277 lines
9.7 KiB
Plaintext
Executable File
277 lines
9.7 KiB
Plaintext
Executable File
#include "test_utils.h"
|
||
#include "performance_utils.h"
|
||
#include "yaml_reporter.h"
|
||
#include <iostream>
|
||
#include <vector>
|
||
#include <iomanip>
|
||
|
||
|
||
// ============================================================================
|
||
// 实现标记宏 - 参赛者修改实现时请将此宏设为0
|
||
// ============================================================================
|
||
#ifndef USE_DEFAULT_REF_IMPL
|
||
#define USE_DEFAULT_REF_IMPL 1 // 1=默认实现, 0=参赛者自定义实现
|
||
#endif
|
||
|
||
#if USE_DEFAULT_REF_IMPL
|
||
#include <thrust/reduce.h>
|
||
#include <thrust/device_vector.h>
|
||
#include <thrust/execution_policy.h>
|
||
#include <thrust/functional.h>
|
||
#endif
|
||
|
||
// 误差容忍度
|
||
constexpr double REDUCE_ERROR_TOLERANCE = 0.005; // 0.5%
|
||
|
||
// ============================================================================
|
||
// ReduceSum算法实现接口
|
||
// 参赛者需要替换Thrust实现为自己的高性能kernel
|
||
// ============================================================================
|
||
|
||
template <typename InputT = float, typename OutputT = float>
|
||
class ReduceSumAlgorithm {
|
||
public:
|
||
// 主要接口函数 - 参赛者需要实现这个函数
|
||
void reduce(const InputT* d_in, OutputT* d_out, int num_items, OutputT init_value) {
|
||
|
||
#if !USE_DEFAULT_REF_IMPL
|
||
// ========================================
|
||
// 参赛者自定义实现区域
|
||
// ========================================
|
||
|
||
// TODO: 参赛者在此实现自己的高性能归约算法
|
||
|
||
// 示例:参赛者可以调用1个或多个自定义kernel
|
||
// blockReduceKernel<<<grid, block>>>(d_in, temp_results, num_items, init_value);
|
||
// finalReduceKernel<<<1, block>>>(temp_results, d_out, grid.x);
|
||
#else
|
||
// ========================================
|
||
// 默认基准实现
|
||
// ========================================
|
||
auto input_ptr = thrust::device_pointer_cast(d_in);
|
||
auto output_ptr = thrust::device_pointer_cast(d_out);
|
||
|
||
// 直接使用thrust::reduce进行归约
|
||
*output_ptr = thrust::reduce(
|
||
thrust::device,
|
||
input_ptr,
|
||
input_ptr + num_items,
|
||
static_cast<OutputT>(init_value)
|
||
);
|
||
#endif
|
||
}
|
||
|
||
// 获取当前实现状态
|
||
static const char* getImplementationStatus() {
|
||
#if USE_DEFAULT_REF_IMPL
|
||
return "DEFAULT_REF_IMPL";
|
||
#else
|
||
return "CUSTOM_IMPL";
|
||
#endif
|
||
}
|
||
|
||
private:
|
||
// 参赛者可以在这里添加辅助函数和成员变量
|
||
// 例如:中间结果缓冲区、多阶段归约等
|
||
};
|
||
|
||
// ============================================================================
|
||
// 测试和性能评估
|
||
// ============================================================================
|
||
|
||
bool testCorrectness() {
|
||
std::cout << "ReduceSum 正确性测试..." << std::endl;
|
||
TestDataGenerator generator;
|
||
ReduceSumAlgorithm<float, float> algorithm;
|
||
|
||
bool allPassed = true;
|
||
|
||
// 测试不同数据规模
|
||
for (int i = 0; i < NUM_TEST_SIZES && i < 2; i++) { // 限制测试规模
|
||
int size = std::min(TEST_SIZES[i], 10000);
|
||
std::cout << " 测试规模: " << size << std::endl;
|
||
|
||
// 测试普通数据
|
||
{
|
||
auto data = generator.generateRandomFloats(size, -10.0f, 10.0f);
|
||
float init_value = 1.0f;
|
||
|
||
// CPU参考计算
|
||
double cpu_result = cpuReduceSum(data, static_cast<double>(init_value));
|
||
|
||
// GPU计算
|
||
float *d_in;
|
||
float *d_out;
|
||
MACA_CHECK(mcMalloc(&d_in, size * sizeof(float)));
|
||
MACA_CHECK(mcMalloc(&d_out, sizeof(float)));
|
||
|
||
MACA_CHECK(mcMemcpy(d_in, data.data(), size * sizeof(float), mcMemcpyHostToDevice));
|
||
|
||
algorithm.reduce(d_in, d_out, size, init_value);
|
||
|
||
float gpu_result;
|
||
MACA_CHECK(mcMemcpy(&gpu_result, d_out, sizeof(float), mcMemcpyDeviceToHost));
|
||
|
||
// 验证误差
|
||
double relative_error = std::abs(gpu_result - cpu_result) / std::abs(cpu_result);
|
||
if (relative_error > REDUCE_ERROR_TOLERANCE) {
|
||
std::cout << " 失败: 误差过大 " << relative_error << std::endl;
|
||
allPassed = false;
|
||
} else {
|
||
std::cout << " 通过 (误差: " << relative_error << ")" << std::endl;
|
||
}
|
||
|
||
mcFree(d_in);
|
||
mcFree(d_out);
|
||
}
|
||
|
||
// 测试特殊值 (NaN, Inf)
|
||
if (size > 100) {
|
||
std::cout << " 测试特殊值..." << std::endl;
|
||
auto data = generator.generateSpecialFloats(size);
|
||
float init_value = 0.0f;
|
||
|
||
double cpu_result = cpuReduceSum(data, static_cast<double>(init_value));
|
||
|
||
float *d_in;
|
||
float *d_out;
|
||
MACA_CHECK(mcMalloc(&d_in, size * sizeof(float)));
|
||
MACA_CHECK(mcMalloc(&d_out, sizeof(float)));
|
||
|
||
MACA_CHECK(mcMemcpy(d_in, data.data(), size * sizeof(float), mcMemcpyHostToDevice));
|
||
|
||
algorithm.reduce(d_in, d_out, size, init_value);
|
||
|
||
float gpu_result;
|
||
MACA_CHECK(mcMemcpy(&gpu_result, d_out, sizeof(float), mcMemcpyDeviceToHost));
|
||
|
||
// 对于包含特殊值的情况,检查是否正确处理
|
||
if (std::isfinite(cpu_result) && std::isfinite(gpu_result)) {
|
||
double relative_error = std::abs(gpu_result - cpu_result) / std::abs(cpu_result);
|
||
if (relative_error > REDUCE_ERROR_TOLERANCE) {
|
||
std::cout << " 失败: 特殊值处理错误" << std::endl;
|
||
allPassed = false;
|
||
} else {
|
||
std::cout << " 通过 (特殊值处理)" << std::endl;
|
||
}
|
||
} else {
|
||
std::cout << " 通过 (特殊值结果)" << std::endl;
|
||
}
|
||
|
||
mcFree(d_in);
|
||
mcFree(d_out);
|
||
}
|
||
}
|
||
|
||
return allPassed;
|
||
}
|
||
|
||
void benchmarkPerformance() {
|
||
PerformanceDisplay::printReduceSumHeader();
|
||
|
||
TestDataGenerator generator;
|
||
PerformanceMeter meter;
|
||
ReduceSumAlgorithm<float, float> algorithm;
|
||
|
||
const int WARMUP_ITERATIONS = 5;
|
||
const int BENCHMARK_ITERATIONS = 10;
|
||
|
||
// 用于YAML报告的数据收集
|
||
std::vector<std::map<std::string, std::string>> perf_data;
|
||
|
||
for (int i = 0; i < NUM_TEST_SIZES; i++) {
|
||
int size = TEST_SIZES[i];
|
||
|
||
// 生成测试数据
|
||
auto data = generator.generateRandomFloats(size);
|
||
float init_value = 0.0f;
|
||
|
||
// 分配GPU内存
|
||
float *d_in;
|
||
float *d_out;
|
||
MACA_CHECK(mcMalloc(&d_in, size * sizeof(float)));
|
||
MACA_CHECK(mcMalloc(&d_out, sizeof(float)));
|
||
|
||
MACA_CHECK(mcMemcpy(d_in, data.data(), size * sizeof(float), mcMemcpyHostToDevice));
|
||
|
||
// Warmup阶段
|
||
for (int iter = 0; iter < WARMUP_ITERATIONS; iter++) {
|
||
algorithm.reduce(d_in, d_out, size, init_value);
|
||
}
|
||
|
||
// 正式测试阶段
|
||
float total_time = 0;
|
||
for (int iter = 0; iter < BENCHMARK_ITERATIONS; iter++) {
|
||
meter.startTiming();
|
||
algorithm.reduce(d_in, d_out, size, init_value);
|
||
total_time += meter.stopTiming();
|
||
}
|
||
|
||
float avg_time = total_time / BENCHMARK_ITERATIONS;
|
||
|
||
// 计算性能指标
|
||
auto metrics = PerformanceCalculator::calculateReduceSum(size, avg_time);
|
||
|
||
// 显示性能数据
|
||
PerformanceDisplay::printReduceSumData(size, avg_time, metrics);
|
||
|
||
// 收集YAML报告数据
|
||
auto entry = YAMLPerformanceReporter::createEntry();
|
||
entry["data_size"] = std::to_string(size);
|
||
entry["time_ms"] = std::to_string(avg_time);
|
||
entry["throughput_gps"] = std::to_string(metrics.throughput_gps);
|
||
entry["data_type"] = "float";
|
||
perf_data.push_back(entry);
|
||
|
||
mcFree(d_in);
|
||
mcFree(d_out);
|
||
}
|
||
|
||
// 生成YAML性能报告
|
||
YAMLPerformanceReporter::generateReduceSumYAML(perf_data, "reduce_sum_performance.yaml");
|
||
PerformanceDisplay::printSavedMessage("reduce_sum_performance.yaml");
|
||
}
|
||
|
||
// ============================================================================
|
||
// 主函数
|
||
// ============================================================================
|
||
int main(int argc, char* argv[]) {
|
||
std::cout << "=== ReduceSum 算法测试 ===" << std::endl;
|
||
|
||
// 检查参数
|
||
std::string mode = "all";
|
||
if (argc > 1) {
|
||
mode = argv[1];
|
||
}
|
||
|
||
bool correctness_passed = true;
|
||
bool performance_completed = true;
|
||
|
||
try {
|
||
if (mode == "correctness" || mode == "all") {
|
||
correctness_passed = testCorrectness();
|
||
}
|
||
|
||
if (mode == "performance" || mode == "all") {
|
||
if (correctness_passed || mode == "performance") {
|
||
benchmarkPerformance();
|
||
} else {
|
||
std::cout << "跳过性能测试,因为正确性测试未通过" << std::endl;
|
||
performance_completed = false;
|
||
}
|
||
}
|
||
|
||
std::cout << "\n=== 测试完成 ===" << std::endl;
|
||
std::cout << "实现状态: " << ReduceSumAlgorithm<float, float>::getImplementationStatus() << std::endl;
|
||
if (mode == "all") {
|
||
std::cout << "正确性: " << (correctness_passed ? "通过" : "失败") << std::endl;
|
||
std::cout << "性能测试: " << (performance_completed ? "完成" : "跳过") << std::endl;
|
||
}
|
||
|
||
return correctness_passed ? 0 : 1;
|
||
|
||
} catch (const std::exception& e) {
|
||
std::cerr << "测试出错: " << e.what() << std::endl;
|
||
return 1;
|
||
}
|
||
} |