Merge branch 'to_prepare' into push_to_prepare
This commit is contained in:
commit
d68abecdba
|
@ -73,7 +73,7 @@ Modification:
|
|||
|
||||
#include "cortex_a55.h"
|
||||
|
||||
#define NR_CPU 1 // maximum number of CPUs
|
||||
#define NR_CPU 4 // maximum number of CPUs
|
||||
|
||||
static inline uintptr_t arch_curr_tick()
|
||||
{
|
||||
|
|
|
@ -57,7 +57,7 @@ void panic(char* s)
|
|||
/* stack for different mode*/
|
||||
static char mode_stack_pages[NR_CPU][NR_MODE_STACKS][MODE_STACK_SIZE];
|
||||
extern uint32_t _vector_jumper;
|
||||
extern uint32_t _vector_start;
|
||||
extern uint32_t* _vector_start;
|
||||
extern uint32_t _vector_end;
|
||||
|
||||
void init_cpu_mode_stacks(int cpu_id)
|
||||
|
@ -75,7 +75,7 @@ static void _sys_irq_init(int cpu_id)
|
|||
/* load exception vectors */
|
||||
init_cpu_mode_stacks(cpu_id);
|
||||
if (cpu_id == 0) {
|
||||
volatile uint32_t* vector_base = &_vector_start;
|
||||
volatile uint32_t* vector_base = (uint32_t*)&_vector_start;
|
||||
|
||||
// Set Interrupt handler start address
|
||||
vector_base[1] = (uint32_t)trap_undefined_instruction; // Undefined Instruction
|
||||
|
|
|
@ -54,13 +54,20 @@ typedef struct {
|
|||
struct IpcArgInfo {
|
||||
uint16_t offset;
|
||||
uint16_t len;
|
||||
};
|
||||
union {
|
||||
uint16_t attr;
|
||||
struct {
|
||||
uint16_t null_ptr : 1;
|
||||
uint16_t reserved : 15;
|
||||
};
|
||||
};
|
||||
} __attribute__((packed));
|
||||
|
||||
/* [header, ipc_arg_buffer_len[], ipc_arg_buffer[]] */
|
||||
struct IpcMsg {
|
||||
ipc_msg_header header;
|
||||
uintptr_t buf[];
|
||||
};
|
||||
} __attribute__((packed));
|
||||
enum {
|
||||
IPC_ARG_INFO_BASE_OFFSET = sizeof(ipc_msg_header),
|
||||
};
|
|
@ -41,7 +41,7 @@ struct ksemaphore {
|
|||
sem_id_t id;
|
||||
sem_val_t val;
|
||||
/* list of waiting threads */
|
||||
struct double_list_node wait_list_guard;
|
||||
RbtTree wait_thd_tree;
|
||||
/* list to manage semaphores */
|
||||
/// @todo Use RB-Tree to manage all semaphores
|
||||
struct double_list_node sem_list_node;
|
||||
|
|
|
@ -5,6 +5,13 @@
|
|||
|
||||
#include "actracer.h"
|
||||
|
||||
#define RBTTREE_INSERT_SECC 0
|
||||
#define RBTTREE_INSERT_FAILED -1
|
||||
#define RBTTREE_INSERT_EXISTED -2
|
||||
|
||||
#define RBTTREE_DELETE_SUCC 0
|
||||
#define RBTTREE_DELETE_FAILED -1
|
||||
|
||||
// CLRS
|
||||
// Insertion and Deletion in a Red Black Tree
|
||||
enum rbt_type {
|
||||
|
@ -26,10 +33,14 @@ typedef struct RbtTree {
|
|||
int nr_ele;
|
||||
} RbtTree;
|
||||
|
||||
// return if the traverse needs to continue
|
||||
typedef bool(rbt_traverse_fn)(RbtNode* node, void* data);
|
||||
|
||||
void rbtree_init(RbtTree* tree);
|
||||
int rbt_insert(RbtTree* tree, uintptr_t key, void* data);
|
||||
RbtNode* rbt_search(RbtTree* tree, uintptr_t key);
|
||||
int rbt_delete(RbtTree* tree, uintptr_t key);
|
||||
void rbt_traverse(RbtTree* tree, rbt_traverse_fn fn, void* data);
|
||||
|
||||
void module_rbt_factory_init(TraceTag* _softkernel_tag);
|
||||
|
||||
|
|
|
@ -2,20 +2,53 @@
|
|||
#pragma once
|
||||
#include "actracer.h"
|
||||
#include "ksemaphore.h"
|
||||
#include "rbtree.h"
|
||||
|
||||
#define TASK_MAX_PRIORITY 32
|
||||
#define UNINIT_SNODE_ID 0
|
||||
typedef uintptr_t snode_id_t;
|
||||
|
||||
enum ThreadState {
|
||||
NEVER_RUN = 0,
|
||||
INIT,
|
||||
READY,
|
||||
RUNNING,
|
||||
DEAD,
|
||||
BLOCKED,
|
||||
SLEEPING,
|
||||
NR_STATE,
|
||||
};
|
||||
|
||||
typedef struct ScheduleContext {
|
||||
intptr_t remain_tick;
|
||||
uint64_t run_time;
|
||||
} ScheduleContext;
|
||||
|
||||
typedef struct TaskSleepContext {
|
||||
int64_t remain_ms;
|
||||
} TaskSleepContext;
|
||||
|
||||
struct ScheduleNode {
|
||||
TraceTag task_ref;
|
||||
struct double_list_node list_node;
|
||||
struct Thread* pthd;
|
||||
snode_id_t snode_id;
|
||||
enum ThreadState state;
|
||||
|
||||
ScheduleContext sched_context;
|
||||
TaskSleepContext sleep_context;
|
||||
};
|
||||
|
||||
struct Scheduler {
|
||||
TraceTag tag;
|
||||
|
||||
struct double_list_node task_list_head[TASK_MAX_PRIORITY]; /* list of task control blocks that are allocated */
|
||||
struct double_list_node task_running_list_head;
|
||||
struct double_list_node task_blocked_list_head;
|
||||
struct double_list_node task_sleep_list_head;
|
||||
RbtTree snode_state_pool[NR_STATE];
|
||||
struct XiziSemaphorePool semaphore_pool;
|
||||
};
|
||||
};
|
||||
|
||||
extern struct Scheduler g_scheduler;
|
||||
|
||||
bool init_schedule_node(struct ScheduleNode* snode, struct Thread* bind_thd);
|
||||
|
||||
bool task_trans_sched_state(struct ScheduleNode* snode, RbtTree* from_pool, RbtTree* to_pool, enum ThreadState target_state);
|
||||
void task_block(struct Thread* thd);
|
||||
void task_dead(struct Thread* thd);
|
||||
void task_yield(struct Thread* thd);
|
||||
void task_into_ready(struct Thread* thd);
|
|
@ -41,21 +41,15 @@ Modification:
|
|||
#include "share_page.h"
|
||||
#include "spinlock.h"
|
||||
|
||||
#include "scheduler.h"
|
||||
|
||||
#define TASK_CLOCK_TICK 50
|
||||
#define TASK_MAX_PRIORITY 32
|
||||
#define TASK_DEFAULT_PRIORITY 2
|
||||
#define TASK_NAME_MAX_LEN 16
|
||||
#define SLEEP_MONITOR_CORE 0
|
||||
|
||||
enum ProcState {
|
||||
INIT = 0,
|
||||
READY,
|
||||
RUNNING,
|
||||
DEAD,
|
||||
BLOCKED,
|
||||
SLEEPING,
|
||||
NEVER_RUN,
|
||||
};
|
||||
typedef int tid_t;
|
||||
|
||||
/* Thread Control Block */
|
||||
struct ThreadContext {
|
||||
|
@ -75,10 +69,6 @@ struct ThreadContext {
|
|||
struct trapframe* trapframe;
|
||||
};
|
||||
|
||||
struct TaskSleepContext {
|
||||
int64_t remain_ms;
|
||||
};
|
||||
|
||||
/* Process Control Block */
|
||||
struct Thread {
|
||||
/* task name */
|
||||
|
@ -107,12 +97,7 @@ struct Thread {
|
|||
bool advance_unblock; // @todo abandon
|
||||
|
||||
/* task schedule attributes */
|
||||
struct double_list_node node;
|
||||
struct TaskSleepContext sleep_context;
|
||||
enum ProcState state;
|
||||
int priority; // priority
|
||||
int remain_tick;
|
||||
int maxium_tick;
|
||||
struct ScheduleNode snode;
|
||||
};
|
||||
|
||||
struct SchedulerRightGroup {
|
||||
|
@ -157,9 +142,6 @@ struct XiziTaskManager {
|
|||
|
||||
/* init task manager */
|
||||
void (*init)();
|
||||
/* init a task control block, set name, remain_tick, state, cwd, priority, etc. */
|
||||
void (*task_set_default_schedule_attr)(struct Thread*);
|
||||
|
||||
/* use by task_scheduler, find next READY task, should be in locked */
|
||||
struct Thread* (*next_runnable_task)(void);
|
||||
/* function that's runing by kernel thread context, schedule use tasks */
|
||||
|
@ -168,9 +150,6 @@ struct XiziTaskManager {
|
|||
/* handle task state */
|
||||
/* call to yield current use task */
|
||||
void (*task_yield_noschedule)(struct Thread* task, bool is_blocking);
|
||||
/* block and unblock task */
|
||||
void (*task_block)(struct double_list_node* head, struct Thread* task);
|
||||
void (*task_unblock)(struct Thread* task);
|
||||
/* set task priority */
|
||||
void (*set_cur_task_priority)(int priority);
|
||||
};
|
||||
|
|
|
@ -70,8 +70,8 @@ int sys_close_session(struct Thread* cur_task, struct Session* session)
|
|||
// @todo fix memory leak
|
||||
} else {
|
||||
assert(!queue_is_empty(&server_to_info->sessions_to_be_handle));
|
||||
if (server_to_info->state == BLOCKED) {
|
||||
xizi_task_manager.task_unblock(session_backend->server);
|
||||
if (server_to_info->snode.state == BLOCKED) {
|
||||
task_into_ready(session_backend->server);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -41,11 +41,11 @@ int sys_exit(struct Thread* ptask)
|
|||
assert(ptask != NULL);
|
||||
ptask->dead = true;
|
||||
// free that task straightly if it's a blocked task
|
||||
if (ptask->state == BLOCKED) {
|
||||
if (ptask->snode.state == BLOCKED) {
|
||||
struct TaskLifecycleOperations* tlo = GetSysObject(struct TaskLifecycleOperations, &xizi_task_manager.task_lifecycle_ops_tag);
|
||||
tlo->free_pcb(ptask);
|
||||
}
|
||||
// yield current task in case it wants to exit itself
|
||||
xizi_task_manager.task_yield_noschedule(cur_cpu()->task, false);
|
||||
task_yield(cur_cpu()->task);
|
||||
return 0;
|
||||
}
|
||||
|
|
|
@ -27,53 +27,37 @@ Author: AIIT XUOS Lab
|
|||
Modification:
|
||||
1. first version
|
||||
*************************************************/
|
||||
#include "task.h"
|
||||
#include "trap_common.h"
|
||||
|
||||
#include "task.h"
|
||||
static bool kill_succ;
|
||||
|
||||
extern int sys_exit(struct Thread* ptask);
|
||||
static bool kill_task(RbtNode* node, void* id)
|
||||
{
|
||||
struct ScheduleNode* snode = (struct ScheduleNode*)node->data;
|
||||
struct Thread* thd = snode->pthd;
|
||||
tid_t target_id = *(tid_t*)id;
|
||||
|
||||
if (thd->tid == target_id) {
|
||||
sys_exit(thd);
|
||||
kill_succ = true;
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
extern int sys_exit(struct Thread* task);
|
||||
int sys_kill(int id)
|
||||
{
|
||||
struct Thread* task = NULL;
|
||||
// check if task is a running one
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_running_list_head, node)
|
||||
{
|
||||
if (task->tid == id) {
|
||||
sys_exit(task);
|
||||
return 0;
|
||||
}
|
||||
kill_succ = false;
|
||||
for (int pool_id = 0; pool_id < NR_STATE; pool_id++) {
|
||||
rbt_traverse(&g_scheduler.snode_state_pool[pool_id], kill_task, (void*)&id);
|
||||
}
|
||||
|
||||
// check if task is a blocking one
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_blocked_list_head, node)
|
||||
{
|
||||
if (task->tid == id) {
|
||||
sys_exit(task);
|
||||
return 0;
|
||||
}
|
||||
if (kill_succ) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct ksemaphore* sem = NULL;
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(sem, &xizi_task_manager.semaphore_pool.sem_list_guard, sem_list_node)
|
||||
{
|
||||
task = NULL;
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &sem->wait_list_guard, node)
|
||||
{
|
||||
sys_exit(task);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// check if task is a ready one
|
||||
for (int prio = 0; prio < TASK_MAX_PRIORITY; prio++) {
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_list_head[prio], node)
|
||||
{
|
||||
if (task->tid == id) {
|
||||
sys_exit(task);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
|
@ -118,8 +118,8 @@ int sys_mmap_v2(uintptr_t* vaddr, uintptr_t* paddr, int len, sys_mmap_info* info
|
|||
}
|
||||
|
||||
uintptr_t paddr_to_map = *paddr;
|
||||
if (paddr_to_map >= PHY_MEM_BASE && paddr_to_map < PHY_MEM_STOP && cur_task->tid > 1) {
|
||||
ERROR("mapping invalid memory: 0x%p\n", paddr_to_map);
|
||||
if (paddr_to_map >= PHY_MEM_BASE && paddr_to_map < PHY_MEM_STOP && cur_task->tid > 2) {
|
||||
ERROR("mapping invalid memory: 0x%p by %d\n", paddr_to_map, cur_task->tid);
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
|
|
@ -112,9 +112,9 @@ int sys_poll_session(struct Session* userland_session_arr, int arr_capacity)
|
|||
}
|
||||
|
||||
if (queue_is_empty(&cur_task->sessions_in_handle) && queue_is_empty(&cur_task->sessions_to_be_handle)) {
|
||||
xizi_task_manager.task_yield_noschedule(cur_task, false);
|
||||
task_yield(cur_task);
|
||||
// @todo support blocking(now bug at 4 cores running)
|
||||
// xizi_task_manager.task_block(&xizi_task_manager.task_blocked_list_head, cur_task);
|
||||
// task_block(cur_task);
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -75,9 +75,10 @@ static void send_irq_to_user(int irq_num)
|
|||
buf->header.done = 0;
|
||||
buf->header.magic = IPC_MSG_MAGIC;
|
||||
buf->header.valid = 1;
|
||||
enqueue(&irq_forward_table[irq_num].handle_task->sessions_to_be_handle, 0, (void*)&irq_forward_table[irq_num].p_kernel_session->server_side);
|
||||
|
||||
if (irq_forward_table[irq_num].handle_task->state == BLOCKED) {
|
||||
xizi_task_manager.task_unblock(irq_forward_table[irq_num].handle_task);
|
||||
if (irq_forward_table[irq_num].handle_task->snode.state == BLOCKED) {
|
||||
task_into_ready(irq_forward_table[irq_num].handle_task);
|
||||
}
|
||||
|
||||
/* add session head */
|
||||
|
@ -92,7 +93,7 @@ int user_irq_handler(int irq, void* tf, void* arg)
|
|||
|
||||
next_task_emergency = irq_forward_table[irq].handle_task;
|
||||
if (cur_cpu()->task != NULL) {
|
||||
xizi_task_manager.task_yield_noschedule(cur_cpu()->task, false);
|
||||
task_yield(cur_cpu()->task);
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
|
@ -126,7 +127,9 @@ int sys_register_irq(int irq_num, int irq_opcode)
|
|||
|
||||
struct TaskLifecycleOperations* tlo = GetSysObject(struct TaskLifecycleOperations, &xizi_task_manager.task_lifecycle_ops_tag);
|
||||
kernel_irq_proxy = tlo->new_thread(pmemspace);
|
||||
kernel_irq_proxy->state = NEVER_RUN;
|
||||
task_trans_sched_state(&kernel_irq_proxy->snode, //
|
||||
&g_scheduler.snode_state_pool[INIT], //
|
||||
&g_scheduler.snode_state_pool[NEVER_RUN], NEVER_RUN);
|
||||
}
|
||||
|
||||
// bind irq to session
|
||||
|
|
|
@ -36,10 +36,11 @@ Modification:
|
|||
int sys_sleep(intptr_t ms)
|
||||
{
|
||||
struct Thread* cur_task = cur_cpu()->task;
|
||||
xizi_task_manager.task_yield_noschedule(cur_task, false);
|
||||
xizi_task_manager.task_block(&xizi_task_manager.task_sleep_list_head, cur_task);
|
||||
cur_task->state = SLEEPING;
|
||||
cur_task->sleep_context.remain_ms = ms;
|
||||
task_yield(cur_task);
|
||||
cur_task->snode.sleep_context.remain_ms = ms;
|
||||
task_trans_sched_state(&cur_task->snode, //
|
||||
&g_scheduler.snode_state_pool[READY], //
|
||||
&g_scheduler.snode_state_pool[SLEEPING], SLEEPING);
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -42,71 +42,50 @@ Modification:
|
|||
extern uint8_t _binary_fs_img_start[], _binary_fs_img_end[];
|
||||
|
||||
#define SHOWINFO_BORDER_LINE() LOG_PRINTF("******************************************************\n");
|
||||
#define SHOWTASK_TASK_BASE_INFO(task) LOG_PRINTF(" %-6d %-16s %-4d 0x%x(%-d)\n", task->tid, task->name, task->priority, task->memspace->mem_size >> 10, task->memspace->mem_size >> 10)
|
||||
#define SHOWTASK_TASK_BASE_INFO(task) LOG_PRINTF(" %-6d %-16s %-4d 0x%x(%-d)\n", task->tid, task->name, 0, task->memspace->mem_size >> 10, task->memspace->mem_size >> 10)
|
||||
|
||||
bool print_info(RbtNode* node, void* data)
|
||||
{
|
||||
struct ScheduleNode* snode = (struct ScheduleNode*)node->data;
|
||||
struct Thread* thd = snode->pthd;
|
||||
switch (snode->state) {
|
||||
case INIT:
|
||||
LOG_PRINTF("%-8s", "INIT");
|
||||
break;
|
||||
case READY:
|
||||
LOG_PRINTF("%-8s", "READY");
|
||||
break;
|
||||
case RUNNING:
|
||||
LOG_PRINTF("%-8s", "RUNNING");
|
||||
break;
|
||||
case DEAD:
|
||||
LOG_PRINTF("%-8s", "DEAD");
|
||||
break;
|
||||
case BLOCKED:
|
||||
LOG_PRINTF("%-8s", "BLOCK");
|
||||
break;
|
||||
case SLEEPING:
|
||||
LOG_PRINTF("%-8s", "SLEEP");
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
SHOWTASK_TASK_BASE_INFO(thd);
|
||||
return true;
|
||||
}
|
||||
|
||||
void show_tasks(void)
|
||||
{
|
||||
struct Thread* task = NULL;
|
||||
SHOWINFO_BORDER_LINE();
|
||||
for (int i = 0; i < NR_CPU; i++) {
|
||||
LOG_PRINTF("CPU %-2d: %s\n", i, (global_cpus[i].task == NULL ? "NULL" : global_cpus[i].task->name));
|
||||
}
|
||||
SHOWINFO_BORDER_LINE();
|
||||
LOG_PRINTF("%-8s %-6s %-16s %-4s %-8s\n", "STAT", "ID", "TASK", "PRI", "MEM(KB)");
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_running_list_head, node)
|
||||
{
|
||||
LOG_PRINTF("%-8s", "RUNNING");
|
||||
SHOWTASK_TASK_BASE_INFO(task);
|
||||
}
|
||||
|
||||
for (int i = 0; i < TASK_MAX_PRIORITY; i++) {
|
||||
if (IS_DOUBLE_LIST_EMPTY(&xizi_task_manager.task_list_head[i])) {
|
||||
continue;
|
||||
}
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_list_head[i], node)
|
||||
{
|
||||
switch (task->state) {
|
||||
case INIT:
|
||||
LOG_PRINTF("%-8s", "INIT");
|
||||
break;
|
||||
case READY:
|
||||
LOG_PRINTF("%-8s", "READY");
|
||||
break;
|
||||
case RUNNING:
|
||||
LOG_PRINTF("%-8s", "RUNNING");
|
||||
break;
|
||||
case DEAD:
|
||||
LOG_PRINTF("%-8s", "DEAD");
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
SHOWTASK_TASK_BASE_INFO(task);
|
||||
}
|
||||
}
|
||||
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_blocked_list_head, node)
|
||||
{
|
||||
LOG_PRINTF("%-8s", "BLOCK");
|
||||
SHOWTASK_TASK_BASE_INFO(task);
|
||||
}
|
||||
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_sleep_list_head, node)
|
||||
{
|
||||
LOG_PRINTF("%-8s", "SLEEP");
|
||||
SHOWTASK_TASK_BASE_INFO(task);
|
||||
}
|
||||
|
||||
struct ksemaphore* sem = NULL;
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(sem, &xizi_task_manager.semaphore_pool.sem_list_guard, sem_list_node)
|
||||
{
|
||||
task = NULL;
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &sem->wait_list_guard, node)
|
||||
{
|
||||
LOG_PRINTF("%-8s", "BLOCK");
|
||||
SHOWTASK_TASK_BASE_INFO(task);
|
||||
}
|
||||
for (int pool_id = INIT; pool_id < NR_STATE; pool_id++) {
|
||||
rbt_traverse(&g_scheduler.snode_state_pool[pool_id], print_info, NULL);
|
||||
}
|
||||
|
||||
SHOWINFO_BORDER_LINE();
|
||||
|
@ -150,7 +129,7 @@ void show_cpu(void)
|
|||
assert(current_task != NULL);
|
||||
|
||||
LOG_PRINTF(" ID COMMAND USED_TICKS FREE_TICKS \n");
|
||||
LOG_PRINTF(" %d %s %d %d\n", cpu_id, current_task->name, TASK_CLOCK_TICK - current_task->remain_tick, current_task->remain_tick);
|
||||
LOG_PRINTF(" %d %s %d %d\n", cpu_id, current_task->name, TASK_CLOCK_TICK - current_task->snode.sched_context.remain_tick, current_task->snode.sched_context.remain_tick);
|
||||
|
||||
LOG_PRINTF("***********************************************************\n");
|
||||
return;
|
||||
|
|
|
@ -64,7 +64,7 @@ int sys_new_thread(struct MemSpace* pmemspace, struct Thread* task, uintptr_t en
|
|||
strncpy(task->name, last, sizeof(task->name) - 1);
|
||||
|
||||
// init pcb schedule attributes
|
||||
xizi_task_manager.task_set_default_schedule_attr(task);
|
||||
task_into_ready(task);
|
||||
|
||||
// thread init done by here
|
||||
if (pmemspace->thread_to_notify == NULL) {
|
||||
|
|
|
@ -60,8 +60,8 @@ int sys_wait_session(struct Session* userland_session)
|
|||
assert(!queue_is_empty(&server_to_call->sessions_to_be_handle));
|
||||
|
||||
ksemaphore_wait(&xizi_task_manager.semaphore_pool, cur_task, session_backend->client_sem_to_wait);
|
||||
if (server_to_call->state == BLOCKED) {
|
||||
xizi_task_manager.task_unblock(session_backend->server);
|
||||
if (server_to_call->snode.state == BLOCKED) {
|
||||
task_into_ready(session_backend->server);
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -36,6 +36,6 @@ Modification:
|
|||
int sys_yield(task_yield_reason reason)
|
||||
{
|
||||
struct Thread* cur_task = cur_cpu()->task;
|
||||
xizi_task_manager.task_yield_noschedule(cur_task, false);
|
||||
task_yield(cur_task);
|
||||
return 0;
|
||||
}
|
|
@ -30,68 +30,136 @@ Modification:
|
|||
#include "log.h"
|
||||
#include "schedule_algo.h"
|
||||
|
||||
static struct Thread* next_runable_task;
|
||||
static uint64_t min_run_time;
|
||||
|
||||
bool find_runable_task(RbtNode* node, void* data)
|
||||
{
|
||||
struct ScheduleNode* snode = (struct ScheduleNode*)node->data;
|
||||
struct Thread* thd = snode->pthd;
|
||||
|
||||
if (!thd->dead) {
|
||||
if (thd->snode.sched_context.run_time <= min_run_time) {
|
||||
next_runable_task = thd;
|
||||
min_run_time = thd->snode.sched_context.run_time;
|
||||
thd->snode.sched_context.run_time++;
|
||||
}
|
||||
return true;
|
||||
} else {
|
||||
struct TaskLifecycleOperations* tlo = GetSysObject(struct TaskLifecycleOperations, &xizi_task_manager.task_lifecycle_ops_tag);
|
||||
tlo->free_pcb(thd);
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
struct Thread* max_priority_runnable_task(void)
|
||||
{
|
||||
static struct Thread* task = NULL;
|
||||
static int priority = 0;
|
||||
|
||||
priority = __builtin_ffs(ready_task_priority) - 1;
|
||||
if (priority > 31 || priority < 0) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_list_head[priority], node)
|
||||
{
|
||||
assert(task != NULL);
|
||||
if (task->state == READY && !task->dead) {
|
||||
// found a runnable task, stop this look up
|
||||
return task;
|
||||
} else if (task->dead && task->state != RUNNING) {
|
||||
|
||||
struct TaskLifecycleOperations* tlo = GetSysObject(struct TaskLifecycleOperations, &xizi_task_manager.task_lifecycle_ops_tag);
|
||||
tlo->free_pcb(task);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
/// @todo better strategy
|
||||
next_runable_task = NULL;
|
||||
min_run_time = UINT64_MAX;
|
||||
rbt_traverse(&g_scheduler.snode_state_pool[READY], find_runable_task, NULL);
|
||||
return next_runable_task;
|
||||
}
|
||||
|
||||
struct Thread* round_robin_runnable_task(uint32_t priority)
|
||||
#include "multicores.h"
|
||||
#include "rbtree.h"
|
||||
#include "task.h"
|
||||
|
||||
bool init_schedule_node(struct ScheduleNode* snode, struct Thread* bind_thd)
|
||||
{
|
||||
struct Thread* task = NULL;
|
||||
snode->pthd = bind_thd;
|
||||
snode->snode_id = bind_thd->tid;
|
||||
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_list_head[priority], node)
|
||||
{
|
||||
if (task->state == READY && !task->dead) {
|
||||
// found a runnable task, stop this look up
|
||||
return task;
|
||||
} else if (task->dead && task->state != RUNNING) {
|
||||
struct TaskLifecycleOperations* tlo = GetSysObject(struct TaskLifecycleOperations, &xizi_task_manager.task_lifecycle_ops_tag);
|
||||
tlo->free_pcb(task);
|
||||
return NULL;
|
||||
}
|
||||
snode->sched_context.remain_tick = 0;
|
||||
snode->sched_context.run_time = 0;
|
||||
|
||||
snode->sleep_context.remain_ms = 0;
|
||||
snode->state = INIT;
|
||||
if (RBTTREE_INSERT_SECC != rbt_insert(&g_scheduler.snode_state_pool[INIT], //
|
||||
snode->snode_id, (void*)snode)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return NULL;
|
||||
return true;
|
||||
}
|
||||
|
||||
/* recover task priority */
|
||||
void recover_priority(void)
|
||||
bool task_trans_sched_state(struct ScheduleNode* snode, RbtTree* from_pool, RbtTree* to_pool, enum ThreadState target_state)
|
||||
{
|
||||
struct Thread* task = NULL;
|
||||
for (int i = 1; i < TASK_MAX_PRIORITY; i++) {
|
||||
if (i == TASK_DEFAULT_PRIORITY)
|
||||
continue;
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_list_head[i], node)
|
||||
{
|
||||
if (!IS_DOUBLE_LIST_EMPTY(&task->node)) {
|
||||
// DEBUG("%s priority recover\n", task->name);
|
||||
task->priority = TASK_DEFAULT_PRIORITY;
|
||||
doubleListDel(&task->node);
|
||||
doubleListAddOnBack(&task->node, &xizi_task_manager.task_list_head[task->priority]);
|
||||
i--;
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(snode != NULL);
|
||||
// DEBUG("%d %p %d %s\n", snode->snode_id, snode->pthd, snode->pthd->tid, snode->pthd->name);
|
||||
assert(snode->snode_id != UNINIT_SNODE_ID && snode->pthd != NULL);
|
||||
if (RBTTREE_DELETE_SUCC != rbt_delete(from_pool, snode->snode_id)) {
|
||||
DEBUG("Thread %d not in from schedule pool\n", snode->pthd->tid);
|
||||
return false;
|
||||
}
|
||||
|
||||
if (RBTTREE_INSERT_SECC != rbt_insert(to_pool, snode->snode_id, (void*)snode)) {
|
||||
DEBUG("Thread %d trans state failed\n", snode->pthd->tid);
|
||||
return false;
|
||||
}
|
||||
|
||||
snode->state = target_state;
|
||||
return true;
|
||||
}
|
||||
|
||||
void task_dead(struct Thread* thd)
|
||||
{
|
||||
assert(thd != NULL);
|
||||
struct ScheduleNode* snode = &thd->snode;
|
||||
|
||||
assert(snode->state == READY);
|
||||
|
||||
bool trans_res = task_trans_sched_state(snode, //
|
||||
&g_scheduler.snode_state_pool[READY], //
|
||||
&g_scheduler.snode_state_pool[DEAD], DEAD);
|
||||
assert(trans_res = true);
|
||||
assert(RBTTREE_DELETE_SUCC == rbt_delete(&g_scheduler.snode_state_pool[DEAD], snode->snode_id));
|
||||
return;
|
||||
}
|
||||
|
||||
void task_block(struct Thread* thd)
|
||||
{
|
||||
assert(thd != NULL);
|
||||
struct ScheduleNode* snode = &thd->snode;
|
||||
enum ThreadState thd_cur_state = snode->state;
|
||||
|
||||
assert(thd_cur_state != RUNNING);
|
||||
|
||||
bool trans_res = task_trans_sched_state(snode, //
|
||||
&g_scheduler.snode_state_pool[thd_cur_state], //
|
||||
&g_scheduler.snode_state_pool[BLOCKED], BLOCKED);
|
||||
assert(trans_res = true);
|
||||
return;
|
||||
}
|
||||
|
||||
void task_into_ready(struct Thread* thd)
|
||||
{
|
||||
assert(thd != NULL);
|
||||
struct ScheduleNode* snode = &thd->snode;
|
||||
enum ThreadState thd_cur_state = snode->state;
|
||||
|
||||
bool trans_res = task_trans_sched_state(snode, //
|
||||
&g_scheduler.snode_state_pool[thd_cur_state], //
|
||||
&g_scheduler.snode_state_pool[READY], READY);
|
||||
snode->sched_context.remain_tick = TASK_CLOCK_TICK;
|
||||
assert(trans_res = true);
|
||||
return;
|
||||
}
|
||||
|
||||
void task_yield(struct Thread* thd)
|
||||
{
|
||||
assert(thd != NULL);
|
||||
struct ScheduleNode* snode = &thd->snode;
|
||||
enum ThreadState thd_cur_state = snode->state;
|
||||
|
||||
assert(thd == cur_cpu()->task && thd_cur_state == RUNNING);
|
||||
cur_cpu()->task = NULL;
|
||||
|
||||
bool trans_res = task_trans_sched_state(snode, //
|
||||
&g_scheduler.snode_state_pool[thd_cur_state], //
|
||||
&g_scheduler.snode_state_pool[READY], READY);
|
||||
snode->sched_context.remain_tick = TASK_CLOCK_TICK;
|
||||
assert(trans_res = true);
|
||||
return;
|
||||
}
|
|
@ -58,7 +58,7 @@ sem_id_t ksemaphore_alloc(struct XiziSemaphorePool* sem_pool, sem_val_t val)
|
|||
}
|
||||
sem->val = val;
|
||||
doubleListNodeInit(&sem->sem_list_node);
|
||||
doubleListNodeInit(&sem->wait_list_guard);
|
||||
rbtree_init(&sem->wait_thd_tree);
|
||||
|
||||
if (0 != rbt_insert(&sem_pool->sem_pool_map, sem->id, sem)) {
|
||||
slab_free(&sem_pool->allocator, sem);
|
||||
|
@ -88,7 +88,7 @@ bool ksemaphore_consume(struct XiziSemaphorePool* sem_pool, sem_id_t sem_id, sem
|
|||
bool ksemaphore_wait(struct XiziSemaphorePool* sem_pool, struct Thread* thd, sem_id_t sem_id)
|
||||
{
|
||||
assert(thd != NULL);
|
||||
assert(thd->state == RUNNING);
|
||||
assert(thd->snode.state == RUNNING);
|
||||
/* find sem */
|
||||
struct ksemaphore* sem = ksemaphore_get_by_id(sem_pool, sem_id);
|
||||
// invalid sem id
|
||||
|
@ -105,8 +105,9 @@ bool ksemaphore_wait(struct XiziSemaphorePool* sem_pool, struct Thread* thd, sem
|
|||
|
||||
// waiting at the sem
|
||||
sem->val--;
|
||||
xizi_task_manager.task_yield_noschedule(thd, false);
|
||||
xizi_task_manager.task_block(&sem->wait_list_guard, thd);
|
||||
task_yield(thd);
|
||||
task_block(thd);
|
||||
assert(RBTTREE_INSERT_SECC == rbt_insert(&sem->wait_thd_tree, thd->tid, thd));
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -120,12 +121,11 @@ bool ksemaphore_signal(struct XiziSemaphorePool* sem_pool, sem_id_t sem_id)
|
|||
}
|
||||
|
||||
if (sem->val < 0) {
|
||||
if (!IS_DOUBLE_LIST_EMPTY(&sem->wait_list_guard)) {
|
||||
struct Thread* thd = CONTAINER_OF(sem->wait_list_guard.next, struct Thread, node);
|
||||
assert(thd != NULL && thd->state == BLOCKED);
|
||||
xizi_task_manager.task_unblock(thd);
|
||||
// DEBUG("waking %s\n", thd->name);
|
||||
}
|
||||
assert(!rbt_is_empty(&sem->wait_thd_tree));
|
||||
RbtNode* root = sem->wait_thd_tree.root;
|
||||
struct Thread* thd = (struct Thread*)root->data;
|
||||
rbt_delete(&sem->wait_thd_tree, root->key);
|
||||
task_into_ready(thd);
|
||||
}
|
||||
|
||||
sem->val++;
|
||||
|
@ -154,12 +154,7 @@ bool ksemaphore_free(struct XiziSemaphorePool* sem_pool, sem_id_t sem_id)
|
|||
return false;
|
||||
}
|
||||
|
||||
struct Thread* thd = NULL;
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(thd, &sem->wait_list_guard, node)
|
||||
{
|
||||
assert(thd != NULL);
|
||||
xizi_task_manager.task_unblock(thd);
|
||||
}
|
||||
// by design: no waking any waiting threads
|
||||
|
||||
rbt_delete(&sem_pool->sem_pool_map, sem_id);
|
||||
doubleListDel(&sem->sem_list_node);
|
||||
|
|
|
@ -44,28 +44,9 @@ struct CPU global_cpus[NR_CPU];
|
|||
uint32_t ready_task_priority;
|
||||
|
||||
struct GlobalTaskPool global_task_pool;
|
||||
struct Scheduler g_scheduler;
|
||||
extern struct TaskLifecycleOperations task_lifecycle_ops;
|
||||
|
||||
static inline void task_node_leave_list(struct Thread* task)
|
||||
{
|
||||
doubleListDel(&task->node);
|
||||
if (IS_DOUBLE_LIST_EMPTY(&xizi_task_manager.task_list_head[task->priority])) {
|
||||
ready_task_priority &= ~((uint32_t)1 << task->priority);
|
||||
}
|
||||
}
|
||||
|
||||
static inline void task_node_add_to_ready_list_head(struct Thread* task)
|
||||
{
|
||||
doubleListAddOnHead(&task->node, &xizi_task_manager.task_list_head[task->priority]);
|
||||
ready_task_priority |= ((uint32_t)1 << task->priority);
|
||||
}
|
||||
|
||||
static inline void task_node_add_to_ready_list_back(struct Thread* task)
|
||||
{
|
||||
doubleListAddOnBack(&task->node, &xizi_task_manager.task_list_head[task->priority]);
|
||||
ready_task_priority |= ((uint32_t)1 << task->priority);
|
||||
}
|
||||
|
||||
static void _task_manager_init()
|
||||
{
|
||||
assert(CreateResourceTag(&xizi_task_manager.task_lifecycle_ops_tag, &xizi_task_manager.tag, //
|
||||
|
@ -93,8 +74,16 @@ static void _task_manager_init()
|
|||
doubleListNodeInit(&global_task_pool.thd_listing_head);
|
||||
rbtree_init(&global_task_pool.thd_ref_map);
|
||||
|
||||
// scheduler
|
||||
assert(CreateResourceTag(&g_scheduler.tag, &xizi_task_manager.tag, //
|
||||
"GlobalScheduler", TRACER_SYSOBJECT, (void*)&g_scheduler));
|
||||
semaphore_pool_init(&g_scheduler.semaphore_pool);
|
||||
for (int pool_id = 0; pool_id < NR_STATE; pool_id++) {
|
||||
rbtree_init(&g_scheduler.snode_state_pool[pool_id]);
|
||||
}
|
||||
|
||||
// tid pool
|
||||
xizi_task_manager.next_pid = 0;
|
||||
xizi_task_manager.next_pid = 1;
|
||||
|
||||
// init priority bit map
|
||||
ready_task_priority = 0;
|
||||
|
@ -125,8 +114,8 @@ int _task_return_sys_resources(struct Thread* ptask)
|
|||
// @todo fix memory leak
|
||||
} else {
|
||||
assert(!queue_is_empty(&server_to_info->sessions_to_be_handle));
|
||||
if (server_to_info->state == BLOCKED) {
|
||||
xizi_task_manager.task_unblock(session_backend->server);
|
||||
if (server_to_info->snode.state == BLOCKED) {
|
||||
task_into_ready(server_to_info);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -184,7 +173,7 @@ static void _free_thread(struct Thread* task)
|
|||
}
|
||||
|
||||
// remove thread from used task list
|
||||
task_node_leave_list(task);
|
||||
task_dead(task);
|
||||
|
||||
/* free memspace if needed to */
|
||||
if (task->memspace != NULL) {
|
||||
|
@ -196,8 +185,8 @@ static void _free_thread(struct Thread* task)
|
|||
// awake deamon in this memspace
|
||||
if (task->memspace->thread_to_notify != NULL) {
|
||||
if (task->memspace->thread_to_notify != task) {
|
||||
if (task->memspace->thread_to_notify->state == BLOCKED) {
|
||||
xizi_task_manager.task_unblock(task->memspace->thread_to_notify);
|
||||
if (task->memspace->thread_to_notify->snode.state == BLOCKED) {
|
||||
task_into_ready(task->memspace->thread_to_notify);
|
||||
} else {
|
||||
task->memspace->thread_to_notify->advance_unblock = true;
|
||||
}
|
||||
|
@ -231,9 +220,18 @@ static struct Thread* _new_thread(struct MemSpace* pmemspace)
|
|||
return NULL;
|
||||
}
|
||||
|
||||
// [schedule related]
|
||||
task->tid = xizi_task_manager.next_pid++;
|
||||
if (!init_schedule_node(&task->snode, task)) {
|
||||
ERROR("Not enough memory\n");
|
||||
slab_free(&xizi_task_manager.task_allocator, (void*)task);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// alloc stack page for task
|
||||
if ((void*)(task->thread_context.kern_stack_addr = (uintptr_t)kalloc_by_ownership(pmemspace->kernspace_mem_usage.tag, USER_STACK_SIZE)) == NULL) {
|
||||
/* here inside, will no free memspace */
|
||||
assert(RBTTREE_DELETE_SUCC == rbt_delete(&g_scheduler.snode_state_pool[INIT], task->snode.snode_id));
|
||||
slab_free(&xizi_task_manager.task_allocator, (void*)task);
|
||||
return NULL;
|
||||
}
|
||||
|
@ -241,7 +239,6 @@ static struct Thread* _new_thread(struct MemSpace* pmemspace)
|
|||
ERROR_FREE
|
||||
{
|
||||
/* init basic task ref member */
|
||||
task->tid = xizi_task_manager.next_pid++;
|
||||
task->bind_irq = false;
|
||||
|
||||
/* vm & memory member */
|
||||
|
@ -279,7 +276,6 @@ static struct Thread* _new_thread(struct MemSpace* pmemspace)
|
|||
}
|
||||
|
||||
// [name]
|
||||
// [schedule related]
|
||||
|
||||
return task;
|
||||
}
|
||||
|
@ -289,22 +285,12 @@ struct TaskLifecycleOperations task_lifecycle_ops = {
|
|||
.free_pcb = _free_thread,
|
||||
};
|
||||
|
||||
static void _task_set_default_schedule_attr(struct Thread* task)
|
||||
{
|
||||
task->remain_tick = TASK_CLOCK_TICK;
|
||||
task->maxium_tick = TASK_CLOCK_TICK * 10;
|
||||
task->dead = false;
|
||||
task->state = READY;
|
||||
task->priority = TASK_DEFAULT_PRIORITY;
|
||||
task_node_add_to_ready_list_head(task);
|
||||
}
|
||||
|
||||
static void task_state_set_running(struct Thread* task)
|
||||
{
|
||||
assert(task != NULL && task->state == READY);
|
||||
task->state = RUNNING;
|
||||
task_node_leave_list(task);
|
||||
doubleListAddOnHead(&task->node, &xizi_task_manager.task_running_list_head);
|
||||
assert(task != NULL && task->snode.state == READY);
|
||||
assert(task_trans_sched_state(&task->snode, //
|
||||
&g_scheduler.snode_state_pool[READY], //
|
||||
&g_scheduler.snode_state_pool[RUNNING], RUNNING));
|
||||
}
|
||||
|
||||
struct Thread* next_task_emergency = NULL;
|
||||
|
@ -319,7 +305,7 @@ static void _scheduler(struct SchedulerRightGroup right_group)
|
|||
next_task = NULL;
|
||||
/* find next runnable task */
|
||||
assert(cur_cpu()->task == NULL);
|
||||
if (next_task_emergency != NULL && next_task_emergency->state == READY) {
|
||||
if (next_task_emergency != NULL && next_task_emergency->snode.state == READY) {
|
||||
next_task = next_task_emergency;
|
||||
} else {
|
||||
next_task = xizi_task_manager.next_runnable_task();
|
||||
|
@ -340,76 +326,21 @@ static void _scheduler(struct SchedulerRightGroup right_group)
|
|||
assert(next_task->memspace->pgdir.pd_addr != NULL);
|
||||
p_mmu_driver->LoadPgdir((uintptr_t)V2P(next_task->memspace->pgdir.pd_addr));
|
||||
context_switch(&cpu->scheduler, next_task->thread_context.context);
|
||||
assert(next_task->state != RUNNING);
|
||||
assert(next_task->snode.state != RUNNING);
|
||||
}
|
||||
}
|
||||
|
||||
static void _task_yield_noschedule(struct Thread* task, bool blocking)
|
||||
{
|
||||
assert(task != NULL);
|
||||
/// @warning only support current task yield now
|
||||
assert(task == cur_cpu()->task && task->state == RUNNING);
|
||||
|
||||
// rearrage current task position
|
||||
task_node_leave_list(task);
|
||||
if (task->state == RUNNING) {
|
||||
task->state = READY;
|
||||
}
|
||||
task->remain_tick = TASK_CLOCK_TICK;
|
||||
cur_cpu()->task = NULL;
|
||||
task_node_add_to_ready_list_back(task);
|
||||
}
|
||||
|
||||
static void _task_block(struct double_list_node* head, struct Thread* task)
|
||||
{
|
||||
assert(head != NULL);
|
||||
assert(task != NULL);
|
||||
assert(task->state != RUNNING);
|
||||
task_node_leave_list(task);
|
||||
task->state = BLOCKED;
|
||||
doubleListAddOnHead(&task->node, head);
|
||||
}
|
||||
|
||||
static void _task_unblock(struct Thread* task)
|
||||
{
|
||||
assert(task != NULL);
|
||||
assert(task->state == BLOCKED || task->state == SLEEPING);
|
||||
task_node_leave_list(task);
|
||||
task->state = READY;
|
||||
task_node_add_to_ready_list_back(task);
|
||||
}
|
||||
|
||||
/// @brief @warning not tested function
|
||||
/// @param priority
|
||||
static void _set_cur_task_priority(int priority)
|
||||
{
|
||||
if (priority < 0 || priority >= TASK_MAX_PRIORITY) {
|
||||
ERROR("priority is invalid\n");
|
||||
return;
|
||||
}
|
||||
|
||||
struct Thread* current_task = cur_cpu()->task;
|
||||
assert(current_task != NULL && current_task->state == RUNNING);
|
||||
|
||||
task_node_leave_list(current_task);
|
||||
|
||||
current_task->priority = priority;
|
||||
|
||||
task_node_add_to_ready_list_back(current_task);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
struct XiziTaskManager xizi_task_manager = {
|
||||
.init = _task_manager_init,
|
||||
.task_set_default_schedule_attr = _task_set_default_schedule_attr,
|
||||
|
||||
.next_runnable_task = max_priority_runnable_task,
|
||||
.task_scheduler = _scheduler,
|
||||
|
||||
.task_block = _task_block,
|
||||
.task_unblock = _task_unblock,
|
||||
.task_yield_noschedule = _task_yield_noschedule,
|
||||
.set_cur_task_priority = _set_cur_task_priority
|
||||
};
|
||||
|
||||
|
|
|
@ -326,20 +326,20 @@ RbtNode* __rbtree_insert(RbtNode* node, RbtTree* tree)
|
|||
int rbt_insert(RbtTree* tree, uintptr_t key, void* data)
|
||||
{
|
||||
if (rbt_search(tree, key) != NULL) {
|
||||
return -2;
|
||||
return RBTTREE_INSERT_EXISTED;
|
||||
}
|
||||
|
||||
RbtNode* node = rbtree_createnode(key, data);
|
||||
RbtNode* samenode = NULL;
|
||||
if (node == NULL)
|
||||
return -1;
|
||||
return RBTTREE_INSERT_FAILED;
|
||||
else
|
||||
samenode = __rbtree_insert(node, tree);
|
||||
|
||||
assert(samenode == NULL);
|
||||
|
||||
tree->nr_ele++;
|
||||
return 0;
|
||||
return RBTTREE_INSERT_SECC;
|
||||
}
|
||||
|
||||
void replace_node(RbtTree* t, RbtNode* oldn, RbtNode* newn)
|
||||
|
@ -455,7 +455,7 @@ int rbt_delete(RbtTree* tree, uintptr_t key)
|
|||
{
|
||||
RbtNode* node = do_lookup(key, tree, NULL);
|
||||
if (node == NULL)
|
||||
return -1;
|
||||
return RBTTREE_DELETE_FAILED;
|
||||
else
|
||||
__rbtree_remove(node, tree);
|
||||
|
||||
|
@ -463,5 +463,22 @@ int rbt_delete(RbtTree* tree, uintptr_t key)
|
|||
if (rbt_is_empty(tree)) {
|
||||
assert(tree->root == NULL);
|
||||
}
|
||||
return 0;
|
||||
return RBTTREE_DELETE_SUCC;
|
||||
}
|
||||
|
||||
void rbt_traverse_inner(RbtNode* node, rbt_traverse_fn fn, void* data)
|
||||
{
|
||||
if (node == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (fn(node, data)) {
|
||||
rbt_traverse_inner(node->left, fn, data);
|
||||
rbt_traverse_inner(node->right, fn, data);
|
||||
}
|
||||
}
|
||||
|
||||
void rbt_traverse(RbtTree* tree, rbt_traverse_fn fn, void* data)
|
||||
{
|
||||
rbt_traverse_inner(tree->root, fn, data);
|
||||
}
|
|
@ -62,6 +62,12 @@ void hw_current_second(uintptr_t* second)
|
|||
*second = p_clock_driver->get_second();
|
||||
}
|
||||
|
||||
bool count_down_sleeping_task(RbtNode* node, void* data)
|
||||
{
|
||||
/// @todo implement
|
||||
return false;
|
||||
}
|
||||
|
||||
uint64_t global_tick = 0;
|
||||
int xizi_clock_handler(int irq, void* tf, void* arg)
|
||||
{
|
||||
|
@ -73,24 +79,25 @@ int xizi_clock_handler(int irq, void* tf, void* arg)
|
|||
// handle current thread
|
||||
struct Thread* current_task = cur_cpu()->task;
|
||||
if (current_task) {
|
||||
current_task->remain_tick--;
|
||||
current_task->maxium_tick--;
|
||||
if (current_task->remain_tick == 0) {
|
||||
xizi_task_manager.task_yield_noschedule(current_task, false);
|
||||
struct ScheduleNode* snode = ¤t_task->snode;
|
||||
snode->sched_context.remain_tick--;
|
||||
if (snode->sched_context.remain_tick == 0) {
|
||||
task_into_ready(current_task);
|
||||
}
|
||||
}
|
||||
|
||||
// todo: cpu 0 will handle sleeping thread
|
||||
struct Thread* thread = NULL;
|
||||
DOUBLE_LIST_FOR_EACH_ENTRY(thread, &xizi_task_manager.task_sleep_list_head, node)
|
||||
{
|
||||
assert(thread->state == SLEEPING);
|
||||
thread->sleep_context.remain_ms--;
|
||||
if (thread->sleep_context.remain_ms <= 0) {
|
||||
xizi_task_manager.task_unblock(thread);
|
||||
break;
|
||||
}
|
||||
}
|
||||
rbt_traverse(&g_scheduler.snode_state_pool[SLEEPING], count_down_sleeping_task, NULL);
|
||||
|
||||
// DOUBLE_LIST_FOR_EACH_ENTRY(thread, &xizi_task_manager.task_sleep_list_head, node)
|
||||
// {
|
||||
// assert(thread->state == SLEEPING);
|
||||
// thread->sleep_context.remain_ms--;
|
||||
// if (thread->sleep_context.remain_ms <= 0) {
|
||||
// xizi_task_manager.task_unblock(thread);
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -84,7 +84,7 @@ void intr_irq_dispatch(struct trapframe* tf)
|
|||
// finish irq.
|
||||
p_intr_driver->hw_after_irq(int_info);
|
||||
|
||||
if (cur_cpu()->task == NULL || current_task->state != RUNNING) {
|
||||
if (cur_cpu()->task == NULL || current_task->snode.state != RUNNING) {
|
||||
cur_cpu()->task = NULL;
|
||||
context_switch(¤t_task->thread_context.context, cur_cpu()->scheduler);
|
||||
}
|
||||
|
|
|
@ -56,7 +56,7 @@ void software_irq_dispatch(struct trapframe* tf)
|
|||
/// @todo: Handle dead task
|
||||
|
||||
int syscall_num = -1;
|
||||
if (cur_task && cur_task->state != DEAD) {
|
||||
if (cur_task && cur_task->snode.state != DEAD) {
|
||||
cur_task->thread_context.trapframe = tf;
|
||||
// call syscall
|
||||
|
||||
|
@ -64,7 +64,7 @@ void software_irq_dispatch(struct trapframe* tf)
|
|||
arch_set_return(tf, ret);
|
||||
}
|
||||
|
||||
if ((cur_cpu()->task == NULL && cur_task != NULL) || cur_task->state != RUNNING) {
|
||||
if ((cur_cpu()->task == NULL && cur_task != NULL) || cur_task->snode.state != RUNNING) {
|
||||
cur_cpu()->task = NULL;
|
||||
context_switch(&cur_task->thread_context.context, cur_cpu()->scheduler);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue