318 lines
12 KiB
Plaintext
Executable File
318 lines
12 KiB
Plaintext
Executable File
#include "test_utils.h"
|
||
#include "performance_utils.h"
|
||
#include "yaml_reporter.h"
|
||
#include <iostream>
|
||
#include <vector>
|
||
#include <iomanip>
|
||
#include <fstream>
|
||
#include <map>
|
||
#include <chrono>
|
||
|
||
// ============================================================================
|
||
// 实现标记宏 - 参赛者修改实现时请将此宏设为0
|
||
// ============================================================================
|
||
#ifndef USE_DEFAULT_REF_IMPL
|
||
#define USE_DEFAULT_REF_IMPL 1 // 1=默认实现, 0=参赛者自定义实现
|
||
#endif
|
||
|
||
#if USE_DEFAULT_REF_IMPL
|
||
#include <thrust/sort.h>
|
||
#include <thrust/device_vector.h>
|
||
#include <thrust/execution_policy.h>
|
||
#include <thrust/iterator/zip_iterator.h>
|
||
#include <thrust/tuple.h>
|
||
#include <thrust/copy.h>
|
||
#endif
|
||
|
||
static const int TOPK_VALUES[] = {32, 50, 100, 256, 1024};
|
||
static const int NUM_TOPK_VALUES = sizeof(TOPK_VALUES) / sizeof(TOPK_VALUES[0]);
|
||
|
||
// ============================================================================
|
||
// TopkPair算法实现接口
|
||
// 参赛者需要替换Thrust实现为自己的高性能kernel
|
||
// ============================================================================
|
||
|
||
template <typename KeyType, typename ValueType>
|
||
class TopkPairAlgorithm {
|
||
public:
|
||
// 主要接口函数 - 参赛者需要实现这个函数
|
||
void topk(const KeyType* d_keys_in, KeyType* d_keys_out,
|
||
const ValueType* d_values_in, ValueType* d_values_out,
|
||
int num_items, int k, bool descending) {
|
||
|
||
#if !USE_DEFAULT_REF_IMPL
|
||
// ========================================
|
||
// 参赛者自定义实现区域
|
||
// ========================================
|
||
|
||
// TODO: 参赛者在此实现自己的高性能TopK算法
|
||
|
||
// 示例:参赛者可以调用多个自定义kernel
|
||
// TopkKernel1<<<grid, block>>>(d_keys_in, d_values_in, temp_results, num_items, k);
|
||
// TopkKernel2<<<grid, block>>>(temp_results, d_keys_out, d_values_out, k, descending);
|
||
#else
|
||
// ========================================
|
||
// 默认基准实现
|
||
// ========================================
|
||
|
||
KeyType* temp_keys;
|
||
ValueType* temp_values;
|
||
MACA_CHECK(mcMalloc(&temp_keys, num_items * sizeof(KeyType)));
|
||
MACA_CHECK(mcMalloc(&temp_values, num_items * sizeof(ValueType)));
|
||
|
||
MACA_CHECK(mcMemcpy(temp_keys, d_keys_in, num_items * sizeof(KeyType), mcMemcpyDeviceToDevice));
|
||
MACA_CHECK(mcMemcpy(temp_values, d_values_in, num_items * sizeof(ValueType), mcMemcpyDeviceToDevice));
|
||
|
||
auto key_ptr = thrust::device_pointer_cast(temp_keys);
|
||
auto value_ptr = thrust::device_pointer_cast(temp_values);
|
||
|
||
// 由于greater和less是不同类型,需要分别调用
|
||
if (descending) {
|
||
thrust::stable_sort_by_key(thrust::device, key_ptr, key_ptr + num_items, value_ptr, thrust::greater<KeyType>());
|
||
} else {
|
||
thrust::stable_sort_by_key(thrust::device, key_ptr, key_ptr + num_items, value_ptr, thrust::less<KeyType>());
|
||
}
|
||
|
||
MACA_CHECK(mcMemcpy(d_keys_out, temp_keys, k * sizeof(KeyType), mcMemcpyDeviceToDevice));
|
||
MACA_CHECK(mcMemcpy(d_values_out, temp_values, k * sizeof(ValueType), mcMemcpyDeviceToDevice));
|
||
|
||
mcFree(temp_keys);
|
||
mcFree(temp_values);
|
||
#endif
|
||
}
|
||
|
||
// 获取当前实现状态
|
||
static const char* getImplementationStatus() {
|
||
#if USE_DEFAULT_REF_IMPL
|
||
return "DEFAULT_REF_IMPL";
|
||
#else
|
||
return "CUSTOM_IMPL";
|
||
#endif
|
||
}
|
||
|
||
private:
|
||
// 参赛者可以在这里添加辅助函数和成员变量
|
||
// 例如:分块大小、临时缓冲区、多流处理等
|
||
};
|
||
|
||
// ============================================================================
|
||
// 测试和性能评估
|
||
// ============================================================================
|
||
|
||
bool testCorrectness() {
|
||
std::cout << "TopkPair 正确性测试..." << std::endl;
|
||
TestDataGenerator generator;
|
||
TopkPairAlgorithm<float, uint32_t> algorithm;
|
||
|
||
int size = 10000;
|
||
auto keys = generator.generateRandomFloats(size);
|
||
auto values = generator.generateRandomUint32(size);
|
||
|
||
// 分配GPU内存
|
||
float *d_keys_in, *d_keys_out;
|
||
uint32_t *d_values_in, *d_values_out;
|
||
|
||
MACA_CHECK(mcMalloc(&d_keys_in, size * sizeof(float)));
|
||
MACA_CHECK(mcMalloc(&d_values_in, size * sizeof(uint32_t)));
|
||
|
||
MACA_CHECK(mcMemcpy(d_keys_in, keys.data(), size * sizeof(float), mcMemcpyHostToDevice));
|
||
MACA_CHECK(mcMemcpy(d_values_in, values.data(), size * sizeof(uint32_t), mcMemcpyHostToDevice));
|
||
|
||
bool allPassed = true;
|
||
|
||
// 测试不同k值
|
||
for (int ki = 0; ki < NUM_TOPK_VALUES && ki < 4; ki++) { // 限制测试范围
|
||
int k = TOPK_VALUES[ki];
|
||
if (k > size) continue;
|
||
|
||
std::cout << " 测试 k=" << k << std::endl;
|
||
|
||
MACA_CHECK(mcMalloc(&d_keys_out, k * sizeof(float)));
|
||
MACA_CHECK(mcMalloc(&d_values_out, k * sizeof(uint32_t)));
|
||
|
||
for (bool descending : {false, true}) {
|
||
std::cout << " " << (descending ? "降序" : "升序") << " TopK..." << std::endl;
|
||
|
||
// CPU参考结果
|
||
std::vector<float> cpu_keys_out;
|
||
std::vector<uint32_t> cpu_values_out;
|
||
cpuTopkPair(keys, values, cpu_keys_out, cpu_values_out, k, descending);
|
||
|
||
// GPU算法结果
|
||
algorithm.topk(d_keys_in, d_keys_out, d_values_in, d_values_out, size, k, descending);
|
||
|
||
// 获取结果
|
||
std::vector<float> gpu_keys_out(k);
|
||
std::vector<uint32_t> gpu_values_out(k);
|
||
MACA_CHECK(mcMemcpy(gpu_keys_out.data(), d_keys_out, k * sizeof(float), mcMemcpyDeviceToHost));
|
||
MACA_CHECK(mcMemcpy(gpu_values_out.data(), d_values_out, k * sizeof(uint32_t), mcMemcpyDeviceToHost));
|
||
|
||
// 验证结果
|
||
bool keysMatch = compareArrays(cpu_keys_out, gpu_keys_out, 1e-5);
|
||
bool valuesMatch = compareArrays(cpu_values_out, gpu_values_out);
|
||
|
||
if (!keysMatch || !valuesMatch) {
|
||
std::cout << " 失败: 结果不匹配" << std::endl;
|
||
allPassed = false;
|
||
} else {
|
||
std::cout << " 通过" << std::endl;
|
||
}
|
||
}
|
||
|
||
mcFree(d_keys_out);
|
||
mcFree(d_values_out);
|
||
}
|
||
|
||
// 清理内存
|
||
mcFree(d_keys_in);
|
||
mcFree(d_values_in);
|
||
|
||
return allPassed;
|
||
}
|
||
|
||
void benchmarkPerformance() {
|
||
std::cout << "\nTopkPair 性能测试..." << std::endl;
|
||
std::cout << "数据类型: <float, uint32_t>" << std::endl;
|
||
std::cout << "计算公式:" << std::endl;
|
||
std::cout << " 吞吐量 = 元素数 / 时间(s) / 1e9 (G/s)" << std::endl;
|
||
|
||
TestDataGenerator generator;
|
||
PerformanceMeter meter;
|
||
TopkPairAlgorithm<float, uint32_t> algorithm;
|
||
|
||
const int WARMUP_ITERATIONS = 5;
|
||
const int BENCHMARK_ITERATIONS = 10;
|
||
|
||
// 用于YAML报告的数据收集
|
||
std::vector<std::map<std::string, std::string>> perf_data;
|
||
|
||
// 针对不同数据规模测试
|
||
for (int size_idx = 0; size_idx < NUM_TEST_SIZES; size_idx++) {
|
||
int size = TEST_SIZES[size_idx];
|
||
std::cout << "\n数据规模: " << size << std::endl;
|
||
std::cout << std::setw(8) << "k值" << std::setw(15) << "升序(ms)" << std::setw(15) << "降序(ms)"
|
||
<< std::setw(16) << "升序(G/s)" << std::setw(16) << "降序(G/s)" << std::endl;
|
||
std::cout << std::string(74, '-') << std::endl;
|
||
|
||
auto keys = generator.generateRandomFloats(size);
|
||
auto values = generator.generateRandomUint32(size);
|
||
|
||
// 分配GPU内存
|
||
float *d_keys_in;
|
||
uint32_t *d_values_in;
|
||
|
||
MACA_CHECK(mcMalloc(&d_keys_in, size * sizeof(float)));
|
||
MACA_CHECK(mcMalloc(&d_values_in, size * sizeof(uint32_t)));
|
||
|
||
MACA_CHECK(mcMemcpy(d_keys_in, keys.data(), size * sizeof(float), mcMemcpyHostToDevice));
|
||
MACA_CHECK(mcMemcpy(d_values_in, values.data(), size * sizeof(uint32_t), mcMemcpyHostToDevice));
|
||
|
||
for (int ki = 0; ki < NUM_TOPK_VALUES; ki++) {
|
||
int k = TOPK_VALUES[ki];
|
||
if (k > size) continue;
|
||
|
||
float *d_keys_out;
|
||
uint32_t *d_values_out;
|
||
MACA_CHECK(mcMalloc(&d_keys_out, k * sizeof(float)));
|
||
MACA_CHECK(mcMalloc(&d_values_out, k * sizeof(uint32_t)));
|
||
|
||
float asc_time = 0, desc_time = 0;
|
||
|
||
for (bool descending : {false, true}) {
|
||
// Warmup阶段
|
||
for (int iter = 0; iter < WARMUP_ITERATIONS; iter++) {
|
||
algorithm.topk(d_keys_in, d_keys_out, d_values_in, d_values_out, size, k, descending);
|
||
}
|
||
|
||
// 正式测试阶段
|
||
float total_time = 0;
|
||
for (int iter = 0; iter < BENCHMARK_ITERATIONS; iter++) {
|
||
meter.startTiming();
|
||
algorithm.topk(d_keys_in, d_keys_out, d_values_in, d_values_out, size, k, descending);
|
||
total_time += meter.stopTiming();
|
||
}
|
||
|
||
float avg_time = total_time / BENCHMARK_ITERATIONS;
|
||
if (descending) {
|
||
desc_time = avg_time;
|
||
} else {
|
||
asc_time = avg_time;
|
||
}
|
||
}
|
||
|
||
// 计算性能指标
|
||
auto asc_metrics = PerformanceCalculator::calculateTopkPair(size, k, asc_time);
|
||
auto desc_metrics = PerformanceCalculator::calculateTopkPair(size, k, desc_time);
|
||
|
||
// 显示性能数据
|
||
PerformanceDisplay::printTopkPairData(k, asc_time, desc_time, asc_metrics, desc_metrics);
|
||
|
||
// 收集YAML报告数据
|
||
auto entry = YAMLPerformanceReporter::createEntry();
|
||
entry["data_size"] = std::to_string(size);
|
||
entry["k_value"] = std::to_string(k);
|
||
entry["asc_time_ms"] = std::to_string(asc_time);
|
||
entry["desc_time_ms"] = std::to_string(desc_time);
|
||
entry["asc_throughput_gps"] = std::to_string(asc_metrics.throughput_gps);
|
||
entry["desc_throughput_gps"] = std::to_string(desc_metrics.throughput_gps);
|
||
entry["key_type"] = "float";
|
||
entry["value_type"] = "uint32_t";
|
||
perf_data.push_back(entry);
|
||
|
||
mcFree(d_keys_out);
|
||
mcFree(d_values_out);
|
||
}
|
||
|
||
mcFree(d_keys_in);
|
||
mcFree(d_values_in);
|
||
}
|
||
|
||
// 生成YAML性能报告
|
||
YAMLPerformanceReporter::generateTopkPairYAML(perf_data, "topk_pair_performance.yaml");
|
||
PerformanceDisplay::printSavedMessage("topk_pair_performance.yaml");
|
||
}
|
||
|
||
// ============================================================================
|
||
// 主函数
|
||
// ============================================================================
|
||
int main(int argc, char* argv[]) {
|
||
std::cout << "=== TopkPair 算法测试 ===" << std::endl;
|
||
|
||
// 检查参数
|
||
std::string mode = "all";
|
||
if (argc > 1) {
|
||
mode = argv[1];
|
||
}
|
||
|
||
bool correctness_passed = true;
|
||
bool performance_completed = true;
|
||
|
||
try {
|
||
if (mode == "correctness" || mode == "all") {
|
||
correctness_passed = testCorrectness();
|
||
}
|
||
|
||
if (mode == "performance" || mode == "all") {
|
||
if (correctness_passed || mode == "performance") {
|
||
benchmarkPerformance();
|
||
} else {
|
||
std::cout << "跳过性能测试,因为正确性测试未通过" << std::endl;
|
||
performance_completed = false;
|
||
}
|
||
}
|
||
|
||
std::cout << "\n=== 测试完成 ===" << std::endl;
|
||
std::cout << "实现状态: " << TopkPairAlgorithm<float, uint32_t>::getImplementationStatus() << std::endl;
|
||
if (mode == "all") {
|
||
std::cout << "正确性: " << (correctness_passed ? "通过" : "失败") << std::endl;
|
||
std::cout << "性能测试: " << (performance_completed ? "完成" : "跳过") << std::endl;
|
||
}
|
||
|
||
return correctness_passed ? 0 : 1;
|
||
|
||
} catch (const std::exception& e) {
|
||
std::cerr << "测试出错: " << e.what() << std::endl;
|
||
return 1;
|
||
}
|
||
}
|