10.7-xiuos on board & other undo

This commit is contained in:
hyl 2024-10-07 12:41:58 +08:00
parent 1a6ee0234b
commit d0e822c757
18 changed files with 3031 additions and 11 deletions

View File

@ -114,8 +114,8 @@ InterruptVectors:
.word IsrEntry
.word IsrEntry
.word IsrEntry
.word UartIsr1
.word IsrEntry //UartIsr2
.word IsrEntry //UartIsr1
.word UartIsr2 //UartIsr2
.word IsrEntry
.word IsrEntry
.word IsrEntry

View File

@ -1,9 +1,9 @@
export CROSS_COMPILE ?=/usr/bin/arm-none-eabi-
export CFLAGS := -mcpu=cortex-m3 -mthumb -ffunction-sections -fdata-sections -Dgcc -O0 -gdwarf-2 -g -fgnu89-inline -Wa,-mimplicit-it=thumb
export CFLAGS := -mcpu=cortex-m3 -mthumb -ffunction-sections -fdata-sections -Dgcc -Os -gdwarf-2 -g -fgnu89-inline -Wa,-mimplicit-it=thumb
export AFLAGS := -c -mcpu=cortex-m3 -mthumb -ffunction-sections -fdata-sections -x assembler-with-cpp -Wa,-mimplicit-it=thumb -gdwarf-2
export LFLAGS := -mcpu=cortex-m3 -mthumb -ffunction-sections -fdata-sections -Wl,--gc-sections,-Map=XiZi-stm32f103-nano.map,-cref,-u,Reset_Handler -T $(BSP_ROOT)/link.lds
export CXXFLAGS := -mcpu=cortex-m3 -mthumb -ffunction-sections -fdata-sections -Dgcc -O0 -gdwarf-2 -g
export LFLAGS := -mcpu=cortex-m3 -specs=nano.specs -mthumb -ffunction-sections -fdata-sections -Wl,--gc-sections,-Map=XiZi-stm32f103-nano.map,-cref,-u,Reset_Handler -T $(BSP_ROOT)/link.lds
export CXXFLAGS := -mcpu=cortex-m3 -mthumb -ffunction-sections -fdata-sections -Dgcc -Os -gdwarf-2 -g
export APPLFLAGS := -mcpu=cortex-m3 -mthumb -ffunction-sections -fdata-sections -Wl,--gc-sections,-Map=XiZi-app.map,-cref,-u, -T $(BSP_ROOT)/link_userspace.lds

View File

@ -5,7 +5,7 @@
/* Program Entry, set to mark it as "used" and avoid gc */
MEMORY
{
flash (rx) : ORIGIN = 0x08000000, LENGTH = 128k /* 128KB flash */
flash (rx) : ORIGIN = 0x08004000, LENGTH = 112k /* 128KB flash */
sram (rw) : ORIGIN = 0x20000000, LENGTH = 20k /* 20K sram */
}
OUTPUT_ARCH(arm)

View File

@ -2,6 +2,7 @@ SRC_DIR := libraries
ifeq ($(CONFIG_BSP_USING_UART),y)
SRC_DIR += uart
SRC_DIR += common
endif
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,30 @@
menuconfig BSP_USING_CAN
bool "Enable UART1"
default y
if BSP_USING_UART1
config SERIAL_BUS_NAME_1
string "serial bus 1 name"
default "uart1"
config SERIAL_DRV_NAME_1
string "serial bus 1 driver name"
default "uart1_drv"
config SERIAL_1_DEVICE_NAME_0
string "serial bus 1 device name"
default "uart1_dev1"
endif
menuconfig BSP_USING_UART2
bool "Enable UART2"
default n
if BSP_USING_UART2
config SERIAL_BUS_NAME_2
string "serial bus 2 name"
default "uart2"
config SERIAL_DRV_NAME_2
string "serial bus 2 driver name"
default "uart2_drv"
config SERIAL_2_DEVICE_NAME_0
string "serial bus 2 device name"
default "uart2_dev2"
endif

View File

@ -0,0 +1,438 @@
/*
* Copyright (c) 2020 AIIT XUOS Lab
* XiUOS is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
* See the Mulan PSL v2 for more details.
*/
/**
* @file connect_uart.c
* @brief support stm32f103_nano board uart function and register to bus framework
* @version 1.1
* @author AIIT XUOS Lab
* @date 2021-11-25
*/
#include <board.h>
#include <connect_uart.h>
#ifdef BSP_USING_UART1
static struct SerialBus serial_bus_1;
static struct SerialDriver serial_driver_1;
static struct SerialHardwareDevice serial_device_1;
#endif
#ifdef BSP_USING_UART2
static struct SerialBus serial_bus_2;
static struct SerialDriver serial_driver_2;
static struct SerialHardwareDevice serial_device_2;
#endif
static void SerialCfgParamCheck(struct SerialCfgParam *serial_cfg_default, struct SerialCfgParam *serial_cfg_new)
{
struct SerialDataCfg *data_cfg_default = &serial_cfg_default->data_cfg;
struct SerialDataCfg *data_cfg_new = &serial_cfg_new->data_cfg;
if ((data_cfg_default->serial_baud_rate != data_cfg_new->serial_baud_rate) && (data_cfg_new->serial_baud_rate)) {
data_cfg_default->serial_baud_rate = data_cfg_new->serial_baud_rate;
}
if ((data_cfg_default->serial_bit_order != data_cfg_new->serial_bit_order) && (data_cfg_new->serial_bit_order)) {
data_cfg_default->serial_bit_order = data_cfg_new->serial_bit_order;
}
if ((data_cfg_default->serial_buffer_size != data_cfg_new->serial_buffer_size) && (data_cfg_new->serial_buffer_size)) {
data_cfg_default->serial_buffer_size = data_cfg_new->serial_buffer_size;
}
if ((data_cfg_default->serial_data_bits != data_cfg_new->serial_data_bits) && (data_cfg_new->serial_data_bits)) {
data_cfg_default->serial_data_bits = data_cfg_new->serial_data_bits;
}
if ((data_cfg_default->serial_invert_mode != data_cfg_new->serial_invert_mode) && (data_cfg_new->serial_invert_mode)) {
data_cfg_default->serial_invert_mode = data_cfg_new->serial_invert_mode;
}
if ((data_cfg_default->serial_parity_mode != data_cfg_new->serial_parity_mode) && (data_cfg_new->serial_parity_mode)) {
data_cfg_default->serial_parity_mode = data_cfg_new->serial_parity_mode;
}
if ((data_cfg_default->serial_stop_bits != data_cfg_new->serial_stop_bits) && (data_cfg_new->serial_stop_bits)) {
data_cfg_default->serial_stop_bits = data_cfg_new->serial_stop_bits;
}
if ((data_cfg_default->serial_timeout != data_cfg_new->serial_timeout) && (data_cfg_new->serial_timeout)) {
data_cfg_default->serial_timeout = data_cfg_new->serial_timeout;
}
}
static void UartHandler(struct SerialBus *serial_bus, struct SerialDriver *serial_drv)
{
struct SerialHardwareDevice *serial_dev = (struct SerialHardwareDevice *)serial_bus->bus.owner_haldev;
struct SerialCfgParam *serial_cfg = (struct SerialCfgParam *)serial_drv->private_data;
struct Stm32UartHwCfg *serial_hw_cfg = (struct Stm32UartHwCfg *)serial_cfg->hw_cfg.private_data;
/* UART in mode Receiver -------------------------------------------------*/
if ((__HAL_UART_GET_FLAG(&(serial_hw_cfg->uart_handle), UART_FLAG_RXNE) != RESET) &&
(__HAL_UART_GET_IT_SOURCE(&(serial_hw_cfg->uart_handle), UART_IT_RXNE) != RESET))
{
SerialSetIsr(serial_dev, SERIAL_EVENT_RX_IND);
}
else
{
if (__HAL_UART_GET_FLAG(&(serial_hw_cfg->uart_handle), UART_FLAG_ORE) != RESET)
{
__HAL_UART_CLEAR_OREFLAG(&serial_hw_cfg->uart_handle);
}
if (__HAL_UART_GET_FLAG(&(serial_hw_cfg->uart_handle), UART_FLAG_NE) != RESET)
{
__HAL_UART_CLEAR_NEFLAG(&serial_hw_cfg->uart_handle);
}
if (__HAL_UART_GET_FLAG(&(serial_hw_cfg->uart_handle), UART_FLAG_FE) != RESET)
{
__HAL_UART_CLEAR_FEFLAG(&serial_hw_cfg->uart_handle);
}
if (__HAL_UART_GET_FLAG(&(serial_hw_cfg->uart_handle), UART_FLAG_PE) != RESET)
{
__HAL_UART_CLEAR_PEFLAG(&serial_hw_cfg->uart_handle);
}
}
}
#ifdef BSP_USING_UART1
void UartIsr1(int vector, void *param)
{
/* get serial bus 1 */
UartHandler(&serial_bus_1, &serial_driver_1);
}
#endif
#ifdef BSP_USING_UART2
void UartIsr2(int vector, void *param)
{
/* get serial bus 2 */
UartHandler(&serial_bus_2, &serial_driver_2);
}
#endif
static uint32 SerialInit(struct SerialDriver *serial_drv, struct BusConfigureInfo *configure_info)
{
NULL_PARAM_CHECK(serial_drv);
struct SerialCfgParam *serial_cfg = (struct SerialCfgParam *)serial_drv->private_data;
struct Stm32UartHwCfg *serial_hw_cfg = (struct Stm32UartHwCfg *)serial_cfg->hw_cfg.private_data;
if (configure_info->private_data) {
struct SerialCfgParam *serial_cfg_new = (struct SerialCfgParam *)configure_info->private_data;
SerialCfgParamCheck(serial_cfg, serial_cfg_new);
}
struct SerialHardwareDevice *serial_dev = (struct SerialHardwareDevice *)serial_drv->driver.owner_bus->owner_haldev;
struct SerialDevParam *dev_param = (struct SerialDevParam *)serial_dev->haldev.private_data;
// config serial receive sem timeout
dev_param->serial_timeout = serial_cfg->data_cfg.serial_timeout;
serial_hw_cfg->uart_handle.Instance = serial_hw_cfg->uart_device;
serial_hw_cfg->uart_handle.Init.BaudRate = serial_cfg->data_cfg.serial_baud_rate;
serial_hw_cfg->uart_handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
serial_hw_cfg->uart_handle.Init.Mode = UART_MODE_TX_RX;
serial_hw_cfg->uart_handle.Init.OverSampling = UART_OVERSAMPLING_16;
switch (serial_cfg->data_cfg.serial_data_bits)
{
case DATA_BITS_8:
if (serial_cfg->data_cfg.serial_parity_mode == PARITY_ODD || serial_cfg->data_cfg.serial_parity_mode == PARITY_EVEN)
serial_hw_cfg->uart_handle.Init.WordLength = UART_WORDLENGTH_9B;
else
serial_hw_cfg->uart_handle.Init.WordLength = UART_WORDLENGTH_8B;
break;
case DATA_BITS_9:
serial_hw_cfg->uart_handle.Init.WordLength = UART_WORDLENGTH_9B;
break;
default:
serial_hw_cfg->uart_handle.Init.WordLength = UART_WORDLENGTH_8B;
break;
}
switch (serial_cfg->data_cfg.serial_stop_bits)
{
case STOP_BITS_1:
serial_hw_cfg->uart_handle.Init.StopBits = UART_STOPBITS_1;
break;
case STOP_BITS_2:
serial_hw_cfg->uart_handle.Init.StopBits = UART_STOPBITS_2;
break;
default:
serial_hw_cfg->uart_handle.Init.StopBits = UART_STOPBITS_1;
break;
}
switch (serial_cfg->data_cfg.serial_parity_mode)
{
case PARITY_NONE:
serial_hw_cfg->uart_handle.Init.Parity = UART_PARITY_NONE;
break;
case PARITY_ODD:
serial_hw_cfg->uart_handle.Init.Parity = UART_PARITY_ODD;
break;
case PARITY_EVEN:
serial_hw_cfg->uart_handle.Init.Parity = UART_PARITY_EVEN;
break;
default:
serial_hw_cfg->uart_handle.Init.Parity = UART_PARITY_NONE;
break;
}
if (HAL_UART_Init(&serial_hw_cfg->uart_handle) != HAL_OK)
{
return ERROR;
}
return EOK;
}
static uint32 SerialConfigure(struct SerialDriver *serial_drv, int serial_operation_cmd)
{
NULL_PARAM_CHECK(serial_drv);
struct SerialHardwareDevice *serial_dev = (struct SerialHardwareDevice *)serial_drv->driver.owner_bus->owner_haldev;
struct SerialCfgParam *serial_cfg = (struct SerialCfgParam *)serial_drv->private_data;
struct Stm32UartHwCfg *serial_hw_cfg = (struct Stm32UartHwCfg *)serial_cfg->hw_cfg.private_data;
struct SerialDevParam *serial_dev_param = (struct SerialDevParam *)serial_dev->haldev.private_data;
if (OPER_CLR_INT == serial_operation_cmd) {
if (SIGN_OPER_INT_RX & serial_dev_param->serial_work_mode) {
/* disable rx irq */
NVIC_DisableIRQ(serial_hw_cfg->irq_type);
/* disable interrupt */
__HAL_UART_DISABLE_IT(&(serial_hw_cfg->uart_handle), UART_IT_RXNE);
}
} else if (OPER_SET_INT == serial_operation_cmd) {
/* enable rx irq */
HAL_NVIC_SetPriority(serial_hw_cfg->irq_type, 1, 0);
HAL_NVIC_EnableIRQ(serial_hw_cfg->irq_type);
/* enable interrupt */
__HAL_UART_ENABLE_IT(&(serial_hw_cfg->uart_handle), UART_IT_RXNE);
}
return EOK;
}
static uint32 SerialDrvConfigure(void *drv, struct BusConfigureInfo *configure_info)
{
NULL_PARAM_CHECK(drv);
NULL_PARAM_CHECK(configure_info);
x_err_t ret = EOK;
int serial_operation_cmd;
struct SerialDriver *serial_drv = (struct SerialDriver *)drv;
switch (configure_info->configure_cmd)
{
case OPE_INT:
ret = SerialInit(serial_drv, configure_info);
break;
case OPE_CFG:
serial_operation_cmd = *(int *)configure_info->private_data;
ret = SerialConfigure(serial_drv, serial_operation_cmd);
break;
default:
break;
}
return ret;
}
static int SerialPutChar(struct SerialHardwareDevice *serial_dev, char c)
{
struct SerialCfgParam *serial_cfg = (struct SerialCfgParam *)serial_dev->private_data;
struct Stm32UartHwCfg *serial_hw_cfg = (struct Stm32UartHwCfg *)serial_cfg->hw_cfg.private_data;
UART_INSTANCE_CLEAR_FUNCTION(&(serial_hw_cfg->uart_handle), UART_FLAG_TC);
serial_hw_cfg->uart_handle.Instance->DR = c;
while (__HAL_UART_GET_FLAG(&(serial_hw_cfg->uart_handle), UART_FLAG_TC) == RESET);
return EOK;
}
static int SerialGetChar(struct SerialHardwareDevice *serial_dev)
{
struct SerialCfgParam *serial_cfg = (struct SerialCfgParam *)serial_dev->private_data;
struct Stm32UartHwCfg *serial_hw_cfg = (struct Stm32UartHwCfg *)serial_cfg->hw_cfg.private_data;
int ch = -1;
if (__HAL_UART_GET_FLAG(&(serial_hw_cfg->uart_handle), UART_FLAG_RXNE) != RESET)
{
ch = serial_hw_cfg->uart_handle.Instance->DR & 0xff;
}
return ch;
}
static const struct SerialDataCfg data_cfg_init =
{
.serial_baud_rate = BAUD_RATE_115200,
.serial_data_bits = DATA_BITS_8,
.serial_stop_bits = STOP_BITS_1,
.serial_parity_mode = PARITY_NONE,
.serial_bit_order = BIT_ORDER_LSB,
.serial_invert_mode = NRZ_NORMAL,
.serial_buffer_size = SERIAL_RB_BUFSZ,
.serial_timeout = WAITING_FOREVER,
};
/*manage the serial device operations*/
static const struct SerialDrvDone drv_done =
{
.init = SerialInit,
.configure = SerialConfigure,
};
/*manage the serial device hal operations*/
static struct SerialHwDevDone hwdev_done =
{
.put_char = SerialPutChar,
.get_char = SerialGetChar,
};
static int BoardSerialBusInit(struct SerialBus *serial_bus, struct SerialDriver *serial_driver, const char *bus_name, const char *drv_name)
{
x_err_t ret = EOK;
/*Init the serial bus */
ret = SerialBusInit(serial_bus, bus_name);
if (EOK != ret) {
KPrintf("InitHwUart SerialBusInit error %d\n", ret);
return ERROR;
}
/*Init the serial driver*/
ret = SerialDriverInit(serial_driver, drv_name);
if (EOK != ret) {
KPrintf("InitHwUart SerialDriverInit error %d\n", ret);
return ERROR;
}
/*Attach the serial driver to the serial bus*/
ret = SerialDriverAttachToBus(drv_name, bus_name);
if (EOK != ret) {
KPrintf("InitHwUart SerialDriverAttachToBus error %d\n", ret);
return ERROR;
}
return ret;
}
/*Attach the serial device to the serial bus*/
static int BoardSerialDevBend(struct SerialHardwareDevice *serial_device, void *serial_param, const char *bus_name, const char *dev_name)
{
x_err_t ret = EOK;
ret = SerialDeviceRegister(serial_device, serial_param, dev_name);
if (EOK != ret) {
KPrintf("InitHwUart SerialDeviceInit device %s error %d\n", dev_name, ret);
return ERROR;
}
ret = SerialDeviceAttachToBus(dev_name, bus_name);
if (EOK != ret) {
KPrintf("InitHwUart SerialDeviceAttachToBus device %s error %d\n", dev_name, ret);
return ERROR;
}
return ret;
}
int InitHwUart(void)
{
x_err_t ret = EOK;
#ifdef BSP_USING_UART1
memset(&serial_bus_1, 0, sizeof(struct SerialBus));
memset(&serial_driver_1, 0, sizeof(struct SerialDriver));
memset(&serial_device_1, 0, sizeof(struct SerialHardwareDevice));
static struct SerialCfgParam serial_cfg_1;
memset(&serial_cfg_1, 0, sizeof(struct SerialCfgParam));
static struct Stm32UartHwCfg serial_hw_cfg_1;
memset(&serial_hw_cfg_1, 0, sizeof(struct Stm32UartHwCfg));
static struct SerialDevParam serial_dev_param_1;
memset(&serial_dev_param_1, 0, sizeof(struct SerialDevParam));
serial_driver_1.drv_done = &drv_done;
serial_driver_1.configure = &SerialDrvConfigure;
serial_device_1.hwdev_done = &hwdev_done;
serial_cfg_1.data_cfg = data_cfg_init;
serial_cfg_1.hw_cfg.private_data = (void *)&serial_hw_cfg_1;
serial_hw_cfg_1.uart_device = USART1;
serial_hw_cfg_1.irq_type = USART1_IRQn;
serial_driver_1.private_data = (void *)&serial_cfg_1;
serial_dev_param_1.serial_work_mode = SIGN_OPER_INT_RX;
serial_device_1.haldev.private_data = (void *)&serial_dev_param_1;
ret = BoardSerialBusInit(&serial_bus_1, &serial_driver_1, SERIAL_BUS_NAME_1, SERIAL_DRV_NAME_1);
if (EOK != ret) {
KPrintf("InitHwUart uarths error ret %u\n", ret);
return ERROR;
}
ret = BoardSerialDevBend(&serial_device_1, (void *)&serial_cfg_1, SERIAL_BUS_NAME_1, SERIAL_1_DEVICE_NAME_0);
if (EOK != ret) {
KPrintf("InitHwUart uarths error ret %u\n", ret);
return ERROR;
}
#endif
#ifdef BSP_USING_UART2
memset(&serial_bus_2, 0, sizeof(struct SerialBus));
memset(&serial_driver_2, 0, sizeof(struct SerialDriver));
memset(&serial_device_2, 0, sizeof(struct SerialHardwareDevice));
static struct SerialCfgParam serial_cfg_2;
memset(&serial_cfg_2, 0, sizeof(struct SerialCfgParam));
static struct Stm32UartHwCfg serial_hw_cfg_2;
memset(&serial_hw_cfg_2, 0, sizeof(struct Stm32UartHwCfg));
static struct SerialDevParam serial_dev_param_2;
memset(&serial_dev_param_2, 0, sizeof(struct SerialDevParam));
serial_driver_2.drv_done = &drv_done;
serial_driver_2.configure = &SerialDrvConfigure;
serial_device_2.hwdev_done = &hwdev_done;
serial_cfg_2.data_cfg = data_cfg_init;
serial_cfg_2.hw_cfg.private_data = (void *)&serial_hw_cfg_2;
serial_hw_cfg_2.uart_device = USART2;
serial_hw_cfg_2.irq_type = USART2_IRQn;
serial_driver_2.private_data = (void *)&serial_cfg_2;
serial_dev_param_2.serial_work_mode = SIGN_OPER_INT_RX;
serial_device_2.haldev.private_data = (void *)&serial_dev_param_2;
ret = BoardSerialBusInit(&serial_bus_2, &serial_driver_2, SERIAL_BUS_NAME_2, SERIAL_DRV_NAME_2);
if (EOK != ret) {
KPrintf("InitHwUart uarths error ret %u\n", ret);
return ERROR;
}
ret = BoardSerialDevBend(&serial_device_2, (void *)&serial_cfg_2, SERIAL_BUS_NAME_2, SERIAL_2_DEVICE_NAME_0);
if (EOK != ret) {
KPrintf("InitHwUart uarths error ret %u\n", ret);
return ERROR;
}
#endif
return ret;
}

View File

@ -0,0 +1,16 @@
menuconfig BSP_USING_YMODEM
bool "Enable ymodem"
default y
if BSP_USING_YMODEM
config YMODEM_BUS_NAME
string "serial bus 1 name"
default "uart1"
config YMODEM_DRV_NAME
string "serial bus 1 driver name"
default "uart1_drv"
config YMODEM_DEVICE_NAME
string "serial bus 1 device name"
default "uart1_dev1"
endif

View File

@ -0,0 +1,3 @@
SRC_FILES := ymodem.c
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,365 @@
//#include <stdio.h>
//#include <string.h>
#include <ymodem.h>
#include "stm32f1xx_hal.h"
#define Rx_Max 2048
// __STATIC_INLINE void Set_FAULTMASK(uint32_t faultMask)
// {
// register uint32_t __regFaultMask __ASM("faultmask");
// __regFaultMask = (faultMask & (uint32_t)1U);
// }
uint8_t Rx_Flag;
uint16_t Rx_Len;
uint8_t Rx_Buf[Rx_Max] ;
uint8_t flag_reset;
uint64_t NotUpgrade = {0xFFFFFFFFFFFFFFFF};
uint64_t Upgrade = {0xAAAAAAAAAAAAAAAA};
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_rx;
void ymodem_uart_init(void)
{
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_USART1_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_9;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
__HAL_AFIO_REMAP_USART1_ENABLE();
HAL_NVIC_SetPriority(USART1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART1_IRQn);
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA interrupt init */
/* DMA1_Channel5_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel5_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel5_IRQn);
// MX_USART2_UART_Init();
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
// Error_Handler();
}
HAL_UART_Receive_DMA(&huart1, Rx_Buf, Rx_Max);
__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);
}
/* 发送指令 */
void send_command(unsigned char command)
{
HAL_UART_Transmit(&huart1, (uint8_t *)&command,1 , 0xFFFF);
HAL_Delay(10);
}
/**
* @bieaf
*
* @param pageaddr
* @param num
* @return 1
*/
static int Erase_page(uint32_t pageaddr, uint32_t num)
{
HAL_FLASH_Unlock();
/* 擦除FLASH*/
FLASH_EraseInitTypeDef FlashSet;
FlashSet.TypeErase = FLASH_TYPEERASE_PAGES;
FlashSet.PageAddress = pageaddr;
FlashSet.NbPages = num;
/*设置PageError调用擦除函数*/
uint32_t PageError = 0;
if(HAL_FLASHEx_Erase(&FlashSet, &PageError) == HAL_OK){
KPrintf("erase APP2 success\r\n");
}
else{
KPrintf("erase APP2 failed\r\n");
}
HAL_FLASH_Lock();
return 1;
}
/**
* @bieaf
*
* @param addr
* @param buff
* @param word_size
* @return
*/
static void WriteFlash(uint32_t addr, uint32_t * buff, int word_size)
{
/* 1/4解锁FLASH*/
HAL_FLASH_Unlock();
for(int i = 0; i < word_size; i++)
{
/* 3/4对FLASH烧写*/
HAL_FLASH_Program(FLASH_TYPEPROGRAM_WORD, addr + 4 * i, buff[i]);
}
/* 4/4锁住FLASH*/
HAL_FLASH_Lock();
}
/*获取当前地址所在页*/
static uint32_t GetPage(uint32_t Addr)
{
return (Addr - FLASH_BASE) / FLASH_PAGE_SIZE;
}
void InFlashWrite(uint32_t Address, uint64_t data)
{
HAL_FLASH_Unlock();//开锁
uint32_t FirstPage = 0, NbOfPages = 0;
uint32_t PageError = 0;
FLASH_EraseInitTypeDef EraseInitStruct;
FirstPage = GetPage(Address);//首页地址
KPrintf("FirstPage = %d\r\n", FirstPage);
NbOfPages = GetPage(Address+sizeof(data)) - FirstPage + 1;//页数
KPrintf("NbOfPages = %d\r\n", NbOfPages);
EraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES;
EraseInitStruct.PageAddress = Address;
EraseInitStruct.NbPages = NbOfPages;
if (HAL_FLASHEx_Erase(&EraseInitStruct, &PageError) != HAL_OK)
{
KPrintf("ErasePageError\r\n");
}
if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_DOUBLEWORD, Address, data) == HAL_OK)
{
KPrintf("Flash write success\r\n");
}
HAL_FLASH_Lock();//上锁
}
/* 标记升级完成 */
void Set_Update_Down(void)
{
unsigned int update_flag = 0xAAAAAAAA; ///< 对应bootloader的启动步骤
WriteFlash((Application_2_Addr + Application_Size - 4), &update_flag,1 );
}
/* 临时存储的buff */
unsigned char save_buf[128] = {0};
/**
* @bieaf CRC-16
*
* @param addr
* @param num
* @param num CRC
* @return crc CRC的值
*/
#define POLY 0x1021
uint16_t crc16(unsigned char *addr, int num, uint16_t crc)
{
int i;
for (; num > 0; num--) /* Step through bytes in memory */
{
crc = crc ^ (*addr++ << 8); /* Fetch byte from memory, XOR into CRC top byte*/
for (i = 0; i < 8; i++) /* Prepare to rotate 8 bits */
{
if (crc & 0x8000) /* b15 is set... */
crc = (crc << 1) ^ POLY; /* rotate and XOR with polynomic */
else /* b15 is clear... */
crc <<= 1; /* just rotate */
} /* Loop for 8 bits */
crc &= 0xFFFF; /* Ensure CRC remains 16-bit value */
} /* Loop until num=0 */
return(crc); /* Return updated CRC */
}
/**
* @bieaf , 便
*
* @param buf
* @param len
* @return
*/
unsigned char Check_CRC(unsigned char* buf, int len)
{
unsigned short crc = 0;
/* 进行CRC校验 */
if((buf[0]==0x00)&&(len >= 133))
{
crc = crc16(buf+3, 128, crc);
if(crc != (buf[131]<<8|buf[132]))
{
return 0;///< 没通过校验
}
/* 通过校验 */
return 1;
}
}
/* 设置升级的步骤 */
static enum UPDATE_STATE update_state = TO_START;
void Set_state(enum UPDATE_STATE state)
{
update_state = state;
}
/* 查询升级的步骤 */
unsigned char Get_state(void)
{
return update_state;
}
unsigned char temp_buf[512] = {0};
uint16_t temp_len = 0;
/**
* @bieaf YModem升级
*
* @param none
* @return none
*/
void ymodem_fun(void)
{
int i;
KPrintf("in ymodem func\n");
ymodem_uart_init();
if(Get_state()==TO_START)
{
KPrintf("in ymodem wait\n");
send_command(CCC);
HAL_Delay(1000);
}
if(Rx_Flag) // Receive flag
{
Rx_Flag=0; // clean flag
/* 拷贝 */
temp_len = Rx_Len;
KPrintf("---Rx-len: %#x--------:\r\n", Rx_Len);
for(i = 0; i < temp_len; i++)
{
temp_buf[i] = Rx_Buf[i];
}
switch(temp_buf[0])
{
case SOH:///<数据包开始
{
static unsigned char data_state = 0;
static unsigned int app2_size = 0;
if(Check_CRC(temp_buf, temp_len)==1)///< 通过CRC16校验
{
if((Get_state()==TO_START)&&(temp_buf[1] == 0x00)&&(temp_buf[2] == (unsigned char)(~temp_buf[1])))///< 开始
{
KPrintf("> Receive start...\r\n");
Set_state(TO_RECEIVE_DATA);
data_state = 0x01;
send_command(ACK);
send_command(CCC);
KPrintf("1111111111\r\n");
/* 擦除App2 */
Erase_page(Application_2_Addr, Application_Size/1024); // 要擦除100页
KPrintf("2222222222\r\n");
}
else if((Get_state()==TO_RECEIVE_END)&&(temp_buf[1] == 0x00)&&(temp_buf[2] == (unsigned char)(~temp_buf[1])))///< 结束
{
KPrintf("> Receive end...\r\n");
InFlashWrite(UPGRADE_FLAG_ADDR, Upgrade); //将升级标志设置为升级
KPrintf("33333333333\r\n");
Set_state(TO_START);
KPrintf("44444444444\r\n");
send_command(ACK);
KPrintf("55555555555\r\n");
HAL_NVIC_SystemReset();
}
else if((Get_state()==TO_RECEIVE_DATA)&&(temp_buf[1] == data_state)&&(temp_buf[2] == (unsigned char)(~temp_buf[1])))///< 接收数据
{
KPrintf("> Receive data bag:%d byte\r\n",data_state * 128);
/* 烧录程序 */
WriteFlash((Application_2_Addr + (data_state-1) * 128), (uint32_t *)(&temp_buf[3]), 32);
data_state++;
send_command(ACK);
}
}
else
{
KPrintf("> Notpass crc\r\n");
}
}break;
case EOT://数据包开始
{
if(Get_state()==TO_RECEIVE_DATA)
{
KPrintf("> Receive EOT1...\r\n");
Set_state(TO_RECEIVE_EOT2);
send_command(NACK);
}
else if(Get_state()==TO_RECEIVE_EOT2)
{
KPrintf("> Receive EOT2...\r\n");
Set_state(TO_RECEIVE_END);
send_command(ACK);
send_command(CCC);
}
else
{
KPrintf("> Receive EOT, But error...\r\n");
}
}break;
}
}
}

View File

@ -38,9 +38,9 @@ struct Stm32UartHwCfg
IRQn_Type irq_type;
};
#define KERNEL_CONSOLE_BUS_NAME SERIAL_BUS_NAME_1
#define KERNEL_CONSOLE_DRV_NAME SERIAL_DRV_NAME_1
#define KERNEL_CONSOLE_DEVICE_NAME SERIAL_1_DEVICE_NAME_0
#define KERNEL_CONSOLE_BUS_NAME SERIAL_BUS_NAME_2
#define KERNEL_CONSOLE_DRV_NAME SERIAL_DRV_NAME_2
#define KERNEL_CONSOLE_DEVICE_NAME SERIAL_2_DEVICE_NAME_0
int InitHwUart(void);

View File

@ -0,0 +1,43 @@
#ifndef YMODEM_H
#define YMODEM_H
#include <stm32f1xx_hal.h>
#include <stm32f1xx_hal_flash.h>
#include <stm32f1xx_hal_flash_ex.h>
/*=====用户配置(根据自己的分区进行配置)=====*/
#define BootLoader_Size 0x4000U ///< BootLoader的大小 16K
#define Application_Size 0xc000U ///< 应用程序的大小 48K
#define Application_1_Addr 0x08004000U ///< 应用程序1的首地址
#define Application_2_Addr 0x08010000U ///< 应用程序2的首地址
/*==========================================*/
#define UPGRADE_FLAG_ADDR ((uint32_t)0x0801FD00)
#define SOH 0x01
#define STX 0x02
#define ACK 0x06
#define NACK 0x15
#define EOT 0x04
#define CCC 0x43
/* 升级的步骤 */
enum UPDATE_STATE
{
TO_START = 0x01,
TO_RECEIVE_DATA = 0x02,
TO_RECEIVE_EOT1 = 0x03,
TO_RECEIVE_EOT2 = 0x04,
TO_RECEIVE_END = 0x05
};
void ymodem_fun(void);
#endif /* YMODEM_H */

View File

@ -1,3 +1,3 @@
SRC_FILES := stm32f1xx_hal.c stm32f1xx_hal_uart.c stm32f1xx_hal_usart.c stm32f1xx_hal_cortex.c stm32f1xx_hal_rcc.c stm32f1xx_hal_rcc_ex.c stm32f1xx_hal_gpio.c stm32f1xx_hal_msp.c
SRC_FILES := stm32f1xx_hal.c stm32f1xx_hal_uart.c stm32f1xx_hal_usart.c stm32f1xx_hal_cortex.c stm32f1xx_hal_rcc.c stm32f1xx_hal_rcc_ex.c stm32f1xx_hal_gpio.c stm32f1xx_hal_msp.c stm32f1xx_hal_flash.c stm32f1xx_hal_flash_ex.c stm32f1xx_hal_dma.c
include $(KERNEL_ROOT)/compiler.mk

View File

@ -0,0 +1,964 @@
/**
******************************************************************************
* @file stm32f1xx_hal_flash.c
* @author MCD Application Team
* @brief FLASH HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the internal FLASH memory:
* + Program operations functions
* + Memory Control functions
* + Peripheral State functions
*
@verbatim
==============================================================================
##### FLASH peripheral features #####
==============================================================================
[..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses
to the Flash memory. It implements the erase and program Flash memory operations
and the read and write protection mechanisms.
[..] The Flash memory interface accelerates code execution with a system of instruction
prefetch.
[..] The FLASH main features are:
(+) Flash memory read operations
(+) Flash memory program/erase operations
(+) Read / write protections
(+) Prefetch on I-Code
(+) Option Bytes programming
##### How to use this driver #####
==============================================================================
[..]
This driver provides functions and macros to configure and program the FLASH
memory of all STM32F1xx devices.
(#) FLASH Memory I/O Programming functions: this group includes all needed
functions to erase and program the main memory:
(++) Lock and Unlock the FLASH interface
(++) Erase function: Erase page, erase all pages
(++) Program functions: half word, word and doubleword
(#) FLASH Option Bytes Programming functions: this group includes all needed
functions to manage the Option Bytes:
(++) Lock and Unlock the Option Bytes
(++) Set/Reset the write protection
(++) Set the Read protection Level
(++) Program the user Option Bytes
(++) Launch the Option Bytes loader
(++) Erase Option Bytes
(++) Program the data Option Bytes
(++) Get the Write protection.
(++) Get the user option bytes.
(#) Interrupts and flags management functions : this group
includes all needed functions to:
(++) Handle FLASH interrupts
(++) Wait for last FLASH operation according to its status
(++) Get error flag status
[..] In addition to these function, this driver includes a set of macros allowing
to handle the following operations:
(+) Set/Get the latency
(+) Enable/Disable the prefetch buffer
(+) Enable/Disable the half cycle access
(+) Enable/Disable the FLASH interrupts
(+) Monitor the FLASH flags status
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2016 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"
/** @addtogroup STM32F1xx_HAL_Driver
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
/** @defgroup FLASH FLASH
* @brief FLASH HAL module driver
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup FLASH_Private_Constants FLASH Private Constants
* @{
*/
/**
* @}
*/
/* Private macro ---------------------------- ---------------------------------*/
/** @defgroup FLASH_Private_Macros FLASH Private Macros
* @{
*/
/**
* @}
*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup FLASH_Private_Variables FLASH Private Variables
* @{
*/
/* Variables used for Erase pages under interruption*/
FLASH_ProcessTypeDef pFlash;
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup FLASH_Private_Functions FLASH Private Functions
* @{
*/
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data);
static void FLASH_SetErrorCode(void);
extern void FLASH_PageErase(uint32_t PageAddress);
/**
* @}
*/
/* Exported functions ---------------------------------------------------------*/
/** @defgroup FLASH_Exported_Functions FLASH Exported Functions
* @{
*/
/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions
* @brief Programming operation functions
*
@verbatim
@endverbatim
* @{
*/
/**
* @brief Program halfword, word or double word at a specified address
* @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
* The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
*
* @note If an erase and a program operations are requested simultaneously,
* the erase operation is performed before the program one.
*
* @note FLASH should be previously erased before new programmation (only exception to this
* is when 0x0000 is programmed)
*
* @param TypeProgram: Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_Type_Program
* @param Address: Specifies the address to be programmed.
* @param Data: Specifies the data to be programmed
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status = HAL_ERROR;
uint8_t index = 0;
uint8_t nbiterations = 0;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
#if defined(FLASH_BANK2_END)
if(Address <= FLASH_BANK1_END)
{
#endif /* FLASH_BANK2_END */
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
#if defined(FLASH_BANK2_END)
}
else
{
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperationBank2(FLASH_TIMEOUT_VALUE);
}
#endif /* FLASH_BANK2_END */
if(status == HAL_OK)
{
if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
{
/* Program halfword (16-bit) at a specified address. */
nbiterations = 1U;
}
else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
{
/* Program word (32-bit = 2*16-bit) at a specified address. */
nbiterations = 2U;
}
else
{
/* Program double word (64-bit = 4*16-bit) at a specified address. */
nbiterations = 4U;
}
for (index = 0U; index < nbiterations; index++)
{
FLASH_Program_HalfWord((Address + (2U*index)), (uint16_t)(Data >> (16U*index)));
#if defined(FLASH_BANK2_END)
if(Address <= FLASH_BANK1_END)
{
#endif /* FLASH_BANK2_END */
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
/* If the program operation is completed, disable the PG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
#if defined(FLASH_BANK2_END)
}
else
{
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperationBank2(FLASH_TIMEOUT_VALUE);
/* If the program operation is completed, disable the PG Bit */
CLEAR_BIT(FLASH->CR2, FLASH_CR2_PG);
}
#endif /* FLASH_BANK2_END */
/* In case of error, stop programation procedure */
if (status != HAL_OK)
{
break;
}
}
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
return status;
}
/**
* @brief Program halfword, word or double word at a specified address with interrupt enabled.
* @note The function HAL_FLASH_Unlock() should be called before to unlock the FLASH interface
* The function HAL_FLASH_Lock() should be called after to lock the FLASH interface
*
* @note If an erase and a program operations are requested simultaneously,
* the erase operation is performed before the program one.
*
* @param TypeProgram: Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_Type_Program
* @param Address: Specifies the address to be programmed.
* @param Data: Specifies the data to be programmed
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status = HAL_OK;
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
#if defined(FLASH_BANK2_END)
/* If procedure already ongoing, reject the next one */
if (pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
{
return HAL_ERROR;
}
if(Address <= FLASH_BANK1_END)
{
/* Enable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP_BANK1 | FLASH_IT_ERR_BANK1);
}else
{
/* Enable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP_BANK2 | FLASH_IT_ERR_BANK2);
}
#else
/* Enable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_ENABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
#endif /* FLASH_BANK2_END */
pFlash.Address = Address;
pFlash.Data = Data;
if(TypeProgram == FLASH_TYPEPROGRAM_HALFWORD)
{
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMHALFWORD;
/* Program halfword (16-bit) at a specified address. */
pFlash.DataRemaining = 1U;
}
else if(TypeProgram == FLASH_TYPEPROGRAM_WORD)
{
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMWORD;
/* Program word (32-bit : 2*16-bit) at a specified address. */
pFlash.DataRemaining = 2U;
}
else
{
pFlash.ProcedureOnGoing = FLASH_PROC_PROGRAMDOUBLEWORD;
/* Program double word (64-bit : 4*16-bit) at a specified address. */
pFlash.DataRemaining = 4U;
}
/* Program halfword (16-bit) at a specified address. */
FLASH_Program_HalfWord(Address, (uint16_t)Data);
return status;
}
/**
* @brief This function handles FLASH interrupt request.
* @retval None
*/
void HAL_FLASH_IRQHandler(void)
{
uint32_t addresstmp = 0U;
/* Check FLASH operation error flags */
#if defined(FLASH_BANK2_END)
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK1) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK1) || \
(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2)))
#else
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
#endif /* FLASH_BANK2_END */
{
/* Return the faulty address */
addresstmp = pFlash.Address;
/* Reset address */
pFlash.Address = 0xFFFFFFFFU;
/* Save the Error code */
FLASH_SetErrorCode();
/* FLASH error interrupt user callback */
HAL_FLASH_OperationErrorCallback(addresstmp);
/* Stop the procedure ongoing */
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
/* Check FLASH End of Operation flag */
#if defined(FLASH_BANK2_END)
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP_BANK1))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK1);
#else
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
#endif /* FLASH_BANK2_END */
/* Process can continue only if no error detected */
if(pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
{
if(pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE)
{
/* Nb of pages to erased can be decreased */
pFlash.DataRemaining--;
/* Check if there are still pages to erase */
if(pFlash.DataRemaining != 0U)
{
addresstmp = pFlash.Address;
/*Indicate user which sector has been erased */
HAL_FLASH_EndOfOperationCallback(addresstmp);
/*Increment sector number*/
addresstmp = pFlash.Address + FLASH_PAGE_SIZE;
pFlash.Address = addresstmp;
/* If the erase operation is completed, disable the PER Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PER);
FLASH_PageErase(addresstmp);
}
else
{
/* No more pages to Erase, user callback can be called. */
/* Reset Sector and stop Erase pages procedure */
pFlash.Address = addresstmp = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(addresstmp);
}
}
else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
{
/* Operation is completed, disable the MER Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_MER);
#if defined(FLASH_BANK2_END)
/* Stop Mass Erase procedure if no pending mass erase on other bank */
if (HAL_IS_BIT_CLR(FLASH->CR2, FLASH_CR2_MER))
{
#endif /* FLASH_BANK2_END */
/* MassErase ended. Return the selected bank */
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(0U);
/* Stop Mass Erase procedure*/
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
#if defined(FLASH_BANK2_END)
}
#endif /* FLASH_BANK2_END */
else
{
/* Nb of 16-bit data to program can be decreased */
pFlash.DataRemaining--;
/* Check if there are still 16-bit data to program */
if(pFlash.DataRemaining != 0U)
{
/* Increment address to 16-bit */
pFlash.Address += 2U;
addresstmp = pFlash.Address;
/* Shift to have next 16-bit data */
pFlash.Data = (pFlash.Data >> 16U);
/* Operation is completed, disable the PG Bit */
CLEAR_BIT(FLASH->CR, FLASH_CR_PG);
/*Program halfword (16-bit) at a specified address.*/
FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
}
else
{
/* Program ended. Return the selected address */
/* FLASH EOP interrupt user callback */
if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD)
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
}
else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD)
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address - 2U);
}
else
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address - 6U);
}
/* Reset Address and stop Program procedure */
pFlash.Address = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
}
}
}
#if defined(FLASH_BANK2_END)
/* Check FLASH End of Operation flag */
if(__HAL_FLASH_GET_FLAG( FLASH_FLAG_EOP_BANK2))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK2);
/* Process can continue only if no error detected */
if(pFlash.ProcedureOnGoing != FLASH_PROC_NONE)
{
if(pFlash.ProcedureOnGoing == FLASH_PROC_PAGEERASE)
{
/* Nb of pages to erased can be decreased */
pFlash.DataRemaining--;
/* Check if there are still pages to erase*/
if(pFlash.DataRemaining != 0U)
{
/* Indicate user which page address has been erased*/
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
/* Increment page address to next page */
pFlash.Address += FLASH_PAGE_SIZE;
addresstmp = pFlash.Address;
/* Operation is completed, disable the PER Bit */
CLEAR_BIT(FLASH->CR2, FLASH_CR2_PER);
FLASH_PageErase(addresstmp);
}
else
{
/*No more pages to Erase*/
/*Reset Address and stop Erase pages procedure*/
pFlash.Address = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
}
}
else if(pFlash.ProcedureOnGoing == FLASH_PROC_MASSERASE)
{
/* Operation is completed, disable the MER Bit */
CLEAR_BIT(FLASH->CR2, FLASH_CR2_MER);
if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_MER))
{
/* MassErase ended. Return the selected bank*/
/* FLASH EOP interrupt user callback */
HAL_FLASH_EndOfOperationCallback(0U);
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
}
else
{
/* Nb of 16-bit data to program can be decreased */
pFlash.DataRemaining--;
/* Check if there are still 16-bit data to program */
if(pFlash.DataRemaining != 0U)
{
/* Increment address to 16-bit */
pFlash.Address += 2U;
addresstmp = pFlash.Address;
/* Shift to have next 16-bit data */
pFlash.Data = (pFlash.Data >> 16U);
/* Operation is completed, disable the PG Bit */
CLEAR_BIT(FLASH->CR2, FLASH_CR2_PG);
/*Program halfword (16-bit) at a specified address.*/
FLASH_Program_HalfWord(addresstmp, (uint16_t)pFlash.Data);
}
else
{
/*Program ended. Return the selected address*/
/* FLASH EOP interrupt user callback */
if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMHALFWORD)
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address);
}
else if (pFlash.ProcedureOnGoing == FLASH_PROC_PROGRAMWORD)
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address-2U);
}
else
{
HAL_FLASH_EndOfOperationCallback(pFlash.Address-6U);
}
/* Reset Address and stop Program procedure*/
pFlash.Address = 0xFFFFFFFFU;
pFlash.ProcedureOnGoing = FLASH_PROC_NONE;
}
}
}
}
#endif
if(pFlash.ProcedureOnGoing == FLASH_PROC_NONE)
{
#if defined(FLASH_BANK2_END)
/* Operation is completed, disable the PG, PER and MER Bits for both bank */
CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
CLEAR_BIT(FLASH->CR2, (FLASH_CR2_PG | FLASH_CR2_PER | FLASH_CR2_MER));
/* Disable End of FLASH Operation and Error source interrupts for both banks */
__HAL_FLASH_DISABLE_IT(FLASH_IT_EOP_BANK1 | FLASH_IT_ERR_BANK1 | FLASH_IT_EOP_BANK2 | FLASH_IT_ERR_BANK2);
#else
/* Operation is completed, disable the PG, PER and MER Bits */
CLEAR_BIT(FLASH->CR, (FLASH_CR_PG | FLASH_CR_PER | FLASH_CR_MER));
/* Disable End of FLASH Operation and Error source interrupts */
__HAL_FLASH_DISABLE_IT(FLASH_IT_EOP | FLASH_IT_ERR);
#endif /* FLASH_BANK2_END */
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
}
}
/**
* @brief FLASH end of operation interrupt callback
* @param ReturnValue: The value saved in this parameter depends on the ongoing procedure
* - Mass Erase: No return value expected
* - Pages Erase: Address of the page which has been erased
* (if 0xFFFFFFFF, it means that all the selected pages have been erased)
* - Program: Address which was selected for data program
* @retval none
*/
__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FLASH_EndOfOperationCallback could be implemented in the user file
*/
}
/**
* @brief FLASH operation error interrupt callback
* @param ReturnValue: The value saved in this parameter depends on the ongoing procedure
* - Mass Erase: No return value expected
* - Pages Erase: Address of the page which returned an error
* - Program: Address which was selected for data program
* @retval none
*/
__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function Should not be modified, when the callback is needed,
the HAL_FLASH_OperationErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions
* @brief management functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the FLASH
memory operations.
@endverbatim
* @{
*/
/**
* @brief Unlock the FLASH control register access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Unlock(void)
{
HAL_StatusTypeDef status = HAL_OK;
if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET)
{
/* Authorize the FLASH Registers access */
WRITE_REG(FLASH->KEYR, FLASH_KEY1);
WRITE_REG(FLASH->KEYR, FLASH_KEY2);
/* Verify Flash is unlocked */
if(READ_BIT(FLASH->CR, FLASH_CR_LOCK) != RESET)
{
status = HAL_ERROR;
}
}
#if defined(FLASH_BANK2_END)
if(READ_BIT(FLASH->CR2, FLASH_CR2_LOCK) != RESET)
{
/* Authorize the FLASH BANK2 Registers access */
WRITE_REG(FLASH->KEYR2, FLASH_KEY1);
WRITE_REG(FLASH->KEYR2, FLASH_KEY2);
/* Verify Flash BANK2 is unlocked */
if(READ_BIT(FLASH->CR2, FLASH_CR2_LOCK) != RESET)
{
status = HAL_ERROR;
}
}
#endif /* FLASH_BANK2_END */
return status;
}
/**
* @brief Locks the FLASH control register access
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Lock(void)
{
/* Set the LOCK Bit to lock the FLASH Registers access */
SET_BIT(FLASH->CR, FLASH_CR_LOCK);
#if defined(FLASH_BANK2_END)
/* Set the LOCK Bit to lock the FLASH BANK2 Registers access */
SET_BIT(FLASH->CR2, FLASH_CR2_LOCK);
#endif /* FLASH_BANK2_END */
return HAL_OK;
}
/**
* @brief Unlock the FLASH Option Control Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void)
{
if (HAL_IS_BIT_CLR(FLASH->CR, FLASH_CR_OPTWRE))
{
/* Authorizes the Option Byte register programming */
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1);
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2);
}
else
{
return HAL_ERROR;
}
return HAL_OK;
}
/**
* @brief Lock the FLASH Option Control Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Lock(void)
{
/* Clear the OPTWRE Bit to lock the FLASH Option Byte Registers access */
CLEAR_BIT(FLASH->CR, FLASH_CR_OPTWRE);
return HAL_OK;
}
/**
* @brief Launch the option byte loading.
* @note This function will reset automatically the MCU.
* @retval None
*/
void HAL_FLASH_OB_Launch(void)
{
/* Initiates a system reset request to launch the option byte loading */
HAL_NVIC_SystemReset();
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group3 Peripheral errors functions
* @brief Peripheral errors functions
*
@verbatim
===============================================================================
##### Peripheral Errors functions #####
===============================================================================
[..]
This subsection permit to get in run-time errors of the FLASH peripheral.
@endverbatim
* @{
*/
/**
* @brief Get the specific FLASH error flag.
* @retval FLASH_ErrorCode The returned value can be:
* @ref FLASH_Error_Codes
*/
uint32_t HAL_FLASH_GetError(void)
{
return pFlash.ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/** @addtogroup FLASH_Private_Functions
* @{
*/
/**
* @brief Program a half-word (16-bit) at a specified address.
* @param Address specify the address to be programmed.
* @param Data specify the data to be programmed.
* @retval None
*/
static void FLASH_Program_HalfWord(uint32_t Address, uint16_t Data)
{
/* Clean the error context */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
#if defined(FLASH_BANK2_END)
if(Address <= FLASH_BANK1_END)
{
#endif /* FLASH_BANK2_END */
/* Proceed to program the new data */
SET_BIT(FLASH->CR, FLASH_CR_PG);
#if defined(FLASH_BANK2_END)
}
else
{
/* Proceed to program the new data */
SET_BIT(FLASH->CR2, FLASH_CR2_PG);
}
#endif /* FLASH_BANK2_END */
/* Write data in the address */
*(__IO uint16_t*)Address = Data;
}
/**
* @brief Wait for a FLASH operation to complete.
* @param Timeout maximum flash operation timeout
* @retval HAL Status
*/
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout)
{
/* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
Even if the FLASH operation fails, the BUSY flag will be reset and an error
flag will be set */
uint32_t tickstart = HAL_GetTick();
while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY))
{
if (Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
{
return HAL_TIMEOUT;
}
}
}
/* Check FLASH End of Operation flag */
if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP);
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) ||
__HAL_FLASH_GET_FLAG(FLASH_FLAG_OPTVERR) ||
__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
{
/*Save the error code*/
FLASH_SetErrorCode();
return HAL_ERROR;
}
/* There is no error flag set */
return HAL_OK;
}
#if defined(FLASH_BANK2_END)
/**
* @brief Wait for a FLASH BANK2 operation to complete.
* @param Timeout maximum flash operation timeout
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef FLASH_WaitForLastOperationBank2(uint32_t Timeout)
{
/* Wait for the FLASH BANK2 operation to complete by polling on BUSY flag to be reset.
Even if the FLASH BANK2 operation fails, the BUSY flag will be reset and an error
flag will be set */
uint32_t tickstart = HAL_GetTick();
while(__HAL_FLASH_GET_FLAG(FLASH_FLAG_BSY_BANK2))
{
if (Timeout != HAL_MAX_DELAY)
{
if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
{
return HAL_TIMEOUT;
}
}
}
/* Check FLASH End of Operation flag */
if (__HAL_FLASH_GET_FLAG(FLASH_FLAG_EOP_BANK2))
{
/* Clear FLASH End of Operation pending bit */
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_EOP_BANK2);
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2))
{
/*Save the error code*/
FLASH_SetErrorCode();
return HAL_ERROR;
}
/* If there is an error flag set */
return HAL_OK;
}
#endif /* FLASH_BANK2_END */
/**
* @brief Set the specific FLASH error flag.
* @retval None
*/
static void FLASH_SetErrorCode(void)
{
uint32_t flags = 0U;
#if defined(FLASH_BANK2_END)
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR_BANK2))
#else
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_WRPERR))
#endif /* FLASH_BANK2_END */
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_WRP;
#if defined(FLASH_BANK2_END)
flags |= FLASH_FLAG_WRPERR | FLASH_FLAG_WRPERR_BANK2;
#else
flags |= FLASH_FLAG_WRPERR;
#endif /* FLASH_BANK2_END */
}
#if defined(FLASH_BANK2_END)
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR) || __HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR_BANK2))
#else
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_PGERR))
#endif /* FLASH_BANK2_END */
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_PROG;
#if defined(FLASH_BANK2_END)
flags |= FLASH_FLAG_PGERR | FLASH_FLAG_PGERR_BANK2;
#else
flags |= FLASH_FLAG_PGERR;
#endif /* FLASH_BANK2_END */
}
if(__HAL_FLASH_GET_FLAG(FLASH_FLAG_OPTVERR))
{
pFlash.ErrorCode |= HAL_FLASH_ERROR_OPTV;
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_OPTVERR);
}
/* Clear FLASH error pending bits */
__HAL_FLASH_CLEAR_FLAG(flags);
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_FLASH_MODULE_ENABLED */
/**
* @}
*/

View File

@ -446,6 +446,25 @@ void HAL_UART_MspInit(UART_HandleTypeDef* huart)
/* USER CODE BEGIN USART1_MspInit 1 */
/* USER CODE END USART1_MspInit 1 */
}
else if(huart->Instance==USART2)// yunji usart2 for console
{
__HAL_RCC_USART2_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA3 ------> USART2_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
HAL_NVIC_SetPriority(USART2_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
}
}
@ -477,6 +496,12 @@ void HAL_UART_MspDeInit(UART_HandleTypeDef* huart)
/* USER CODE BEGIN USART1_MspDeInit 1 */
/* USER CODE END USART1_MspDeInit 1 */
}
else if(huart->Instance==USART2)
{
__HAL_RCC_USART1_CLK_DISABLE();
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_2|GPIO_PIN_3);
HAL_NVIC_DisableIRQ(USART2_IRQn);
}
}

View File

@ -44,7 +44,7 @@ void ShowBanner(void)
KPrintf("A:::::A A:::::A i::::::i II:::::::::II II:::::::::II T:::::::::::::::TT \n");
KPrintf("AAAAAAA AAAAAAA iiiiiiii IIIIIIIII IIIIIIIII TTTTTTTTTTTTTTT \n");
KPrintf("*********************************************************************************************\n");
KPrintf("*********************-----X Industrial Ubiquitous Operating System-----**********************\n");
KPrintf("*********************-----X Industrial Ubiquitous Operating System-APP-**********************\n");
KPrintf("***************************2021 Copyright AIIT Ubiquitous-OS Team****************************\n");
KPrintf("*********************************************************************************************\n");
}

View File

@ -252,6 +252,7 @@ extern int InitUserspace(void);
#endif
StartupOsAssign();
ymodem_fun();
return 0;
}

View File

@ -49,6 +49,15 @@ static void ZombieKTaskEntry(void *parameter)
lock = CriticalAreaLock();
if (JudgeZombieKTaskIsNotEmpty()) {
task = SYS_DOUBLE_LINKLIST_ENTRY(KTaskZombie.node_next, struct TaskDescriptor, task_dync_sched_member.sched_link);
if(0 == strcmp("main", task->task_base_info.name))
{
// KPrintf("Zombie KTask Is main\n");
SuspendKTask(zombie_recycle);
CriticalAreaUnLock(lock);
DO_KTASK_ASSIGN;
}
else
{
DoubleLinkListRmNode(&(task->task_dync_sched_member.sched_link));
CriticalAreaUnLock(lock);
#ifdef SEPARATE_COMPILE
@ -72,6 +81,7 @@ static void ZombieKTaskEntry(void *parameter)
KERNEL_FREE(task->task_dync_sched_member.delay);
}
KERNEL_FREE(task);
}
} else {
SuspendKTask(zombie_recycle);
CriticalAreaUnLock(lock);