float2half(NAN);
|
|
data[20] = __float2half(INFINITY);
|
|
data[30] = __float2half(-INFINITY);
|
|
}
|
|
return data;
|
|
}
|
|
|
|
// 生成包含NaN和Inf的测试数据 (float版本)
|
|
std::vector<float> generateSpecialFloats(int size) {
|
|
std::vector<float> data = generateRandomFloats(size, -10.0f, 10.0f);
|
|
if (size > 100) {
|
|
data[10] = NAN;
|
|
data[20] = INFINITY;
|
|
data[30] = -INFINITY;
|
|
}
|
|
return data;
|
|
}
|
|
};
|
|
|
|
// ============================================================================
|
|
// 性能测试工具
|
|
// ============================================================================
|
|
class PerformanceMeter {
|
|
private:
|
|
mcEvent_t start, stop;
|
|
|
|
public:
|
|
PerformanceMeter() {
|
|
MACA_CHECK(mcEventCreate(&start));
|
|
MACA_CHECK(mcEventCreate(&stop));
|
|
}
|
|
|
|
~PerformanceMeter() {
|
|
mcEventDestroy(start);
|
|
mcEventDestroy(stop);
|
|
}
|
|
|
|
void startTiming() {
|
|
MACA_CHECK(mcEventRecord(start));
|
|
}
|
|
|
|
float stopTiming() {
|
|
MACA_CHECK(mcEventRecord(stop));
|
|
MACA_CHECK(mcEventSynchronize(stop));
|
|
float milliseconds = 0;
|
|
MACA_CHECK(mcEventElapsedTime(&milliseconds, start, stop));
|
|
return milliseconds;
|
|
}
|
|
};
|
|
|
|
// ============================================================================
|
|
// 正确性验证工具
|
|
// ============================================================================
|
|
template<typename T>
|
|
bool compareArrays(const std::vector<T>& a, const std::vector<T>& b, double tolerance = 1e-6) {
|
|
if (a.size() != b.size()) return false;
|
|
|
|
for (size_t i = 0; i < a.size(); i++) {
|
|
if constexpr (std::is_same_v<T, half>) {
|
|
float fa = __half2float(a[i]);
|
|
float fb = __half2float(b[i]);
|
|
if (std::isnan(fa) && std::isnan(fb)) continue;
|
|
if (std::isinf(fa) && std::isinf(fb) && (fa > 0) == (fb > 0)) continue;
|
|
if (std::abs(fa - fb) > tolerance) return false;
|
|
} else if constexpr (std::is_floating_point_v<T>) {
|
|
if (std::isnan(a[i]) && std::isnan(b[i])) continue;
|
|
if (std::isinf(a[i]) && std::isinf(b[i]) && (a[i] > 0) == (b[i] > 0)) continue;
|
|
if (std::abs(a[i] - b[i]) > tolerance) return false;
|
|
} else {
|
|
if (a[i] != b[i]) return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// CPU参考实现 - 稳定排序
|
|
template<typename KeyType, typename ValueType>
|
|
void cpuSortPair(std::vector<KeyType>& keys, std::vector<ValueType>& values, bool descending) {
|
|
std::vector<std::pair<KeyType, ValueType>> pairs;
|
|
for (size_t i = 0; i < keys.size(); i++) {
|
|
pairs.emplace_back(keys[i], values[i]);
|
|
}
|
|
|
|
if (descending) {
|
|
std::stable_sort(pairs.begin(), pairs.end(),
|
|
[](const auto& a, const auto& b) { return a.first > b.first; });
|
|
} else {
|
|
std::stable_sort(pairs.begin(), pairs.end());
|
|
}
|
|
|
|
for (size_t i = 0; i < pairs.size(); i++) {
|
|
keys[i] = pairs[i].first;
|
|
values[i] = pairs[i].second;
|
|
}
|
|
}
|
|
|
|
// CPU参考实现 - TopK
|
|
template<typename KeyType, typename ValueType>
|
|
void cpuTopkPair(const std::vector<KeyType>& keys_in, const std::vector<ValueType>& values_in,
|
|
std::vector<KeyType>& keys_out, std::vector<ValueType>& values_out,
|
|
int k, bool descending) {
|
|
std::vector<std::pair<KeyType, ValueType>> pairs;
|
|
for (size_t i = 0; i < keys_in.size(); i++) {
|
|
pairs.emplace_back(keys_in[i], values_in[i]);
|
|
}
|
|
|
|
if (descending) {
|
|
std::stable_sort(pairs.begin(), pairs.end(),
|
|
[](const auto& a, const auto& b) { return a.first > b.first; });
|
|
} else {
|
|
std::stable_sort(pairs.begin(), pairs.end());
|
|
}
|
|
|
|
keys_out.resize(k);
|
|
values_out.resize(k);
|
|
for (int i = 0; i < k; i++) {
|
|
keys_out[i] = pairs[i].first;
|
|
values_out[i] = pairs[i].second;
|
|
}
|
|
}
|
|
|
|
// CPU参考实现 - ReduceSum (使用double精度)
|
|
template<typename InputT>
|
|
double cpuReduceSum(const std::vector<InputT>& data, double init_value) {
|
|
double sum = init_value;
|
|
for (const auto& val : data) {
|
|
if constexpr (std::is_same_v<InputT, half>) {
|
|
float f_val = __half2float(val);
|
|
if (!std::isnan(f_val)) {
|
|
sum += static_cast<double>(f_val);
|
|
}
|
|
} else {
|
|
if (!std::isnan(val)) {
|
|
sum += static_cast<double>(val);
|
|
}
|
|
}
|
|
}
|
|
return sum;
|
|
}
|