Add schedule node

This commit is contained in:
TXuian 2024-12-24 02:28:20 +08:00
parent 21304531a5
commit af1ceec308
14 changed files with 110 additions and 147 deletions

View File

@ -73,7 +73,7 @@ Modification:
#include "cortex_a55.h"
#define NR_CPU 1 // maximum number of CPUs
#define NR_CPU 4 // maximum number of CPUs
static inline uintptr_t arch_curr_tick()
{

View File

@ -33,13 +33,14 @@ typedef struct RbtTree {
int nr_ele;
} RbtTree;
typedef void(rbt_traverse_fn)(RbtNode* node);
// return if the traverse needs to continue
typedef bool(rbt_traverse_fn)(RbtNode* node, void* data);
void rbtree_init(RbtTree* tree);
int rbt_insert(RbtTree* tree, uintptr_t key, void* data);
RbtNode* rbt_search(RbtTree* tree, uintptr_t key);
int rbt_delete(RbtTree* tree, uintptr_t key);
void rbt_traverse(RbtTree* tree, rbt_traverse_fn fn);
void rbt_traverse(RbtTree* tree, rbt_traverse_fn fn, void* data);
void module_rbt_factory_init(TraceTag* _softkernel_tag);

View File

@ -9,13 +9,13 @@
typedef uintptr_t snode_id_t;
enum ThreadState {
INIT = 0,
NEVER_RUN = 0,
INIT,
READY,
RUNNING,
DEAD,
BLOCKED,
SLEEPING,
NEVER_RUN,
NR_STATE,
};

View File

@ -49,6 +49,8 @@ Modification:
#define TASK_NAME_MAX_LEN 16
#define SLEEP_MONITOR_CORE 0
typedef int tid_t;
/* Thread Control Block */
struct ThreadContext {
struct Thread* task; // process of current thread
@ -95,12 +97,6 @@ struct Thread {
bool advance_unblock; // @todo abandon
/* task schedule attributes */
// struct double_list_node node;
// struct TaskSleepContext sleep_context;
// enum ThreadState state;
// int priority; // priority
// int remain_tick;
// int maxium_tick;
struct ScheduleNode snode;
};

View File

@ -27,53 +27,36 @@ Author: AIIT XUOS Lab
Modification:
1. first version
*************************************************/
#include "task.h"
#include "trap_common.h"
#include "task.h"
static bool kill_succ;
static bool kill_task(RbtNode* node, void* id)
{
struct ScheduleNode* snode = (struct ScheduleNode*)node->data;
struct Thread* thd = snode->pthd;
tid_t target_id = *(tid_t*)id;
if (thd->tid == target_id) {
sys_exit(thd);
kill_succ = true;
return false;
}
return true;
}
extern int sys_exit(struct Thread* task);
int sys_kill(int id)
{
struct Thread* task = NULL;
// check if task is a running one
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_running_list_head, node)
{
if (task->tid == id) {
sys_exit(task);
return 0;
}
kill_succ = false;
for (int pool_id = 0; pool_id < NR_STATE; pool_id++) {
rbt_traverse(&g_scheduler.snode_state_pool[pool_id], kill_task, (void*)&id);
}
// check if task is a blocking one
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_blocked_list_head, node)
{
if (task->tid == id) {
sys_exit(task);
return 0;
}
if (kill_succ) {
return 0;
}
struct ksemaphore* sem = NULL;
DOUBLE_LIST_FOR_EACH_ENTRY(sem, &xizi_task_manager.semaphore_pool.sem_list_guard, sem_list_node)
{
task = NULL;
DOUBLE_LIST_FOR_EACH_ENTRY(task, &sem->wait_list_guard, node)
{
sys_exit(task);
return 0;
}
}
// check if task is a ready one
for (int prio = 0; prio < TASK_MAX_PRIORITY; prio++) {
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_list_head[prio], node)
{
if (task->tid == id) {
sys_exit(task);
return 0;
}
}
}
return -1;
}

View File

@ -118,8 +118,8 @@ int sys_mmap_v2(uintptr_t* vaddr, uintptr_t* paddr, int len, sys_mmap_info* info
}
uintptr_t paddr_to_map = *paddr;
if (paddr_to_map >= PHY_MEM_BASE && paddr_to_map < PHY_MEM_STOP && cur_task->tid > 1) {
ERROR("mapping invalid memory: 0x%p\n", paddr_to_map);
if (paddr_to_map >= PHY_MEM_BASE && paddr_to_map < PHY_MEM_STOP && cur_task->tid > 2) {
ERROR("mapping invalid memory: 0x%p by %d\n", paddr_to_map, cur_task->tid);
return -1;
}

View File

@ -114,7 +114,7 @@ int sys_poll_session(struct Session* userland_session_arr, int arr_capacity)
if (queue_is_empty(&cur_task->sessions_in_handle) && queue_is_empty(&cur_task->sessions_to_be_handle)) {
task_yield(cur_task);
// @todo support blocking(now bug at 4 cores running)
// xizi_task_manager.task_block(&xizi_task_manager.task_blocked_list_head, cur_task);
task_block(cur_task);
}
return 0;
}

View File

@ -126,7 +126,9 @@ int sys_register_irq(int irq_num, int irq_opcode)
struct TaskLifecycleOperations* tlo = GetSysObject(struct TaskLifecycleOperations, &xizi_task_manager.task_lifecycle_ops_tag);
kernel_irq_proxy = tlo->new_thread(pmemspace);
kernel_irq_proxy->snode.state = NEVER_RUN;
task_trans_sched_state(&kernel_irq_proxy->snode, //
&g_scheduler.snode_state_pool[INIT], //
&g_scheduler.snode_state_pool[NEVER_RUN], NEVER_RUN);
}
// bind irq to session

View File

@ -42,71 +42,50 @@ Modification:
extern uint8_t _binary_fs_img_start[], _binary_fs_img_end[];
#define SHOWINFO_BORDER_LINE() LOG_PRINTF("******************************************************\n");
#define SHOWTASK_TASK_BASE_INFO(task) LOG_PRINTF(" %-6d %-16s %-4d 0x%x(%-d)\n", task->tid, task->name, task->priority, task->memspace->mem_size >> 10, task->memspace->mem_size >> 10)
#define SHOWTASK_TASK_BASE_INFO(task) LOG_PRINTF(" %-6d %-16s %-4d 0x%x(%-d)\n", task->tid, task->name, 0, task->memspace->mem_size >> 10, task->memspace->mem_size >> 10)
bool print_info(RbtNode* node, void* data)
{
struct ScheduleNode* snode = (struct ScheduleNode*)node->data;
struct Thread* thd = snode->pthd;
switch (snode->state) {
case INIT:
LOG_PRINTF("%-8s", "INIT");
break;
case READY:
LOG_PRINTF("%-8s", "READY");
break;
case RUNNING:
LOG_PRINTF("%-8s", "RUNNING");
break;
case DEAD:
LOG_PRINTF("%-8s", "DEAD");
break;
case BLOCKED:
LOG_PRINTF("%-8s", "BLOCK");
break;
case SLEEPING:
LOG_PRINTF("%-8s", "SLEEP");
break;
default:
break;
}
SHOWTASK_TASK_BASE_INFO(thd);
return true;
}
void show_tasks(void)
{
struct Thread* task = NULL;
SHOWINFO_BORDER_LINE();
for (int i = 0; i < NR_CPU; i++) {
LOG_PRINTF("CPU %-2d: %s\n", i, (global_cpus[i].task == NULL ? "NULL" : global_cpus[i].task->name));
}
SHOWINFO_BORDER_LINE();
LOG_PRINTF("%-8s %-6s %-16s %-4s %-8s\n", "STAT", "ID", "TASK", "PRI", "MEM(KB)");
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_running_list_head, node)
{
LOG_PRINTF("%-8s", "RUNNING");
SHOWTASK_TASK_BASE_INFO(task);
}
for (int i = 0; i < TASK_MAX_PRIORITY; i++) {
if (IS_DOUBLE_LIST_EMPTY(&xizi_task_manager.task_list_head[i])) {
continue;
}
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_list_head[i], node)
{
switch (task->state) {
case INIT:
LOG_PRINTF("%-8s", "INIT");
break;
case READY:
LOG_PRINTF("%-8s", "READY");
break;
case RUNNING:
LOG_PRINTF("%-8s", "RUNNING");
break;
case DEAD:
LOG_PRINTF("%-8s", "DEAD");
break;
default:
break;
}
SHOWTASK_TASK_BASE_INFO(task);
}
}
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_blocked_list_head, node)
{
LOG_PRINTF("%-8s", "BLOCK");
SHOWTASK_TASK_BASE_INFO(task);
}
DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_sleep_list_head, node)
{
LOG_PRINTF("%-8s", "SLEEP");
SHOWTASK_TASK_BASE_INFO(task);
}
struct ksemaphore* sem = NULL;
DOUBLE_LIST_FOR_EACH_ENTRY(sem, &xizi_task_manager.semaphore_pool.sem_list_guard, sem_list_node)
{
task = NULL;
DOUBLE_LIST_FOR_EACH_ENTRY(task, &sem->wait_list_guard, node)
{
LOG_PRINTF("%-8s", "BLOCK");
SHOWTASK_TASK_BASE_INFO(task);
}
for (int pool_id = INIT; pool_id < NR_STATE; pool_id++) {
rbt_traverse(&g_scheduler.snode_state_pool[pool_id], print_info, NULL);
}
SHOWINFO_BORDER_LINE();
@ -150,7 +129,7 @@ void show_cpu(void)
assert(current_task != NULL);
LOG_PRINTF(" ID COMMAND USED_TICKS FREE_TICKS \n");
LOG_PRINTF(" %d %s %d %d\n", cpu_id, current_task->name, TASK_CLOCK_TICK - current_task->remain_tick, current_task->remain_tick);
LOG_PRINTF(" %d %s %d %d\n", cpu_id, current_task->name, TASK_CLOCK_TICK - current_task->snode.sched_context.remain_tick, current_task->snode.sched_context.remain_tick);
LOG_PRINTF("***********************************************************\n");
return;

View File

@ -30,33 +30,31 @@ Modification:
#include "log.h"
#include "schedule_algo.h"
static struct Thread* next_runable_task;
bool find_runable_task(RbtNode* node, void* data)
{
struct ScheduleNode* snode = (struct ScheduleNode*)node->data;
struct Thread* thd = snode->pthd;
if (!thd->dead) {
next_runable_task = thd;
return false;
} else {
struct TaskLifecycleOperations* tlo = GetSysObject(struct TaskLifecycleOperations, &xizi_task_manager.task_lifecycle_ops_tag);
tlo->free_pcb(thd);
return false;
}
return true;
}
struct Thread* max_priority_runnable_task(void)
{
static struct Thread* task = NULL;
// static int priority = 0;
// priority = __builtin_ffs(ready_task_priority) - 1;
// if (priority > 31 || priority < 0) {
// return NULL;
// }
// DOUBLE_LIST_FOR_EACH_ENTRY(task, &xizi_task_manager.task_list_head[priority], node)
// {
// assert(task != NULL);
// if (task->state == READY && !task->dead) {
// // found a runnable task, stop this look up
// return task;
// } else if (task->dead && task->state != RUNNING) {
// struct TaskLifecycleOperations* tlo = GetSysObject(struct TaskLifecycleOperations, &xizi_task_manager.task_lifecycle_ops_tag);
// tlo->free_pcb(task);
// return NULL;
// }
// }
if (!rbt_is_empty(&g_scheduler.snode_state_pool[READY])) {
return ((struct ScheduleNode*)(g_scheduler.snode_state_pool[READY].root->data))->pthd;
}
return NULL;
/// @todo better strategy
next_runable_task = NULL;
rbt_traverse(&g_scheduler.snode_state_pool[READY], find_runable_task, NULL);
return next_runable_task;
}
#include "multicores.h"
@ -79,6 +77,8 @@ bool init_schedule_node(struct ScheduleNode* snode, struct Thread* bind_thd)
bool task_trans_sched_state(struct ScheduleNode* snode, RbtTree* from_pool, RbtTree* to_pool, enum ThreadState target_state)
{
assert(snode != NULL);
// DEBUG("%d %p %d %s\n", snode->snode_id, snode->pthd, snode->pthd->tid, snode->pthd->name);
assert(snode->snode_id != UNINIT_SNODE_ID && snode->pthd != NULL);
if (RBTTREE_DELETE_SUCC != rbt_delete(from_pool, snode->snode_id)) {
DEBUG("Thread %d not in from schedule pool\n", snode->pthd->tid);
@ -98,7 +98,6 @@ void task_dead(struct Thread* thd)
{
assert(thd != NULL);
struct ScheduleNode* snode = &thd->snode;
enum ThreadState thd_cur_state = snode->state;
assert(snode->state == READY);
@ -106,6 +105,7 @@ void task_dead(struct Thread* thd)
&g_scheduler.snode_state_pool[READY], //
&g_scheduler.snode_state_pool[DEAD], DEAD);
assert(trans_res = true);
assert(RBTTREE_DELETE_SUCC == rbt_delete(&g_scheduler.snode_state_pool[DEAD], snode->snode_id));
return;
}

View File

@ -154,7 +154,6 @@ bool ksemaphore_free(struct XiziSemaphorePool* sem_pool, sem_id_t sem_id)
return false;
}
struct Thread* thd = NULL;
// by design: no waking any waiting threads
rbt_delete(&sem_pool->sem_pool_map, sem_id);

View File

@ -83,7 +83,7 @@ static void _task_manager_init()
}
// tid pool
xizi_task_manager.next_pid = 0;
xizi_task_manager.next_pid = 1;
// init priority bit map
ready_task_priority = 0;
@ -221,6 +221,7 @@ static struct Thread* _new_thread(struct MemSpace* pmemspace)
}
// [schedule related]
task->tid = xizi_task_manager.next_pid++;
if (!init_schedule_node(&task->snode, task)) {
ERROR("Not enough memory\n");
slab_free(&xizi_task_manager.task_allocator, (void*)task);
@ -238,7 +239,6 @@ static struct Thread* _new_thread(struct MemSpace* pmemspace)
ERROR_FREE
{
/* init basic task ref member */
task->tid = xizi_task_manager.next_pid++;
task->bind_irq = false;
/* vm & memory member */

View File

@ -466,17 +466,19 @@ int rbt_delete(RbtTree* tree, uintptr_t key)
return RBTTREE_DELETE_SUCC;
}
void rbt_traverse_inner(RbtNode* node, rbt_traverse_fn fn)
void rbt_traverse_inner(RbtNode* node, rbt_traverse_fn fn, void* data)
{
if (node == NULL) {
return;
}
fn(node);
rbt_traverse_inner(node->left, fn);
rbt_traverse_inner(node->right, fn);
if (fn(node, data)) {
rbt_traverse_inner(node->left, fn, data);
rbt_traverse_inner(node->right, fn, data);
}
}
void rbt_traverse(RbtTree* tree, rbt_traverse_fn fn)
void rbt_traverse(RbtTree* tree, rbt_traverse_fn fn, void* data)
{
rbt_traverse_inner(tree->root, fn);
rbt_traverse_inner(tree->root, fn, data);
}

View File

@ -62,9 +62,10 @@ void hw_current_second(uintptr_t* second)
*second = p_clock_driver->get_second();
}
void count_down_sleeping_task(RbtNode* node)
bool count_down_sleeping_task(RbtNode* node, void* data)
{
/// @todo implement
return false;
}
uint64_t global_tick = 0;
@ -86,7 +87,7 @@ int xizi_clock_handler(int irq, void* tf, void* arg)
}
// todo: cpu 0 will handle sleeping thread
rbt_traverse(&g_scheduler.snode_state_pool[SLEEPING], count_down_sleeping_task);
rbt_traverse(&g_scheduler.snode_state_pool[SLEEPING], count_down_sleeping_task, NULL);
// DOUBLE_LIST_FOR_EACH_ENTRY(thread, &xizi_task_manager.task_sleep_list_head, node)
// {