初始提交
Secret Leaks / trufflehog (push) Has been cancelled Details

This commit is contained in:
Your Name 2025-09-19 13:59:47 +08:00
commit e2117f2c48
322 changed files with 70253 additions and 0 deletions

View File

@ -0,0 +1,29 @@
// File only needed for VSCode users to have proper Docker based interpreters
{
"name": "accelerate_dev_environment",
"build": {
// ACTION NEEDED: comment/uncomment the relevant line depending on whether you are in a CPU/GPU environment
"dockerfile": "../docker/accelerate-cpu/Dockerfile"
// "dockerfile": "../docker/accelerate-gpu/Dockerfile"
},
"runArgs": [
// ACTION NEEDED: uncomment the next line if your local machine has GPUs available
// "--gpus", "all",
// Enable the docker container to access system resources
"--ipc", "host"
],
"remoteEnv": {
"PYTHONPATH": "${containerEnv:PATH}:${containerWorkspaceFolder}"
},
"customizations": {
"vscode": {
"extensions": [
// Ensure we have IntelliSense in VSCode when running inside container
"ms-python.python"
]
}
},
"workspaceFolder": "/workspaces/accelerate",
// Need git for VSCode to color code modifications. Only runs when building environment.
"onCreateCommand": "apt-get update && apt-get install -y git && pip install -e '.[dev]'"
}

63
.github/ISSUE_TEMPLATE/bug-report.yml vendored Normal file
View File

@ -0,0 +1,63 @@
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve Accelerate
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to submit a bug report! 🐛
If this is not a bug related to the Accelerate library directly, but instead a general question about your code or the library specifically please use the [forums](https://discuss.huggingface.co/c/accelerate/18).
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your accelerate configuration with us. You can run the command `accelerate env` and copy-paste its outputs below
render: Shell
placeholder: accelerate version, OS, python version, numpy version, torch version, and accelerate's configuration
validations:
required: true
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: 'The problem arises when using:'
options:
- label: "The official example scripts"
- label: "My own modified scripts"
- type: checkboxes
id: information-tasks
attributes:
label: Tasks
description: "The tasks I am working on are:"
options:
- label: "One of the scripts in the examples/ folder of Accelerate or an officially supported `no_trainer` script in the `examples` folder of the `transformers` repo (such as `run_no_trainer_glue.py`)"
- label: "My own task or dataset (give details below)"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
If you have code snippets, error messages, stack traces please provide them here as well.
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."

47
.github/PULL_REQUEST_TEMPLATE.md vendored Normal file
View File

@ -0,0 +1,47 @@
# What does this PR do?
<!--
Congratulations! You've made it this far! You're not quite done yet though.
Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution.
Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change.
Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost.
-->
<!-- Remove if not applicable -->
Fixes # (issue)
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md#submitting-a-pull-request-pr),
Pull Request section?
- [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link
to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes? Here are the
[documentation guidelines](https://github.com/huggingface/accelerate/tree/main/docs), and
[here are tips on formatting docstrings](https://github.com/huggingface/accelerate/tree/main/docs#writing-documentation---specification).
- [ ] Did you write any new necessary tests?
## Who can review?
Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR.
<!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @
If you know how to use git blame, that is the easiest way, otherwise, here is a rough guide of **who to tag**.
- Big modeling: @SunMarc
- Fully-Sharded Data Parallism: @SunMarc @zach-huggingface
- DeepSpeed: @SunMarc @zach-huggingface
- Command Line Interface: @SunMarc @zach-huggingface
- Documentation: @SunMarc @zach-huggingface
- Core parts of the library: @BenjaminBossan @SunMarc @zach-huggingface
- Maintained examples: @SunMarc or @zach-huggingface
-->

View File

@ -0,0 +1,104 @@
name: Build Docker images (releases)
on:
workflow_dispatch:
release:
types: [published]
concurrency:
group: docker-image-builds
cancel-in-progress: false
jobs:
get-version:
runs-on: ubuntu-latest
outputs:
version: ${{ steps.step1.outputs.version }}
steps:
- uses: actions/checkout@v3.1.0
- id: step1
run: echo "version=$(python setup.py --version)" >> $GITHUB_OUTPUT
version-cpu:
name: "Latest Accelerate CPU [version]"
runs-on:
group: aws-general-8-plus
needs: get-version
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push CPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-cpu/Dockerfile
push: true
tags: huggingface/accelerate:cpu-release-${{ needs.get-version.outputs.version }}
version-cuda:
name: "Latest Accelerate GPU [version]"
runs-on:
group: aws-g6-4xlarge-plus
needs: get-version
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-gpu/Dockerfile
push: true
tags: huggingface/accelerate:gpu-release-${{needs.get-version.outputs.version}}
version-cuda-deepspeed:
name: "Latest Accelerate GPU DeepSpeed [version]"
runs-on:
group: aws-g6-4xlarge-plus
needs: get-version
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-gpu-deepspeed/Dockerfile
push: true
tags: huggingface/accelerate:gpu-deepspeed-release-${{needs.get-version.outputs.version}}
version-cuda-fp8-transformerengine:
name: "Latest Accelerate GPU FP8 TransformerEngine [version]"
runs-on:
group: aws-g6-4xlarge-plus
needs: get-version
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-gpu/Dockerfile
push: true
tags: huggingface/accelerate:gpu-fp8-transformerengine-release-${{needs.get-version.outputs.version}}

View File

@ -0,0 +1,50 @@
name: Trigger docker images and run tests
on:
push:
branches:
- main
workflow_dispatch:
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
jobs:
check-for-source:
runs-on: ubuntu-latest
name: Check if setup was changed
outputs:
changed: ${{ steps.was_changed.outputs.changed }}
steps:
- uses: actions/checkout@v3.1.0
with:
fetch-depth: "2"
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@3f54ebb830831fc121d3263c1857cfbdc310cdb9 #v42
- name: Was setup changed
id: was_changed
run: |
for file in ${{ steps.changed-files.outputs.all_changed_files }}; do
if [ `basename "${file}"` == "setup.py" ]; then
echo "changed=1" >> $GITHUB_OUTPUT
fi
done
build-docker-containers:
needs: check-for-source
if: (github.event_name == 'push') && (needs.check-for-source.outputs.changed == '1')
uses: ./.github/workflows/build_docker_images.yml
secrets: inherit
run-merge-tests:
needs: build-docker-containers
if: always()
uses: ./.github/workflows/run_merge_tests.yml
run-integration-tests:
needs: build-docker-containers
if: always()
uses: ./.github/workflows/self_hosted_integration_tests.yml

View File

@ -0,0 +1,110 @@
name: Build Docker images (scheduled)
on:
workflow_dispatch:
workflow_call:
schedule:
- cron: "0 1 * * *"
concurrency:
group: docker-image-builds
cancel-in-progress: false
jobs:
latest-cpu:
name: "Latest Accelerate CPU [dev]"
runs-on:
group: aws-general-8-plus
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Get current date
id: date
run: |
echo "date=$(date '+%Y-%m-%d')" >> $GITHUB_ENV
- name: Build and Push CPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-cpu/Dockerfile
push: true
tags: |
huggingface/accelerate:cpu-nightly
huggingface/accelerate:cpu-nightly-${{ env.date }}
latest-cuda:
name: "Latest Accelerate GPU [dev]"
runs-on:
group: aws-g6-4xlarge-plus
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Get current date
id: date
run: |
echo "date=$(date '+%Y-%m-%d')" >> $GITHUB_ENV
- name: Build and Push GPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-gpu/Dockerfile
push: true
tags: |
huggingface/accelerate:gpu-nightly
huggingface/accelerate:gpu-nightly-${{ env.date }}
latest-cuda-deepspeed:
name: "Latest Accelerate GPU DeepSpeed [dev]"
runs-on:
group: aws-g6-4xlarge-plus
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Get current date
id: date
run: |
echo "date=$(date '+%Y-%m-%d')" >> $GITHUB_ENV
- name: Build and Push GPU
uses: docker/build-push-action@v4
with:
file: docker/accelerate-gpu-deepspeed/Dockerfile
push: true
tags: |
huggingface/accelerate:gpu-deepspeed-nightly
huggingface/accelerate:gpu-deepspeed-nightly-${{ env.date }}
latest-cuda-fp8-transformerengine:
name: "Latest Accelerate GPU FP8 TransformerEngine [dev]"
runs-on:
group: aws-g6-4xlarge-plus
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Login to DockerHub
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Get current date
id: date
run: |
echo "date=$(date '+%Y-%m-%d')" >> $GITHUB_ENV
- name: Build and Push GPU
uses: docker/build-push-action@v4
with:
file: benchmarks/fp8/transformer_engine/Dockerfile
push: true
tags: huggingface/accelerate:gpu-fp8-transformerengine-nightly-${{ env.date }}

View File

@ -0,0 +1,18 @@
name: Build documentation
on:
push:
branches:
- main
- doc-builder*
- v*-release
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_main_documentation.yml@main
with:
commit_sha: ${{ github.sha }}
package: accelerate
custom_container: huggingface/transformers-doc-builder
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}

View File

@ -0,0 +1,17 @@
name: Build PR Documentation
on:
pull_request:
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
with:
commit_sha: ${{ github.event.pull_request.head.sha }}
pr_number: ${{ github.event.number }}
package: accelerate
custom_container: huggingface/transformers-doc-builder

77
.github/workflows/gaudi1.yml vendored Normal file
View File

@ -0,0 +1,77 @@
name: Gaudi1 tests (scheduled)
on:
workflow_dispatch:
schedule:
- cron: "0 2 * * *"
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
run_gaudi1_tests:
name: Test on Gaudi1
runs-on:
group: aws-dl1-24xlarge
container:
image: docker://vault.habana.ai/gaudi-docker/1.20.0/ubuntu22.04/habanalabs/pytorch-installer-2.6.0:latest
options: --runtime=habana --shm-size=64G --cap-add=sys_nice --env HABANA_VISIBLE_DEVICES=0,1
env:
OMPI_MCA_btl_vader_single_copy_mechanism: none
PT_ENABLE_INT64_SUPPORT: 1
PT_HPU_LAZY_MODE: 0
RUN_SLOW: 1
steps:
- name: HL-SMI (1)
run: |
hl-smi
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
- name: Extract HPU visible modules
id: add-modules
run: |
export HABANA_VISIBLE_MODULES=$(hl-smi -Q module_id -f csv,noheader | tr '\n' ',' | sed 's/,$//')
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}" >> $GITHUB_ENV
- name: HL-SMI (2)
run: |
hl-smi
echo "HABANA_VISIBLE_DEVICES=${HABANA_VISIBLE_DEVICES}"
echo "HABANA_VISIBLE_MODULES=${HABANA_VISIBLE_MODULES}"
- name: Checkout to Accelerate
uses: actions/checkout@v4
- name: Install Accelerate with Transformers & DeepSpeed
run: |
pip install -e .[testing] \
git+https://github.com/HabanaAI/DeepSpeed.git@1.20.0 \
git+https://github.com/huggingface/transformers.git@hpu-support
- name: Run CLI tests
run: |
make test_cli
- name: Run Core tests
run: |
make test_core
- name: Run Big Modeling tests
run: |
make test_big_modeling
- name: Run FSDP integration tests
run: |
make test_fsdp
- name: Run DeepSpeed integration tests
run: |
make test_deepspeed
- name: Run Examples tests
run: |
make test_examples

58
.github/workflows/integration_tests.yml vendored Normal file
View File

@ -0,0 +1,58 @@
# CI for specifically ensuring integrations work fine (`transformers` mainly)
# Useful tips:
# - New integrations to test should have its own job, and follow a strategy method where we check both
# the pypi and github versions.
# - When checking the latest release of the integration, use
# git checkout $(git describe --tags `git rev-list --tags --max-count=1`) to get the latest release.
name: Integration Tests
on:
pull_request:
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "examples/**"
- "setup.py"
types: [opened, synchronize, reopened]
env:
HF_HOME: ~/hf_cache
jobs:
run-trainer-tests:
runs-on: ubuntu-latest
strategy:
fail-fast: false
steps:
- uses: actions/checkout@v3.1.0
- name: Set up python 3.9
uses: actions/setup-python@v3
with:
python-version: 3.9
cache: 'pip'
cache-dependency-path: 'setup.py'
- name: Install Accelerate from source
run: |
pip install --upgrade pip
pip install -e .
- name: Clone and install transformers
run: |
cd ..
git clone https://github.com/huggingface/transformers
cd transformers
pip install .[torch,testing]
- name: Show installed libraries
run: |
pip freeze
- name: Run Trainer tests
env:
WANDB_DISABLED: true
run: |
cd ../transformers
pytest -sv tests/trainer

233
.github/workflows/nightly.yml vendored Normal file
View File

@ -0,0 +1,233 @@
name: Self-hosted runner with slow tests (scheduled)
on:
workflow_dispatch:
schedule:
- cron: "0 2 * * *"
env:
RUN_SLOW: "yes"
IS_GITHUB_CI: "1"
SLACK_API_TOKEN: ${{ secrets.SLACK_API_TOKEN }}
jobs:
run_core_tests_single_gpu:
runs-on:
group: aws-g6-4xlarge-plus
env:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu"
container:
image: huggingface/accelerate:gpu-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Update clone & pip install
run: |
source activate accelerate
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e . --no-deps
pip install pytest-reportlog tabulate
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run test on GPUs
working-directory: accelerate
run: |
source activate accelerate
make test
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
pip uninstall comet_ml -y
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_deepspeed_tests_single_gpu:
runs-on:
group: aws-g6-4xlarge-plus
env:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu_deepspeed"
container:
image: huggingface/accelerate:gpu-deepspeed-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Update clone & pip install
run: |
source activate accelerate
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e . --no-deps
pip install pytest-reportlog tabulate
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run test on GPUs
working-directory: accelerate
run: |
source activate accelerate
make test_deepspeed
- name: Run Integration tests on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
make test_integrations
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
pip uninstall comet_ml -y
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_core_tests_multi_gpu:
runs-on:
group: aws-g6-12xlarge-plus
env:
CUDA_VISIBLE_DEVICES: "0,1"
TEST_TYPE: "multi_gpu"
container:
image: huggingface/accelerate:gpu-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Update clone
run: |
source activate accelerate
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e . --no-deps
pip install pytest-reportlog tabulate
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run core and big modeling tests on GPUs
working-directory: accelerate
run: |
source activate accelerate
make test_core
make test_big_modeling
make test_cli
- name: Run Integration tests on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
make test_integrations
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
pip uninstall comet_ml -y
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_deepspeed_tests_multi_gpu:
runs-on:
group: aws-g6-12xlarge-plus
env:
CUDA_VISIBLE_DEVICES: "0,1"
TEST_TYPE: "multi_gpu_deepspeed"
container:
image: huggingface/accelerate:gpu-deepspeed-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Update clone
run: |
source activate accelerate
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e . --no-deps
pip install pytest-reportlog tabulate
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run DeepSpeed tests
working-directory: accelerate
run: |
source activate accelerate
make test_deepspeed
- name: Run Integration tests on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
make test_integrations
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate
pip uninstall comet_ml -y
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install slack_sdk tabulate
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run-integration-tests:
if: always()
uses: ./.github/workflows/self_hosted_integration_tests.yml

24
.github/workflows/quality.yml vendored Normal file
View File

@ -0,0 +1,24 @@
name: Quality Check
on: [pull_request]
jobs:
quality:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3.1.0
- name: Set up Python 3.9
uses: actions/setup-python@v3
with:
python-version: 3.9
cache: 'pip'
cache-dependency-path: 'setup.py'
- name: Install Python dependencies
run: pip install -e .[quality]
- name: Run Quality check
run: make quality
- name: Check if failure
if: ${{ failure() }}
run: |
echo "Quality check failed. Please ensure the right dependency versions are installed with 'pip install -e .[quality]' and rerun 'make style; make quality;'" >> $GITHUB_STEP_SUMMARY

188
.github/workflows/run_merge_tests.yml vendored Normal file
View File

@ -0,0 +1,188 @@
name: Self-hosted runner tests (push to "main")
on:
workflow_call:
workflow_dispatch:
env:
TESTING_MOCKED_DATALOADERS: "1"
IS_GITHUB_CI: "1"
jobs:
run_core_tests_single_gpu:
runs-on:
group: aws-g6-4xlarge-plus
env:
CUDA_VISIBLE_DEVICES: "0"
container:
image: huggingface/accelerate:gpu-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Install accelerate
run: |
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e .[testing,test_trackers] -U;
pip install pytest-reportlog tabulate ;
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run CLI tests (use make cli)
working-directory: accelerate
run: |
source activate accelerate;
make test_cli
- name: Run test on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate;
make test
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate;
pip uninstall comet_ml -y;
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install tabulate;
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_deepspeed_tests_single_gpu:
runs-on:
group: aws-g6-4xlarge-plus
env:
CUDA_VISIBLE_DEVICES: "0"
container:
image: huggingface/accelerate:gpu-deepspeed-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Install accelerate
run: |
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e .[testing,test_trackers] -U;
pip install pytest-reportlog tabulate ;
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run test on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate;
make test_deepspeed
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install tabulate;
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_core_tests_multi_gpu:
runs-on:
group: aws-g6-12xlarge-plus
env:
CUDA_VISIBLE_DEVICES: 0,1
container:
image: huggingface/accelerate:gpu-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Update clone
run: |
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e .[testing,test_trackers] -U;
pip install pytest-reportlog tabulate
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run test on GPUs
working-directory: accelerate
run: |
source activate accelerate;
make test
- name: Run examples on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate;
pip uninstall comet_ml -y;
make test_examples
- name: Generate Report
working-directory: accelerate
if: always()
run: |
source activate accelerate;
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY
run_deepspeed_tests_multi_gpu:
runs-on:
group: aws-g6-12xlarge-plus
container:
image: huggingface/accelerate:gpu-deepspeed-nightly
options: --gpus all --shm-size "16gb"
defaults:
run:
shell: bash
steps:
- name: Install accelerate
run: |
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e .[testing,test_trackers] -U;
pip install pytest-reportlog tabulate ;
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run test on GPUs
working-directory: accelerate
if: always()
run: |
source activate accelerate;
make test_deepspeed
- name: Generate Report
working-directory: accelerate
if: always()
run: |
pip install tabulate;
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@ -0,0 +1,127 @@
# CI for specifically ensuring integrations work fine (`transformers` mainly) on GPUs
# Useful tips:
# - `working-directory` should be set to the root of the repo, which is cloned on the actual CI runner.
# It follows the directory structure of `actions-runner/_work/{repo_name}/{repo_name}/{cloned_repo} on
# prem, but in Actions setting `working-directory` looks just in the `{repo_name}` level.
# - New integrations to test should have its own job, and follow a strategy method where we check both
# the pypi and github versions.
# - Workflow call lets this be called from `build_and_run_tests.yml`
# - When using a docker container, it's recommended to set `--shm-size`, we use 16gb.
name: Integration Tests (push to "main")
on:
workflow_call:
workflow_dispatch:
env:
HF_HOME: ~/hf_cache
defaults:
run:
shell: bash
jobs:
run-trainer-tests:
container:
image: huggingface/accelerate:gpu-deepspeed-nightly
options: --gpus all --shm-size "16gb"
runs-on:
group: aws-g6-12xlarge-plus
strategy:
fail-fast: false
matrix:
cuda_visible_devices: [
"0",
"0,1"
]
steps:
- name: Install transformers
run: |
source activate accelerate;
git clone https://github.com/huggingface/transformers --depth 1;
cd transformers;
pip install .[torch,deepspeed-testing];
cd ..;
- name: Install accelerate
run: |
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }} ;
pip install -e .[testing];
pip uninstall comet_ml wandb dvclive -y
cd ..;
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run trainer tests
working-directory: transformers/
env:
CUDA_VISIBLE_DEVICES: ${{ matrix.cuda_visible_devices }}
WANDB_DISABLED: true
run: |
source activate accelerate;
pytest -sv tests/trainer
- name: Run deepspeed tests
working-directory: transformers/
env:
CUDA_VISIBLE_DEVICES: ${{ matrix.cuda_visible_devices }}
WANDB_DISABLED: true
if: always()
run: |
source activate accelerate;
pytest -sv tests/deepspeed
- name: Run transformers examples tests
working-directory: transformers/
env:
CUDA_VISIBLE_DEVICES: ${{ matrix.cuda_visible_devices }}
WANDB_DISABLED: true
run: |
source activate accelerate
pip install -r examples/pytorch/_tests_requirements.txt
pytest -sv examples/pytorch/test_accelerate_examples.py examples/pytorch/test_pytorch_examples.py
run-skorch-tests:
container:
image: huggingface/accelerate:gpu-nightly
options: --gpus all --shm-size "16gb"
runs-on:
group: aws-g6-12xlarge-plus
strategy:
fail-fast: false
steps:
- name: Install accelerate
run:
source activate accelerate;
git clone https://github.com/huggingface/accelerate;
cd accelerate;
git checkout ${{ github.sha }};
pip install -e .[testing];
cd ..
- name: Install skorch
run: |
source activate accelerate
git clone https://github.com/skorch-dev/skorch;
cd skorch;
git config --global --add safe.directory '*'
git checkout master && git pull
pip install .[testing]
pip install flaky
- name: Show installed libraries
run: |
source activate accelerate;
pip freeze
- name: Run skorch tests
working-directory: skorch/
run: |
source activate accelerate;
pytest -sv -k TestAccelerate

33
.github/workflows/stale.yml vendored Normal file
View File

@ -0,0 +1,33 @@
name: Stale Bot
on:
schedule:
- cron: "0 15 * * *"
workflow_dispatch:
jobs:
close_stale_issues:
name: Close Stale Issues
if: github.repository == 'huggingface/accelerate'
runs-on: ubuntu-latest
permissions:
issues: write
pull-requests: write
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:
- uses: actions/checkout@v3.1.0
- name: Setup Python
uses: actions/setup-python@v3
with:
python-version: 3.9
cache: 'pip'
cache-dependency-path: 'setup.py'
- name: Install requirements
run: |
pip install PyGithub
- name: Close stale issues
run: |
python utils/stale.py

70
.github/workflows/test.yml vendored Normal file
View File

@ -0,0 +1,70 @@
name: Run Tests
on:
pull_request:
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "examples/**"
- "setup.py"
types: [opened, synchronize, reopened]
env:
HF_HOME: ~/hf_cache
TESTING_MOCKED_DATALOADERS: "1"
IS_GITHUB_CI: "1"
jobs:
run-tests:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
pytorch-version: [
latest,
minimum,
]
test-kind: [
test_prod,
test_core,
test_cli,
test_big_modeling,
test_deepspeed,
test_fsdp,
test_example_differences,
test_checkpoint_step,
test_checkpoint_epoch,
test_rest
]
steps:
- uses: actions/checkout@v3.1.0
- name: Set up python 3.9
uses: actions/setup-python@v3
with:
python-version: 3.9
cache: 'pip'
cache-dependency-path: 'setup.py'
- name: Install the library
run: |
if [[ ${{ matrix.test-kind }} = test_prod ]]; then pip install -e .[test_prod]; fi
if [[ ${{ matrix.test-kind }} != test_prod ]]; then pip install -e .[testing,test_trackers]; fi
if [[ ${{ matrix.test-kind }} = test_rest ]]; then pip uninstall comet_ml -y; fi
if [[ ${{ matrix.pytorch-version }} = minimum ]]; then pip install torchvision==0.18.1 torch==2.3.1; fi
pip install pytest-reportlog tabulate setuptools
- name: Show installed libraries
run: |
pip freeze
- name: Run Tests
env:
PYTORCH_VERSION: ${{ matrix.pytorch-version }}
run: |
make ${{ matrix.test-kind }}
- name: Generate Report
if: always()
run: |
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

55
.github/workflows/test_imports.yml vendored Normal file
View File

@ -0,0 +1,55 @@
name: Run Import Tests
on:
pull_request:
paths:
- "src/**"
- "tests/**"
- ".github/**"
- "examples/**"
- "setup.py"
types: [opened, synchronize, reopened]
env:
HF_HOME: ~/hf_cache
TESTING_MOCKED_DATALOADERS: "1"
IS_GITHUB_CI: "1"
jobs:
run-tests:
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
pytorch-version: [
latest,
minimum,
]
steps:
- uses: actions/checkout@v3.1.0
- name: Set up python 3.9
uses: actions/setup-python@v3
with:
python-version: 3.9
cache: 'pip'
cache-dependency-path: 'setup.py'
- name: Install the library
run: |
pip install -e .
pip install pytest-reportlog tabulate setuptools git+https://github.com/muellerzr/import-timer
- name: Show installed libraries
run: |
pip freeze
- name: Run Import Tests
env:
PYTORCH_VERSION: ${{ matrix.pytorch-version }}
run: |
pytest -sv tests/test_imports.py
- name: Generate Report
if: always()
run: |
python utils/log_reports.py >> $GITHUB_STEP_SUMMARY

15
.github/workflows/trufflehog.yml vendored Normal file
View File

@ -0,0 +1,15 @@
on:
push:
name: Secret Leaks
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main

View File

@ -0,0 +1,16 @@
name: Upload PR Documentation
on:
workflow_run:
workflows: ["Build PR Documentation"]
types:
- completed
jobs:
build:
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
with:
package_name: accelerate
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
comment_bot_token: ${{ secrets.COMMENT_BOT_TOKEN }}

144
.gitignore vendored Normal file
View File

@ -0,0 +1,144 @@
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# VSCode
.vscode
# IntelliJ
.idea
# Mac .DS_Store
.DS_Store
# More test things
wandb
# ruff
.ruff_cache

13
.pre-commit-config.yaml Normal file
View File

@ -0,0 +1,13 @@
repos:
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.2.1
hooks:
- id: ruff
args:
- --fix
- id: ruff-format
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v4.5.0
hooks:
- id: check-merge-conflict
- id: check-yaml

129
CODE_OF_CONDUCT.md Normal file
View File

@ -0,0 +1,129 @@
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, religion, or sexual identity
and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the
overall community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or
advances of any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email
address, without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
feedback@huggingface.co.
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series
of actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or
permanent ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within
the community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.0, available at
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
Community Impact Guidelines were inspired by [Mozilla's code of conduct
enforcement ladder](https://github.com/mozilla/diversity).
[homepage]: https://www.contributor-covenant.org
For answers to common questions about this code of conduct, see the FAQ at
https://www.contributor-covenant.org/faq. Translations are available at
https://www.contributor-covenant.org/translations.

249
CONTRIBUTING.md Normal file
View File

@ -0,0 +1,249 @@
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# How to contribute to 🤗 Accelerate?
Everyone is welcome to contribute, and we value everybody's contribution. Code
is thus not the only way to help the community. Answering questions, helping
others, reaching out and improving the documentations are immensely valuable to
the community.
It also helps us if you spread the word: reference the library from blog posts
on the awesome projects it made possible, shout out on Twitter every time it has
helped you, or simply star the repo to say "thank you".
Whichever way you choose to contribute, please be mindful to respect our
[code of conduct](https://github.com/huggingface/accelerate/blob/main/CODE_OF_CONDUCT.md).
## You can contribute in so many ways!
Some of the ways you can contribute to Accelerate:
* Fixing outstanding issues with the existing code;
* Contributing to the examples or to the documentation;
* Submitting issues related to bugs or desired new features.
## Submitting a new issue or feature request
Do your best to follow these guidelines when submitting an issue or a feature
request. It will make it easier for us to come back to you quickly and with good
feedback.
### Did you find a bug?
The 🤗 Accelerate library is robust and reliable thanks to the users who notify us of
the problems they encounter. So thank you for reporting an issue.
First, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on Github under Issues).
Did not find it? :( So we can act quickly on it, please follow these steps:
* Include your **OS type and version**, the versions of **Python** and **PyTorch**.
* A short, self-contained, code snippet that allows us to reproduce the bug in
less than 30s;
* Provide the with your Accelerate configuration (located by default in `~/.cache/huggingface/accelerate/default_config.yaml`)
### Do you want a new feature?
A good feature request addresses the following points:
1. Motivation first:
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *full paragraph* describing the feature;
3. Provide a **code snippet** that demonstrates its future use;
4. In case this is related to a paper, please attach a link;
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
If your issue is well written we're already 80% of the way there by the time you
post it.
## Submitting a pull request (PR)
Before writing code, we strongly advise you to search through the existing PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
🤗 Accelerate. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing:
1. Fork the [repository](https://github.com/huggingface/accelerate) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote. The following command
assumes you have your public SSH key uploaded to GitHub. See the following guide for more
[information](https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository).
```bash
$ git clone git@github.com:<your Github handle>/accelerate.git
$ cd accelerate
$ git remote add upstream https://github.com/huggingface/accelerate.git
```
3. Create a new branch to hold your development changes, and do this for every new PR you work on.
Start by synchronizing your `main` branch with the `upstream/main` branch (ore details in the [GitHub Docs](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork)):
```bash
$ git checkout main
$ git fetch upstream
$ git merge upstream/main
```
Once your `main` branch is synchronized, create a new branch from it:
```bash
$ git checkout -b a-descriptive-name-for-my-changes
```
**Do not** work on the `main` branch.
4. Set up a development environment by running the following command in a conda or a virtual environment you've created for working on this library:
```bash
$ pip install -e ".[dev]"
```
This will install all testing and linting/code quality dependencies for the library (see `quality`, `test_dev`,
`test_prod` targets in [`setup.py`](./setup.py)).
(If accelerate was already installed in the virtual environment, remove
it with `pip uninstall accelerate` before reinstalling it in editable
mode with the `-e` flag).
Alternatively, if you are using [Visual Studio Code](https://code.visualstudio.com/Download), the fastest way to get set up is by using
the provided Dev Container. Documentation on how to get started with dev containers is available [here](https://code.visualstudio.com/docs/remote/containers).
5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite
passes. You should run the tests impacted by your changes like this (see
below an explanation regarding the environment variable):
```bash
$ pytest tests/<TEST_TO_RUN>.py
```
> For the following commands leveraging the `make` utility, we recommend using the WSL system when running on
> Windows. More information [here](https://docs.microsoft.com/en-us/windows/wsl/about).
You can also run the full suite with the following command.
```bash
$ make test
```
`accelerate` relies on `ruff` to format its source code
consistently. After you make changes, apply automatic style corrections and code verifications
that can't be automated in one go with:
This target is also optimized to only work with files modified by the PR you're working on.
If you prefer to run the checks one after the other, the following command apply the
style corrections:
```bash
$ make style
```
`accelerate` also uses a few custom scripts to check for coding mistakes. Quality
control runs in CI, however you can also run the same checks with:
```bash
$ make quality
```
You can also set up [`pre-commit`](https://pre-commit.com/) to run these checks
automatically as Git commit hooks.
```bash
$ pip install pre-commit
$ pre-commit install
```
Once you're happy with your changes, add changed files using `git add` and
make a commit with `git commit` to record your changes locally:
```bash
$ git add modified_file.py
$ git commit
```
Please write [good commit messages](https://chris.beams.io/posts/git-commit/).
It is a good idea to sync your copy of the code with the original
repository regularly. This way you can quickly account for changes:
```bash
$ git fetch upstream
$ git rebase upstream/main
```
Push the changes to your account using:
```bash
$ git push -u origin a-descriptive-name-for-my-changes
```
6. Once you are satisfied (**and the checklist below is happy too**), go to the
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
to the project maintainers for review.
7. It's ok if maintainers ask you for changes. It happens to core contributors
too! So everyone can see the changes in the Pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
the pull request.
### Checklist
1. The title of your pull request should be a summary of its contribution;
2. If your pull request addresses an issue, please mention the issue number in
the pull request description to make sure they are linked (and people
consulting the issue know you are working on it);
3. To indicate a work in progress please prefix the title with `[WIP]`, or mark
the PR as a draft PR. These are useful to avoid duplicated work, and to differentiate
it from PRs ready to be merged;
4. Make sure existing tests pass;
5. Add high-coverage tests. No quality testing = no merge.
See an example of a good PR here: https://github.com/huggingface/accelerate/pull/255
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/accelerate/tree/main/tests).
We use `pytest` in order to run the tests. From the root of the
repository, here's how to run tests with `pytest` for the library:
```bash
$ python -m pytest -sv ./tests
```
In fact, that's how `make test` is implemented (sans the `pip install` line)!
You can specify a smaller set of tests in order to test only the feature
you're working on.

201
LICENSE Normal file
View File

@ -0,0 +1,201 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

94
Makefile Normal file
View File

@ -0,0 +1,94 @@
.PHONY: quality style test docs utils
check_dirs := .
# Check that source code meets quality standards
extra_quality_checks:
python utils/check_copies.py
python utils/check_dummies.py
python utils/check_repo.py
doc-builder style src/accelerate docs/source --max_len 119
# this target runs checks on all files
quality:
ruff check $(check_dirs)
ruff format --check $(check_dirs)
doc-builder style src/accelerate docs/source --max_len 119 --check_only
# Format source code automatically and check is there are any problems left that need manual fixing
style:
ruff check $(check_dirs) --fix
ruff format $(check_dirs)
doc-builder style src/accelerate docs/source --max_len 119
# Run tests for the library
test_big_modeling:
python -m pytest -s -v ./tests/test_big_modeling.py ./tests/test_modeling_utils.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_big_modeling.log",)
test_core:
python -m pytest -s -v ./tests/ --ignore=./tests/test_examples.py --ignore=./tests/deepspeed --ignore=./tests/test_big_modeling.py \
--ignore=./tests/fsdp --ignore=./tests/tp --ignore=./tests/test_cli.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_core.log",)
test_cli:
python -m pytest -s -v ./tests/test_cli.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_cli.log",)
test_deepspeed:
python -m pytest -s -v ./tests/deepspeed $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_deepspeed.log",)
test_fsdp:
python -m pytest -s -v ./tests/fsdp $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_fsdp.log",)
test_tp:
python -m pytest -s -v ./tests/tp $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_tp.log",)
# Since the new version of pytest will *change* how things are collected, we need `deepspeed` to
# run after test_core and test_cli
test:
$(MAKE) test_core
$(MAKE) test_cli
$(MAKE) test_big_modeling
$(MAKE) test_deepspeed
$(MAKE) test_fsdp
$(MAKE) test_tp
test_examples:
python -m pytest -s -v ./tests/test_examples.py $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_examples.log",)
# Broken down example tests for the CI runners
test_integrations:
python -m pytest -s -v ./tests/deepspeed ./tests/fsdp ./tests/tp $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_integrations.log",)
test_example_differences:
python -m pytest -s -v ./tests/test_examples.py::ExampleDifferenceTests $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_example_diff.log",)
test_checkpoint_epoch:
python -m pytest -s -v ./tests/test_examples.py::FeatureExamplesTests -k "by_epoch" $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_checkpoint_epoch.log",)
test_checkpoint_step:
python -m pytest -s -v ./tests/test_examples.py::FeatureExamplesTests -k "by_step" $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_checkpoint_step.log",)
# Same as test but used to install only the base dependencies
test_prod:
$(MAKE) test_core
test_rest:
python -m pytest -s -v ./tests/test_examples.py::FeatureExamplesTests -k "not by_step and not by_epoch" $(if $(IS_GITHUB_CI),--report-log "$(PYTORCH_VERSION)_rest.log",)
# For developers to prepare a release
prepare_release:
rm -rf dist build
python setup.py bdist_wheel sdist
# Make sure this is ran in a fresh venv of some form
install_test_release:
pip uninstall accelerate -y
pip install -i https://testpypi.python.org/pypi --extra-index-url https://pypi.org/simple accelerate$(if $(version),==$(version),)
# Run as `make target=testpypi upload_release`
upload_release:
@if [ "$(target)" != "testpypi" ] && [ "$(target)" != "pypi" ]; then \
echo "Error: target must be either 'testpypi' or 'pypi'"; \
exit 1; \
fi
twine upload dist/* -r $(target)

277
README.md Normal file
View File

@ -0,0 +1,277 @@
<!---
Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<p align="center">
<br>
<img src="https://raw.githubusercontent.com/huggingface/accelerate/main/docs/source/imgs/accelerate_logo.png" width="400"/>
<br>
<p>
<p align="center">
<!-- Uncomment when CircleCI is set up
<a href="https://circleci.com/gh/huggingface/accelerate"><img alt="Build" src="https://img.shields.io/circleci/build/github/huggingface/transformers/master"></a>
-->
<a href="https://github.com/huggingface/accelerate/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/huggingface/accelerate.svg?color=blue"></a>
<a href="https://huggingface.co/docs/accelerate/index.html"><img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/accelerate/index.html.svg?down_color=red&down_message=offline&up_message=online"></a>
<a href="https://github.com/huggingface/accelerate/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/accelerate.svg"></a>
<a href="https://github.com/huggingface/accelerate/blob/main/CODE_OF_CONDUCT.md"><img alt="Contributor Covenant" src="https://img.shields.io/badge/Contributor%20Covenant-v2.0%20adopted-ff69b4.svg"></a>
</p>
<h3 align="center">
<p>Run your *raw* PyTorch training script on any kind of device
</h3>
<h3 align="center">
<a href="https://hf.co/course"><img src="https://raw.githubusercontent.com/huggingface/accelerate/main/docs/source/imgs/course_banner.png"></a>
</h3>
## Easy to integrate
🤗 Accelerate was created for PyTorch users who like to write the training loop of PyTorch models but are reluctant to write and maintain the boilerplate code needed to use multi-GPUs/TPU/fp16.
🤗 Accelerate abstracts exactly and only the boilerplate code related to multi-GPUs/TPU/fp16 and leaves the rest of your code unchanged.
Here is an example:
```diff
import torch
import torch.nn.functional as F
from datasets import load_dataset
+ from accelerate import Accelerator
+ accelerator = Accelerator()
- device = 'cpu'
+ device = accelerator.device
model = torch.nn.Transformer().to(device)
optimizer = torch.optim.Adam(model.parameters())
dataset = load_dataset('my_dataset')
data = torch.utils.data.DataLoader(dataset, shuffle=True)
+ model, optimizer, data = accelerator.prepare(model, optimizer, data)
model.train()
for epoch in range(10):
for source, targets in data:
source = source.to(device)
targets = targets.to(device)
optimizer.zero_grad()
output = model(source)
loss = F.cross_entropy(output, targets)
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
```
As you can see in this example, by adding 5-lines to any standard PyTorch training script you can now run on any kind of single or distributed node setting (single CPU, single GPU, multi-GPUs and TPUs) as well as with or without mixed precision (fp8, fp16, bf16).
In particular, the same code can then be run without modification on your local machine for debugging or your training environment.
🤗 Accelerate even handles the device placement for you (which requires a few more changes to your code, but is safer in general), so you can even simplify your training loop further:
```diff
import torch
import torch.nn.functional as F
from datasets import load_dataset
+ from accelerate import Accelerator
- device = 'cpu'
+ accelerator = Accelerator()
- model = torch.nn.Transformer().to(device)
+ model = torch.nn.Transformer()
optimizer = torch.optim.Adam(model.parameters())
dataset = load_dataset('my_dataset')
data = torch.utils.data.DataLoader(dataset, shuffle=True)
+ model, optimizer, data = accelerator.prepare(model, optimizer, data)
model.train()
for epoch in range(10):
for source, targets in data:
- source = source.to(device)
- targets = targets.to(device)
optimizer.zero_grad()
output = model(source)
loss = F.cross_entropy(output, targets)
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
```
Want to learn more? Check out the [documentation](https://huggingface.co/docs/accelerate) or have a look at our [examples](https://github.com/huggingface/accelerate/tree/main/examples).
## Launching script
🤗 Accelerate also provides an optional CLI tool that allows you to quickly configure and test your training environment before launching the scripts. No need to remember how to use `torch.distributed.run` or to write a specific launcher for TPU training!
On your machine(s) just run:
```bash
accelerate config
```
and answer the questions asked. This will generate a config file that will be used automatically to properly set the default options when doing
```bash
accelerate launch my_script.py --args_to_my_script
```
For instance, here is how you would run the GLUE example on the MRPC task (from the root of the repo):
```bash
accelerate launch examples/nlp_example.py
```
This CLI tool is **optional**, and you can still use `python my_script.py` or `python -m torchrun my_script.py` at your convenience.
You can also directly pass in the arguments you would to `torchrun` as arguments to `accelerate launch` if you wish to not run` accelerate config`.
For example, here is how to launch on two GPUs:
```bash
accelerate launch --multi_gpu --num_processes 2 examples/nlp_example.py
```
To learn more, check the CLI documentation available [here](https://huggingface.co/docs/accelerate/package_reference/cli).
Or view the configuration zoo [here](https://github.com/huggingface/accelerate/blob/main/examples/config_yaml_templates/)
## Launching multi-CPU run using MPI
🤗 Here is another way to launch multi-CPU run using MPI. You can learn how to install Open MPI on [this page](https://www.open-mpi.org/faq/?category=building#easy-build). You can use Intel MPI or MVAPICH as well.
Once you have MPI setup on your cluster, just run:
```bash
accelerate config
```
Answer the questions that are asked, selecting to run using multi-CPU, and answer "yes" when asked if you want accelerate to launch mpirun.
Then, use `accelerate launch` with your script like:
```bash
accelerate launch examples/nlp_example.py
```
Alternatively, you can use mpirun directly, without using the CLI like:
```bash
mpirun -np 2 python examples/nlp_example.py
```
## Launching training using DeepSpeed
🤗 Accelerate supports training on single/multiple GPUs using DeepSpeed. To use it, you don't need to change anything in your training code; you can set everything using just `accelerate config`. However, if you desire to tweak your DeepSpeed related args from your Python script, we provide you the `DeepSpeedPlugin`.
```python
from accelerate import Accelerator, DeepSpeedPlugin
# deepspeed needs to know your gradient accumulation steps beforehand, so don't forget to pass it
# Remember you still need to do gradient accumulation by yourself, just like you would have done without deepspeed
deepspeed_plugin = DeepSpeedPlugin(zero_stage=2, gradient_accumulation_steps=2)
accelerator = Accelerator(mixed_precision='fp16', deepspeed_plugin=deepspeed_plugin)
# How to save your 🤗 Transformer?
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(save_dir, save_function=accelerator.save, state_dict=accelerator.get_state_dict(model))
```
Note: DeepSpeed support is experimental for now. In case you get into some problem, please open an issue.
## Launching your training from a notebook
🤗 Accelerate also provides a `notebook_launcher` function you can use in a notebook to launch a distributed training. This is especially useful for Colab or Kaggle notebooks with a TPU backend. Just define your training loop in a `training_function` then in your last cell, add:
```python
from accelerate import notebook_launcher
notebook_launcher(training_function)
```
An example can be found in [this notebook](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb)
## Why should I use 🤗 Accelerate?
You should use 🤗 Accelerate when you want to easily run your training scripts in a distributed environment without having to renounce full control over your training loop. This is not a high-level framework above PyTorch, just a thin wrapper so you don't have to learn a new library. In fact, the whole API of 🤗 Accelerate is in one class, the `Accelerator` object.
## Why shouldn't I use 🤗 Accelerate?
You shouldn't use 🤗 Accelerate if you don't want to write a training loop yourself. There are plenty of high-level libraries above PyTorch that will offer you that, 🤗 Accelerate is not one of them.
## Frameworks using 🤗 Accelerate
If you like the simplicity of 🤗 Accelerate but would prefer a higher-level abstraction around its capabilities, some frameworks and libraries that are built on top of 🤗 Accelerate are listed below:
* [Amphion](https://github.com/open-mmlab/Amphion) is a toolkit for Audio, Music, and Speech Generation. Its purpose is to support reproducible research and help junior researchers and engineers get started in the field of audio, music, and speech generation research and development.
* [Animus](https://github.com/Scitator/animus) is a minimalistic framework to run machine learning experiments. Animus highlights common "breakpoints" in ML experiments and provides a unified interface for them within [IExperiment](https://github.com/Scitator/animus/blob/main/animus/core.py#L76).
* [Catalyst](https://github.com/catalyst-team/catalyst#getting-started) is a PyTorch framework for Deep Learning Research and Development. It focuses on reproducibility, rapid experimentation, and codebase reuse so you can create something new rather than write yet another train loop. Catalyst provides a [Runner](https://catalyst-team.github.io/catalyst/api/core.html#runner) to connect all parts of the experiment: hardware backend, data transformations, model training, and inference logic.
* [fastai](https://github.com/fastai/fastai#installing) is a PyTorch framework for Deep Learning that simplifies training fast and accurate neural nets using modern best practices. fastai provides a [Learner](https://docs.fast.ai/learner.html#Learner) to handle the training, fine-tuning, and inference of deep learning algorithms.
* [Finetuner](https://github.com/jina-ai/finetuner) is a service that enables models to create higher-quality embeddings for semantic search, visual similarity search, cross-modal text<->image search, recommendation systems, clustering, duplication detection, anomaly detection, or other uses.
* [InvokeAI](https://github.com/invoke-ai/InvokeAI) is a creative engine for Stable Diffusion models, offering industry-leading WebUI, terminal usage support, and serves as the foundation for many commercial products.
* [Kornia](https://kornia.readthedocs.io/en/latest/get-started/introduction.html) is a differentiable library that allows classical computer vision to be integrated into deep learning models. Kornia provides a [Trainer](https://kornia.readthedocs.io/en/latest/x.html#kornia.x.Trainer) with the specific purpose to train and fine-tune the supported deep learning algorithms within the library.
* [Open Assistant](https://projects.laion.ai/Open-Assistant/) is a chat-based assistant that understands tasks, can interact with their party systems, and retrieve information dynamically to do so.
* [pytorch-accelerated](https://github.com/Chris-hughes10/pytorch-accelerated) is a lightweight training library, with a streamlined feature set centered around a general-purpose [Trainer](https://pytorch-accelerated.readthedocs.io/en/latest/trainer.html), that places a huge emphasis on simplicity and transparency; enabling users to understand exactly what is going on under the hood, but without having to write and maintain the boilerplate themselves!
* [Stable Diffusion web UI](https://github.com/AUTOMATIC1111/stable-diffusion-webui) is an open-source browser-based easy-to-use interface based on the Gradio library for Stable Diffusion.
* [torchkeras](https://github.com/lyhue1991/torchkeras) is a simple tool for training pytorch model just in a keras style, a dynamic and beautiful plot is provided in notebook to monitor your loss or metric.
* [transformers](https://github.com/huggingface/transformers) as a tool for helping train state-of-the-art machine learning models in PyTorch, Tensorflow, and JAX. (Accelerate is the backend for the PyTorch side).
## Installation
This repository is tested on Python 3.8+ and PyTorch 1.10.0+
You should install 🤗 Accelerate in a [virtual environment](https://docs.python.org/3/library/venv.html). If you're unfamiliar with Python virtual environments, check out the [user guide](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/).
First, create a virtual environment with the version of Python you're going to use and activate it.
Then, you will need to install PyTorch: refer to the [official installation page](https://pytorch.org/get-started/locally/#start-locally) regarding the specific install command for your platform. Then 🤗 Accelerate can be installed using pip as follows:
```bash
pip install accelerate
```
## Supported integrations
- CPU only
- multi-CPU on one node (machine)
- multi-CPU on several nodes (machines)
- single GPU
- multi-GPU on one node (machine)
- multi-GPU on several nodes (machines)
- TPU
- FP16/BFloat16 mixed precision
- FP8 mixed precision with [Transformer Engine](https://github.com/NVIDIA/TransformerEngine) or [MS-AMP](https://github.com/Azure/MS-AMP/)
- DeepSpeed support (Experimental)
- PyTorch Fully Sharded Data Parallel (FSDP) support (Experimental)
- Megatron-LM support (Experimental)
## Citing 🤗 Accelerate
If you use 🤗 Accelerate in your publication, please cite it by using the following BibTeX entry.
```bibtex
@Misc{accelerate,
title = {Accelerate: Training and inference at scale made simple, efficient and adaptable.},
author = {Sylvain Gugger and Lysandre Debut and Thomas Wolf and Philipp Schmid and Zachary Mueller and Sourab Mangrulkar and Marc Sun and Benjamin Bossan},
howpublished = {\url{https://github.com/huggingface/accelerate}},
year = {2022}
}
```

5
benchmarks/README.md Normal file
View File

@ -0,0 +1,5 @@
# Benchmarks
The folders below contain suites to test various functionalities in Accelerate.
See their relevant README.md's for more information.

View File

@ -0,0 +1,46 @@
# Big model inference benchmarks
Running inference with Accelerate on big models.
## Setup
These benchmarks use the `transformers` library:
```bash
pip install transformers
```
To reproduce or test a new setup, run
```py
python inference_acc.py model_name
```
This script supports `gpt-j-6b`, `gpt-neox`, `opt` (30B version) and `T0pp` out of the box, but you can specify any valid checkpoint for `model_name`.
To force a different `torch_dtype` than the one in the config: `--torch_dtype xxx`.
If you get an error linked to disk offload, you need to add the option `--disk-offload`
## Results
On a setup with two Titan RTXs (24GB of RAM) and 32GB of RAM, we get the following benchmarks (T0pp does not run in float16, which is why it's not included).
| Model | Model load time | Generation time | dtype | GPU 0 use | GPU 1 use | CPU use | Disk offload |
|:-----:|:---------------:|:---------------:|:-----:|:---------:|:---------:|:-------:|:------------:|
| GPT-J-6B | 8.7s | 0.05s per token | float16 | 11.7GB | 0GB | 0GB | no |
| GPT-J-6B | 12.4s | 0.06s per token | float32 | 21.9GB | 1.5GB | 0GB | no |
| GPT-Neo-X-20B | 30.9s | 0.08s per token | float16 | 21.5GB | 18GB | 0GB | no |
| GPT-Neo-X-20B | 78.2s | 10.72s per token | float32 | 20.3GB | 22.7 GB | 24.4GB | yes |
| T0pp (11B) | 29.4s | 0.05s per token | float32 | 21.1GB | 21.3GB | 0GB | no |
| OPT-30B | 34.5s | 2.37s per token | float16 | 20.7GB | 22.3GB | 14.1GB | no |
| OPT-30B | 112.3s | 33.9s per token | float32 | 20.2GB | 21.2GB | 23.5GB | yes |
Note on the results:
- using two GPUs instead of one does not slow down generation
- using CPU offload slows down a bit (see OPT-30b)
- using disk offload slows down a lot (need to implement prefetching)
You will also note that Accelerate does not use anymore GPU and CPU RAM than necessary:
- peak GPU memory is exactly the size of the model put on a given GPU
- peak CPU memory is either the size of the biggest checkpoint shard or the part of the model offloaded on CPU, whichever is bigger.

View File

@ -0,0 +1,143 @@
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import time
import torch
import transformers
from measures_util import end_measure, log_measures, start_measure
from transformers import AutoConfig, AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
from accelerate.utils import compute_module_sizes
DEFAULT_MODELS = {
"gpt-j-6b": {"is_causal": True, "model": "sgugger/sharded-gpt-j-6B", "tokenizer": "EleutherAI/gpt-j-6B"},
"gpt-neox": {"is_causal": True, "model": "EleutherAI/gpt-neox-20b"},
"opt": {"is_causal": True, "model": "facebook/opt-30b"},
"T0pp": {"is_causal": False, "model": "bigscience/T0pp", "model_revision": "sharded"},
}
PROMPTS = [
"Hello, my name is",
"Are unicorns real? Unicorns are",
"For the first time in several years,",
"My name is Julien and I am",
"The goal of life is",
"Whenever I'm sad, I like to",
]
def parse_args():
parser = argparse.ArgumentParser(description="Run and time generations on a big model using Accelerate.")
parser.add_argument("model_name", type=str, default=None, help="The name of the model to try.")
parser.add_argument(
"--tokenizer_name", type=str, default=None, help="The name of the tokenizer (if different from the model."
)
parser.add_argument("--is_causal", type=bool, default=None, help="Whether or not the model is causal.")
parser.add_argument(
"--model_revision", type=str, default=None, help="The revision to use for the model checkpoint."
)
parser.add_argument("--torch_dtype", type=str, default=None, help="The dtype for the model.")
parser.add_argument("--disk_offload", action="store_true")
args = parser.parse_args()
# Sanitize args
if args.model_name in DEFAULT_MODELS:
defaults = DEFAULT_MODELS[args.model_name]
args.model_name = defaults["model"]
if args.tokenizer_name is None:
args.tokenizer_name = defaults.get("tokenizer", args.model_name)
if args.is_causal is None:
args.is_causal = defaults["is_causal"]
if args.model_revision is None:
args.model_revision = defaults.get("model_revision", "main")
if args.is_causal is None:
raise ValueError("Could not infer the default for `--is_causal`, pass either True or False for it.")
if args.tokenizer_name is None:
args.tokenizer_name = args.model_name
if args.model_revision is None:
args.model_revision = "main"
return args
def main():
transformers.utils.logging.set_verbosity_error()
args = parse_args()
if args.torch_dtype is None:
config = AutoConfig.from_pretrained(args.model_name)
torch_dtype = getattr(config, "torch_dtype", torch.float32)
else:
torch_dtype = getattr(torch, args.torch_dtype)
model_cls = AutoModelForCausalLM if args.is_causal else AutoModelForSeq2SeqLM
kwargs = {
"torch_dtype": torch_dtype,
"revision": args.model_revision,
}
if args.disk_offload:
kwargs["offload_folder"] = "tmp_offload"
kwargs["offload_state_dict"] = True
start_measures = start_measure()
model = model_cls.from_pretrained(args.model_name, device_map="auto", **kwargs)
end_measures = end_measure(start_measures)
log_measures(end_measures, "Model loading")
module_sizes = compute_module_sizes(model)
device_size = {v: 0 for v in model.hf_device_map.values()}
for module, device in model.hf_device_map.items():
device_size[device] += module_sizes[module]
message = "\n".join([f"- {device}: {size // 2**20}MiB" for device, size in device_size.items()])
print(f"\nTheoretical use:\n{message}")
tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name)
start_measures = start_measure()
generation_times = []
gen_tokens = []
texts_outs = []
for prompt in PROMPTS:
inputs = tokenizer(prompt, return_tensors="pt").to(0)
tokens = inputs["input_ids"][0].tolist()
before_generate = time.time()
outputs = model.generate(inputs["input_ids"])
after_generate = time.time()
outputs = outputs[0].tolist()
num_gen_tokens = len(outputs) if outputs[: len(tokens)] != tokens else len(outputs) - len(tokens)
generation_time = after_generate - before_generate
text_out = tokenizer.decode(outputs, skip_special_tokens=True)
texts_outs.append(text_out)
generation_times.append(generation_time)
gen_tokens.append(num_gen_tokens)
print(f"Prompt: {prompt}\nGeneration {text_out}\nIn {generation_time:.2f}s for {num_gen_tokens} tokens\n")
end_measures = end_measure(start_measures)
log_measures(end_measures, "Model generation")
generation_times_per_token = [gen / tok for gen, tok in zip(generation_times, gen_tokens)]
avg_gen = sum(generation_times_per_token) / len(generation_times)
print(f"Average time of generation per token: {avg_gen:.2f}s")
print(f"First generation (avg time per token): {generation_times_per_token[0]:.2f}s")
avg_gen = sum(generation_times_per_token[1:]) / (len(generation_times_per_token) - 1)
print(f"Average time of generation per token (excluding the first): {avg_gen:.2f}s")
if __name__ == "__main__":
main()

View File

@ -0,0 +1,98 @@
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import threading
import time
import psutil
import torch
class PeakCPUMemory:
def __init__(self):
self.process = psutil.Process()
self.peak_monitoring = False
def peak_monitor(self):
self.cpu_memory_peak = -1
while True:
self.cpu_memory_peak = max(self.process.memory_info().rss, self.cpu_memory_peak)
# can't sleep or will not catch the peak right (this comment is here on purpose)
if not self.peak_monitoring:
break
def start(self):
self.peak_monitoring = True
self.thread = threading.Thread(target=self.peak_monitor)
self.thread.daemon = True
self.thread.start()
def stop(self):
self.peak_monitoring = False
self.thread.join()
return self.cpu_memory_peak
cpu_peak_tracker = PeakCPUMemory()
def start_measure():
# Time
measures = {"time": time.time()}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
measures["cpu"] = psutil.Process().memory_info().rss
cpu_peak_tracker.start()
# GPU mem
for i in range(torch.cuda.device_count()):
measures[str(i)] = torch.cuda.memory_allocated(i)
torch.cuda.reset_peak_memory_stats()
return measures
def end_measure(start_measures):
# Time
measures = {"time": time.time() - start_measures["time"]}
gc.collect()
torch.cuda.empty_cache()
# CPU mem
measures["cpu"] = (psutil.Process().memory_info().rss - start_measures["cpu"]) / 2**20
measures["cpu-peak"] = (cpu_peak_tracker.stop() - start_measures["cpu"]) / 2**20
# GPU mem
for i in range(torch.cuda.device_count()):
measures[str(i)] = (torch.cuda.memory_allocated(i) - start_measures[str(i)]) / 2**20
measures[f"{i}-peak"] = (torch.cuda.max_memory_allocated(i) - start_measures[str(i)]) / 2**20
return measures
def log_measures(measures, description):
print(f"{description}:")
print(f"- Time: {measures['time']:.2f}s")
for i in range(torch.cuda.device_count()):
print(f"- GPU {i} allocated: {measures[str(i)]:.2f}MiB")
peak = measures[f"{i}-peak"]
print(f"- GPU {i} peak: {peak:.2f}MiB")
print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB")
print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB")

View File

@ -0,0 +1,12 @@
FROM ghcr.io/azure/msamp
RUN pip install transformers evaluate datasets
RUN git clone https://github.com/huggingface/accelerate
RUN cd accelerate && \
pip install -e . && \
cd benchmarks/fp8
CMD ["bash"]

View File

@ -0,0 +1,123 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `MS-AMP`.
This particular script verifies this for DDP training.
"""
import evaluate
import msamp
import torch
from fp8_utils import evaluate_model, get_training_utilities
from torch.nn.parallel import DistributedDataParallel as DDP
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.utils import FP8RecipeKwargs, get_grad_scaler, set_seed
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
def train_baseline(opt_level="O2"):
set_seed(42)
scaler = get_grad_scaler()
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
accelerator = Accelerator()
device = accelerator.device
model, optimizer = msamp.initialize(model, optimizer, opt_level=opt_level)
model.to(device)
# Convert the model to DDP
device_ids, output_device = [accelerator.local_process_index], accelerator.local_process_index
model = DDP(model, device_ids=device_ids, output_device=output_device)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for i, batch in enumerate(train_dataloader):
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
outputs = model(**batch)
loss = outputs.loss
scaler.scale(loss).backward()
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
def train_integration(opt_level="O2"):
kwargs_handlers = [FP8RecipeKwargs(backend="msamp", opt_level=opt_level)]
AcceleratorState()._reset_state(True)
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=kwargs_handlers)
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer = accelerator.prepare(model, optimizer)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for i, batch in enumerate(train_dataloader):
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
if __name__ == "__main__":
for opt_level in ["O1", "O2"]:
baseline_not_trained, baseline_trained = train_baseline(opt_level)
accelerator_not_trained, accelerator_trained = train_integration(opt_level)
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"Accuracy not the same for untrained baseline and accelerator using opt_level={opt_level}: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"F1 not the same for untrained baseline and accelerator using opt_level={opt_level}: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"Accuracy not the same for trained baseline and accelerator using opt_level={opt_level}: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"F1 not the same for trained baseline and accelerator using opt_level={opt_level}: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)

View File

@ -0,0 +1,161 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `MS-AMP`.
This particular script verifies this for DeepSpeed training.
NOTE: MS-AMP does *not* support ZeRO-3.
"""
# import msamp.deepspeed as msamp_deepspeed
import evaluate
import torch
from fp8_utils import evaluate_model, get_training_utilities
from msamp import deepspeed as msamp_deepspeed
from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.state import AcceleratorState
from accelerate.utils import set_seed
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
def train_baseline(zero_stage: int = 1, opt_level: str = "O1"):
set_seed(42)
accelerator = Accelerator()
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
import numpy as np
config = {
"train_batch_size": 32,
"train_micro_batch_size_per_gpu": 16,
"gradient_accumulation_steps": 1,
"zero_optimization": {
"stage": zero_stage,
"offload_optimizer": {"device": "none", "nvme_path": None},
"offload_param": {"device": "none", "nvme_path": None},
},
"gradient_clipping": 1.0,
"steps_per_print": np.inf,
"bf16": {"enabled": True},
"fp16": {"enabled": False},
"zero_allow_untested_optimizer": True,
"msamp": {
"enabled": True,
"opt_level": opt_level,
},
}
(
model,
optimizer,
_,
_,
) = msamp_deepspeed.initialize(
model=model,
optimizer=optimizer,
config_params=config,
)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for _ in range(2):
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
model.backward(loss)
model.step()
for _ in range(accelerator.num_processes):
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.destroy()
torch.cuda.empty_cache()
AcceleratorState()._reset_state(True)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
def train_integration(zero_stage: int = 1, opt_level: str = "O1"):
set_seed(42)
deepspeed_plugin = DeepSpeedPlugin(
zero_stage=zero_stage,
enable_msamp=True,
msamp_opt_level=opt_level,
)
accelerator = Accelerator(mixed_precision="fp8", deepspeed_plugin=deepspeed_plugin)
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = 16
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for _ in range(2):
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.destroy()
torch.cuda.empty_cache()
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
AcceleratorState()._reset_state(True)
return base_model_results, trained_model_results
if __name__ == "__main__":
for zero_stage in [1, 2]:
for opt_level in ["O1", "O2", "O3"]:
baseline_not_trained, baseline_trained = train_baseline(zero_stage, opt_level)
accelerator_not_trained, accelerator_trained = train_integration(zero_stage, opt_level)
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"ZERO stage {zero_stage}, opt_level={opt_level}:\nAccuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"ZERO stage {zero_stage}, opt_level={opt_level}:\nF1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"ZERO stage {zero_stage}, opt_level={opt_level}:\nAccuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"ZERO stage {zero_stage}, opt_level={opt_level}:\nF1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)
torch.distributed.destroy_process_group()

View File

@ -0,0 +1,118 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
def get_dataloaders(model_name: str, batch_size: int = 16):
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
datasets = load_dataset("glue", "mrpc")
def tokenize_function(examples):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
remove_columns=["idx", "sentence1", "sentence2"],
)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
def collate_fn(examples):
return tokenizer.pad(
examples,
padding="longest",
pad_to_multiple_of=16, # Specific for FP8
return_tensors="pt",
)
# Instantiate dataloaders.
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"],
shuffle=False,
collate_fn=collate_fn,
batch_size=16,
drop_last=True,
)
return train_dataloader, eval_dataloader
def get_training_utilities(model_name: str, batch_size: int = 16, accelerator=None):
"""
Returns a tuple of:
- Model
- Optimizer
- Train dataloader (prepared)
- Eval dataloader (prepared)
- LR Scheduler
Suitable for training on the MRPC dataset
"""
from torch.optim import AdamW
from transformers import AutoModelForSequenceClassification, get_linear_schedule_with_warmup
from accelerate import Accelerator
if accelerator is None:
accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained(model_name)
train_dataloader, eval_dataloader = get_dataloaders(model_name, batch_size)
optimizer = AdamW(model.parameters(), lr=0.0001)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=100,
num_training_steps=len(train_dataloader) * 2,
)
train_dataloader, eval_dataloader = accelerator.prepare(train_dataloader, eval_dataloader)
return model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
def get_named_parameters(model):
"""
Same thing as `Accelerator.get_named_parameters` Returns a list of the named parameters of the model (extracted
from parallel)
"""
from accelerate.utils import extract_model_from_parallel
model = extract_model_from_parallel(model)
return {n: p for n, p in model.named_parameters()}
def evaluate_model(model, dataloader, metric, accelerator=None):
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
model.eval()
for step, batch in enumerate(dataloader):
with torch.no_grad():
# W/ MS-AMP, we need to cast while evaluating
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
references = batch["labels"]
if accelerator is not None and accelerator.num_processes > 1:
predictions, references = accelerator.gather_for_metrics((predictions, references))
metric.add_batch(predictions=predictions, references=references)
return metric.compute()

View File

@ -0,0 +1,118 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `MS-AMP`.
This particular script verifies this for single GPU training.
"""
import evaluate
import msamp
import torch
from fp8_utils import evaluate_model, get_training_utilities
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.utils import FP8RecipeKwargs, get_grad_scaler, set_seed
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
def train_baseline(opt_level="O2"):
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
model, optimizer = msamp.initialize(model, optimizer, opt_level=opt_level)
model.to("cuda")
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
model.train()
scaler = get_grad_scaler()
for batch in train_dataloader:
batch = batch.to("cuda")
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
outputs = model(**batch)
loss = outputs.loss
loss = scaler.scale(loss)
loss.backward()
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
def train_integration(opt_level="O2"):
kwargs_handlers = [FP8RecipeKwargs(backend="msamp", opt_level=opt_level)]
AcceleratorState()._reset_state(True)
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=kwargs_handlers)
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
model.train()
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
if __name__ == "__main__":
for opt_level in ["O1", "O2"]:
baseline_not_trained, baseline_trained = train_baseline(opt_level)
accelerator_not_trained, accelerator_trained = train_integration(opt_level)
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)

View File

@ -0,0 +1,12 @@
FROM nvcr.io/nvidia/pytorch:24.07-py3
RUN pip install transformers evaluate datasets
RUN git clone https://github.com/huggingface/accelerate.git
RUN cd accelerate && \
pip install -e . && \
cd benchmarks/fp8
RUN /bin/bash

View File

@ -0,0 +1,32 @@
# FP8 Benchmarks
Comparing and running [torchao](https://github.com/pytorch/ao/tree/main/torchao/float8) FP8 with accelerate
## Overview
This repo provides scripts which compare native `torchao` model training against `accelerate`'s own integration. Each modeling type is segmented out via a script, supporting the following:
* Single GPU training (`non_distributed.py`)
* Multi-GPU training via DistributedDataParallelism (`ddp.py`)
* Fully Sharded Data Parallelism (`fsdp.py`)
* DeepSpeed ZeRO 1-3 (`deepspeed.py`)
To run them, it's recommended to use a docker image (see the attached `Dockerfile`) and not install `torchao` manually.
## Running:
There are official Docker images located at `huggingface/accelerate:gpu-fp8-torchao-nightly` which can be used.
You can run all scripts using the core `accelerate launch` command without any `accelerate config` being needed.
For single GPU, run it via `python`:
```bash
python non_distributed.py
```
For the rest, run it via `accelerate launch`:
```bash
accelerate launch ddp.py # or distrib_deepspeed.py, ddp.py
```

View File

@ -0,0 +1,158 @@
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `torchao`.
This particular script verifies this for DDP training.
"""
from functools import partial
import evaluate
import torch
from fp8_utils import get_training_utilities
from torch.nn.parallel import DistributedDataParallel as DDP
from torchao.float8 import convert_to_float8_training
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.utils import AORecipeKwargs, set_seed
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
def evaluate_model(model, dataloader, metric, accelerator=None):
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
model.eval()
for step, batch in enumerate(dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
references = batch["labels"]
if accelerator is not None and accelerator.num_processes > 1:
predictions, references = accelerator.gather_for_metrics((predictions, references))
metric.add_batch(predictions=predictions, references=references)
return metric.compute()
def filter_linear_layers(module, fqn, first_layer_name=None, last_layer_name=None):
if isinstance(module, torch.nn.Linear):
if module.in_features % 16 != 0 or module.out_features % 16 != 0:
return False
# For stability reasons, we skip the first and last linear layers
# Otherwise can lead to the model not training or converging properly
if fqn in (first_layer_name, last_layer_name):
return False
return True
def train_baseline():
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
first_linear = None
last_linear = None
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
if first_linear is None:
first_linear = name
last_linear = name
func = partial(filter_linear_layers, first_layer_name=first_linear, last_layer_name=last_linear)
accelerator = Accelerator()
device = accelerator.device
model.to(device)
convert_to_float8_training(model, module_filter_fn=func)
# Convert the model to DDP
device_ids, output_device = [accelerator.local_process_index], accelerator.local_process_index
model = DDP(model, device_ids=device_ids, output_device=output_device)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for batch in train_dataloader:
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
batch = batch.to(device)
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
def train_integration():
AcceleratorState()._reset_state(True)
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=[AORecipeKwargs()])
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer = accelerator.prepare(model, optimizer)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
if __name__ == "__main__":
baseline_not_trained, baseline_trained = train_baseline()
accelerator_not_trained, accelerator_trained = train_integration()
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)
torch.distributed.destroy_process_group()

View File

@ -0,0 +1,213 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `torchao`.
This particular script verifies this for deepspeed training.
"""
from functools import partial
from unittest.mock import patch
import deepspeed
import evaluate
import torch
from fp8_utils import evaluate_model, get_training_utilities
from torchao.float8 import convert_to_float8_training
from transformers.integrations import HfDeepSpeedConfig
from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.state import AcceleratorState
from accelerate.utils import AORecipeKwargs, set_seed
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
def filter_linear_layers(module, fqn, first_layer_name=None, last_layer_name=None):
if isinstance(module, torch.nn.Linear):
if module.in_features % 16 != 0 or module.out_features % 16 != 0:
return False
# For stability reasons, we skip the first and last linear layers
# Otherwise can lead to the model not training or converging properly
if fqn in (first_layer_name, last_layer_name):
return False
return True
def train_baseline(zero_stage: int = 1):
set_seed(42)
# This forces transformers to think Zero-3 Init should be used
with patch("transformers.integrations.deepspeed.is_deepspeed_zero3_enabled") as mock:
mock.return_value = zero_stage == 3
config = HfDeepSpeedConfig(
{
"train_micro_batch_size_per_gpu": 16,
"gradient_accumulation_steps": 1,
"zero_optimization": {"stage": zero_stage},
}
)
plugin = DeepSpeedPlugin(hf_ds_config=config)
accelerator = Accelerator(deepspeed_plugin=plugin)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
first_linear = None
last_linear = None
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
if first_linear is None:
first_linear = name
last_linear = name
func = partial(filter_linear_layers, first_layer_name=first_linear, last_layer_name=last_linear)
convert_to_float8_training(model, module_filter_fn=func)
import numpy as np
config = {
"train_batch_size": 32,
"train_micro_batch_size_per_gpu": 16,
"gradient_accumulation_steps": 1,
"zero_optimization": {
"stage": zero_stage,
"offload_optimizer": {"device": "none", "nvme_path": None},
"offload_param": {"device": "none", "nvme_path": None},
"stage3_gather_16bit_weights_on_model_save": False,
},
"gradient_clipping": 1.0,
"steps_per_print": np.inf,
"bf16": {"enabled": True},
"fp16": {"enabled": False},
"zero_allow_untested_optimizer": True,
}
(
model,
optimizer,
_,
lr_scheduler,
) = deepspeed.initialize(
model=model,
optimizer=optimizer,
lr_scheduler=lr_scheduler,
config_params=config,
)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
model_outputs = []
data = []
for batch in train_dataloader:
outputs = model(**batch)
data.append(batch.to("cpu"))
model_outputs.append(outputs.logits.to("cpu"))
loss = outputs.loss
model.backward(loss)
model.step()
for _ in range(accelerator.num_processes):
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.destroy()
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
del config
return base_model_results, trained_model_results, model_outputs, data
def train_integration(zero_stage: int = 1):
set_seed(42)
AcceleratorState()._reset_state(True)
config = HfDeepSpeedConfig(
{
"train_micro_batch_size_per_gpu": 16,
"gradient_accumulation_steps": 1,
"zero_optimization": {"stage": zero_stage},
}
)
deepspeed_plugin = DeepSpeedPlugin(
hf_ds_config=config,
)
# This forces transformers to think Zero-3 Init should be used
with patch("transformers.integrations.deepspeed.is_deepspeed_zero3_enabled") as mock:
mock.return_value = zero_stage == 3
accelerator = Accelerator(
mixed_precision="fp8", kwargs_handlers=[AORecipeKwargs()], deepspeed_plugin=deepspeed_plugin
)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer, lr_scheduler, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, lr_scheduler, train_dataloader, eval_dataloader
)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
model_outputs = []
data = []
for batch in train_dataloader:
outputs = model(**batch)
data.append(batch.to("cpu"))
model_outputs.append(outputs.logits.to("cpu"))
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.destroy()
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
del config
return base_model_results, trained_model_results, model_outputs, data
if __name__ == "__main__":
for zero_stage in [1, 2, 3]:
baseline_not_trained, baseline_trained, baseline_outputs, baseline_data = train_baseline(zero_stage)
accelerator_not_trained, accelerator_trained, accelerator_outputs, accelerator_data = train_integration(
zero_stage
)
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)
AcceleratorState()._reset_state(True)
torch.distributed.destroy_process_group()

View File

@ -0,0 +1,116 @@
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
def get_dataloaders(model_name: str, batch_size: int = 16):
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
datasets = load_dataset("glue", "mrpc")
def tokenize_function(examples):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
remove_columns=["idx", "sentence1", "sentence2"],
)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
def collate_fn(examples):
return tokenizer.pad(
examples,
padding="longest",
pad_to_multiple_of=16, # Specific for FP8
return_tensors="pt",
)
# Instantiate dataloaders.
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"],
shuffle=False,
collate_fn=collate_fn,
batch_size=16,
drop_last=True,
)
return train_dataloader, eval_dataloader
def get_training_utilities(model_name: str, batch_size: int = 16, accelerator=None, prepare=True):
"""
Returns a tuple of:
- Model
- Optimizer
- Train dataloader (prepared)
- Eval dataloader (prepared)
- LR Scheduler
Suitable for training on the MRPC dataset
"""
from torch.optim import AdamW
from transformers import AutoModelForSequenceClassification, get_linear_schedule_with_warmup
from accelerate import Accelerator
if accelerator is None:
accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained(model_name)
train_dataloader, eval_dataloader = get_dataloaders(model_name, batch_size)
optimizer = AdamW(model.parameters(), lr=0.0001)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=100,
num_training_steps=len(train_dataloader) * 2,
)
train_dataloader, eval_dataloader = accelerator.prepare(train_dataloader, eval_dataloader)
return model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
def get_named_parameters(model):
"""
Same thing as `Accelerator.get_named_parameters` Returns a list of the named parameters of the model (extracted
from parallel)
"""
from accelerate.utils import extract_model_from_parallel
model = extract_model_from_parallel(model)
return {n: p for n, p in model.named_parameters()}
def evaluate_model(model, dataloader, metric, accelerator=None):
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
model.eval()
for step, batch in enumerate(dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
references = batch["labels"]
if accelerator is not None and accelerator.num_processes > 1:
predictions, references = accelerator.gather_for_metrics((predictions, references))
metric.add_batch(predictions=predictions, references=references)
return metric.compute()

View File

@ -0,0 +1,173 @@
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `torchao`.
This particular script verifies this for FSDP training.
"""
from functools import partial
import evaluate
import torch
from fp8_utils import get_training_utilities
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torchao.float8 import convert_to_float8_training
from transformers.models.bert import BertLayer
from accelerate import Accelerator
from accelerate import FullyShardedDataParallelPlugin as FSDPPlugin
from accelerate.state import AcceleratorState
from accelerate.utils import AORecipeKwargs, set_seed
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
FSDP_WRAP_POLICY = partial(transformer_auto_wrap_policy, transformer_layer_cls={BertLayer})
def filter_linear_layers(module, fqn, first_layer_name=None, last_layer_name=None):
if isinstance(module, torch.nn.Linear):
if module.in_features % 16 != 0 or module.out_features % 16 != 0:
return False
# For stability reasons, we skip the first and last linear layers
# Otherwise can lead to the model not training or converging properly
if fqn in (first_layer_name, last_layer_name):
return False
return True
def evaluate_model(model, dataloader, metric, accelerator=None):
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
model.eval()
for step, batch in enumerate(dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
references = batch["labels"]
if accelerator is not None and accelerator.num_processes > 1:
predictions, references = accelerator.gather_for_metrics((predictions, references))
metric.add_batch(predictions=predictions, references=references)
return metric.compute()
def train_baseline():
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
first_linear = None
last_linear = None
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
if first_linear is None:
first_linear = name
last_linear = name
func = partial(filter_linear_layers, first_layer_name=first_linear, last_layer_name=last_linear)
accelerator = Accelerator()
device = accelerator.device
model.to(device)
convert_to_float8_training(model, module_filter_fn=func)
# Convert the model to FSDP
model = FSDP(
model,
use_orig_params=True,
mixed_precision=MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32),
auto_wrap_policy=FSDP_WRAP_POLICY,
)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for batch in train_dataloader:
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
batch = batch.to(device)
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
def train_integration():
AcceleratorState()._reset_state(True)
fsdp_plugin = FSDPPlugin(
auto_wrap_policy=FSDP_WRAP_POLICY,
use_orig_params=True,
mixed_precision_policy=MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32),
)
accelerator = Accelerator(mixed_precision="fp8", fsdp_plugin=fsdp_plugin, kwargs_handlers=[AORecipeKwargs()])
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer = accelerator.prepare(model, optimizer)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
if __name__ == "__main__":
baseline_not_trained, baseline_trained = train_baseline()
accelerator_not_trained, accelerator_trained = train_integration()
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)
torch.distributed.destroy_process_group()

View File

@ -0,0 +1,145 @@
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `torchao`.
This particular script verifies this for single GPU training.
"""
from functools import partial
import evaluate
import torch
from fp8_utils import get_training_utilities
from torchao.float8 import convert_to_float8_training
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.utils import AORecipeKwargs, set_seed
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
def evaluate_model(model, dataloader, metric, accelerator=None):
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
model.eval()
for step, batch in enumerate(dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
references = batch["labels"]
if accelerator is not None and accelerator.num_processes > 1:
predictions, references = accelerator.gather_for_metrics((predictions, references))
metric.add_batch(predictions=predictions, references=references)
return metric.compute()
def filter_linear_layers(module, fqn, first_layer_name=None, last_layer_name=None):
if isinstance(module, torch.nn.Linear):
if module.in_features % 16 != 0 or module.out_features % 16 != 0:
return False
# For stability reasons, we skip the first and last linear layers
# Otherwise can lead to the model not training or converging properly
if fqn in (first_layer_name, last_layer_name):
return False
return True
def train_baseline():
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
first_linear = None
last_linear = None
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
if first_linear is None:
first_linear = name
last_linear = name
func = partial(filter_linear_layers, first_layer_name=first_linear, last_layer_name=last_linear)
model.to("cuda")
convert_to_float8_training(model, module_filter_fn=func)
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
model.train()
for batch in train_dataloader:
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
def train_integration():
set_seed(42)
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=[AORecipeKwargs()])
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model = accelerator.prepare(model)
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
model.train()
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
if __name__ == "__main__":
baseline_not_trained, baseline_trained = train_baseline()
AcceleratorState._reset_state(True)
accelerator_not_trained, accelerator_trained = train_integration()
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)

View File

@ -0,0 +1,12 @@
FROM nvcr.io/nvidia/pytorch:24.07-py3
RUN pip install transformers evaluate datasets
RUN git clone https://github.com/huggingface/accelerate.git
RUN cd accelerate && \
pip install -e . && \
cd benchmarks/fp8
RUN /bin/bash

View File

@ -0,0 +1,32 @@
# FP8 Benchmarks
Comparing and running [TransformerEngine](https://github.com/NVIDIA/TransformerEngine) FP8 with accelerate
## Overview
This repo provides scripts which compare native TransformerEngine model training against `accelerate`'s own integration. Each modeling type is segmented out via a script, supporting the following:
* Single GPU training (`non_distributed.py`)
* Multi-GPU training via DistributedDataParallelism (`ddp.py`)
* Fully Sharded Data Parallelism (`fsdp.py`)
* DeepSpeed ZeRO 1-3 (`deepspeed.py`)
To run them, it's recommended to use a docker image (see the attached `Dockerfile`) and not install `TransformerEngine` manually.
## Running:
There are official Docker images located at `huggingface/accelerate:gpu-fp8-transformerengine-nightly` which can be used.
You can run all scripts using the core `accelerate launch` command without any `accelerate config` being needed.
For single GPU, run it via `python`:
```bash
python non_distributed.py
```
For the rest, run it via `accelerate launch`:
```bash
accelerate launch ddp.py # or distrib_deepspeed.py, ddp.py
```

View File

@ -0,0 +1,144 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `TransformersEngine`.
This particular script verifies this for DDP training.
"""
import evaluate
import torch
import transformer_engine.common.recipe as te_recipe
import transformer_engine.pytorch as te
from fp8_utils import evaluate_model, get_named_parameters, get_training_utilities
from torch.nn.parallel import DistributedDataParallel as DDP
from transformer_engine.common.recipe import DelayedScaling
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.utils import FP8RecipeKwargs, set_seed
from accelerate.utils.transformer_engine import convert_model
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
def train_baseline():
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
accelerator = Accelerator()
device = accelerator.device
model.to(device)
# Convert the model to TE
old_named_params = get_named_parameters(model)
with torch.no_grad():
convert_model(model)
FP8_RECIPE_KWARGS = {"fp8_format": te_recipe.Format.HYBRID, "amax_history_len": 32, "amax_compute_algo": "max"}
fp8_recipe = DelayedScaling(**FP8_RECIPE_KWARGS)
new_named_params = get_named_parameters(model)
# Convert the model to DDP
device_ids, output_device = [accelerator.local_process_index], accelerator.local_process_index
model = DDP(model, device_ids=device_ids, output_device=output_device)
mapping = {p: new_named_params[n] for n, p in old_named_params.items()}
for param_group in optimizer.param_groups:
param_group["params"] = [mapping[p] for p in param_group["params"]]
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for _ in range(2):
for batch in train_dataloader:
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe):
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
batch = batch.to(device)
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
def train_integration():
FP8_RECIPE_KWARGS = {"fp8_format": "HYBRID", "amax_history_len": 32, "amax_compute_algo": "max"}
kwargs_handlers = [FP8RecipeKwargs(backend="TE", **FP8_RECIPE_KWARGS)]
AcceleratorState()._reset_state(True)
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=kwargs_handlers)
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer = accelerator.prepare(model, optimizer)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for _ in range(2):
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
if __name__ == "__main__":
baseline_not_trained, baseline_trained = train_baseline()
accelerator_not_trained, accelerator_trained = train_integration()
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)
torch.distributed.destroy_process_group()

View File

@ -0,0 +1,191 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `TransformersEngine`.
This particular script verifies this for DDP training.
"""
from unittest.mock import patch
import deepspeed
import evaluate
import torch
import transformer_engine.common.recipe as te_recipe
import transformer_engine.pytorch as te
from fp8_utils import evaluate_model, get_named_parameters, get_training_utilities
from transformer_engine.common.recipe import DelayedScaling
from accelerate import Accelerator, DeepSpeedPlugin
from accelerate.state import AcceleratorState
from accelerate.utils import FP8RecipeKwargs, set_seed
from accelerate.utils.transformer_engine import convert_model
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
def train_baseline(zero_stage: int = 1):
# This forces transformers to think Zero-3 Init should be used
with patch("transformers.integrations.deepspeed.is_deepspeed_zero3_enabled") as mock:
mock.return_value = zero_stage == 3
set_seed(42)
accelerator = Accelerator()
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
# Convert the model to TE
old_named_params = get_named_parameters(model)
with torch.no_grad():
convert_model(model)
new_named_params = get_named_parameters(model)
mapping = {p: new_named_params[n] for n, p in old_named_params.items()}
for param_group in optimizer.param_groups:
param_group["params"] = [mapping[p] for p in param_group["params"]]
FP8_RECIPE_KWARGS = {"fp8_format": te_recipe.Format.HYBRID, "amax_history_len": 32, "amax_compute_algo": "max"}
fp8_recipe = DelayedScaling(**FP8_RECIPE_KWARGS)
import numpy as np
config = {
"train_batch_size": 16,
"train_micro_batch_size_per_gpu": 16,
"gradient_accumulation_steps": 1,
"zero_optimization": {
"stage": zero_stage,
"offload_optimizer": {"device": "none", "nvme_path": None},
"offload_param": {"device": "none", "nvme_path": None},
"stage3_gather_16bit_weights_on_model_save": False,
},
"gradient_clipping": 1.0,
"steps_per_print": np.inf,
"bf16": {"enabled": True},
"fp16": {"enabled": False},
"zero_allow_untested_optimizer": True,
}
(
model,
optimizer,
_,
_,
) = deepspeed.initialize(
model=model,
optimizer=optimizer,
config_params=config,
)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
model_outputs = []
data = []
for _ in range(2):
for batch in train_dataloader:
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe):
outputs = model(**batch)
data.append(batch.to("cpu"))
model_outputs.append(outputs.logits.to("cpu"))
loss = outputs.loss
model.backward(loss)
model.step()
for _ in range(accelerator.num_processes):
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.destroy()
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results, model_outputs, data
def train_integration(zero_stage: int = 1):
set_seed(42)
FP8_RECIPE_KWARGS = {"fp8_format": "HYBRID", "amax_history_len": 32, "amax_compute_algo": "max"}
kwargs_handlers = [FP8RecipeKwargs(backend="TE", **FP8_RECIPE_KWARGS)]
AcceleratorState()._reset_state(True)
deepspeed_plugin = DeepSpeedPlugin(
zero_stage=zero_stage,
zero3_init_flag=zero_stage == 3,
)
accelerator = Accelerator(
mixed_precision="fp8", kwargs_handlers=kwargs_handlers, deepspeed_plugin=deepspeed_plugin
)
accelerator.state.deepspeed_plugin.deepspeed_config["train_micro_batch_size_per_gpu"] = 16
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
model_outputs = []
data = []
for _ in range(2):
for batch in train_dataloader:
outputs = model(**batch)
data.append(batch.to("cpu"))
model_outputs.append(outputs.logits.to("cpu"))
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.destroy()
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results, model_outputs, data
if __name__ == "__main__":
for zero_stage in [1, 2, 3]:
baseline_not_trained, baseline_trained, baseline_outputs, baseline_data = train_baseline(zero_stage)
accelerator_not_trained, accelerator_trained, accelerator_outputs, accelerator_data = train_integration(
zero_stage
)
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"ZERO stage {zero_stage}: Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"ZERO stage {zero_stage}: F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)
torch.distributed.destroy_process_group()

View File

@ -0,0 +1,116 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
def get_dataloaders(model_name: str, batch_size: int = 16):
from datasets import load_dataset
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
datasets = load_dataset("glue", "mrpc")
def tokenize_function(examples):
# max_length=None => use the model max length (it's actually the default)
outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None)
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
remove_columns=["idx", "sentence1", "sentence2"],
)
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
def collate_fn(examples):
return tokenizer.pad(
examples,
padding="longest",
pad_to_multiple_of=16, # Specific for FP8
return_tensors="pt",
)
# Instantiate dataloaders.
train_dataloader = DataLoader(
tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size, drop_last=True
)
eval_dataloader = DataLoader(
tokenized_datasets["validation"],
shuffle=False,
collate_fn=collate_fn,
batch_size=16,
drop_last=True,
)
return train_dataloader, eval_dataloader
def get_training_utilities(model_name: str, batch_size: int = 16, accelerator=None):
"""
Returns a tuple of:
- Model
- Optimizer
- Train dataloader (prepared)
- Eval dataloader (prepared)
- LR Scheduler
Suitable for training on the MRPC dataset
"""
from torch.optim import AdamW
from transformers import AutoModelForSequenceClassification, get_linear_schedule_with_warmup
from accelerate import Accelerator
if accelerator is None:
accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained(model_name)
train_dataloader, eval_dataloader = get_dataloaders(model_name, batch_size)
optimizer = AdamW(model.parameters(), lr=0.0001)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=100,
num_training_steps=len(train_dataloader) * 2,
)
train_dataloader, eval_dataloader = accelerator.prepare(train_dataloader, eval_dataloader)
return model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
def get_named_parameters(model):
"""
Same thing as `Accelerator.get_named_parameters` Returns a list of the named parameters of the model (extracted
from parallel)
"""
from accelerate.utils import extract_model_from_parallel
model = extract_model_from_parallel(model)
return {n: p for n, p in model.named_parameters()}
def evaluate_model(model, dataloader, metric, accelerator=None):
"Turns model to .eval(), runs dataloader, calculates metric, then turns eval back on"
model.eval()
for step, batch in enumerate(dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
references = batch["labels"]
if accelerator is not None and accelerator.num_processes > 1:
predictions, references = accelerator.gather_for_metrics((predictions, references))
metric.add_batch(predictions=predictions, references=references)
return metric.compute()

View File

@ -0,0 +1,161 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `TransformersEngine`.
This particular script verifies this for FSDP training.
"""
from functools import partial
import evaluate
import torch
import transformer_engine.common.recipe as te_recipe
import transformer_engine.pytorch as te
from fp8_utils import evaluate_model, get_named_parameters, get_training_utilities
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp import MixedPrecision
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from transformer_engine.common.recipe import DelayedScaling
from transformers.models.bert import BertLayer
from accelerate import Accelerator
from accelerate import FullyShardedDataParallelPlugin as FSDPPlugin
from accelerate.state import AcceleratorState
from accelerate.utils import FP8RecipeKwargs, set_seed
from accelerate.utils.transformer_engine import convert_model
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
FSDP_WRAP_POLICY = partial(transformer_auto_wrap_policy, transformer_layer_cls={BertLayer})
def train_baseline():
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
accelerator = Accelerator()
device = accelerator.device
model.to(device)
# Convert the model to TE
old_named_params = get_named_parameters(model)
with torch.no_grad():
convert_model(model)
FP8_RECIPE_KWARGS = {"fp8_format": te_recipe.Format.HYBRID, "amax_history_len": 32, "amax_compute_algo": "max"}
fp8_recipe = DelayedScaling(**FP8_RECIPE_KWARGS)
new_named_params = get_named_parameters(model)
# Convert the model to FSDP
model = FSDP(
model,
use_orig_params=True,
mixed_precision=MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32),
auto_wrap_policy=FSDP_WRAP_POLICY,
)
mapping = {p: new_named_params[n] for n, p in old_named_params.items()}
for param_group in optimizer.param_groups:
param_group["params"] = [mapping[p] for p in param_group["params"]]
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for _ in range(2):
for batch in train_dataloader:
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe):
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
batch = batch.to(device)
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
def train_integration():
FP8_RECIPE_KWARGS = {"fp8_format": "HYBRID", "amax_history_len": 32, "amax_compute_algo": "max"}
kwargs_handlers = [FP8RecipeKwargs(backend="TE", **FP8_RECIPE_KWARGS)]
AcceleratorState()._reset_state(True)
fsdp_plugin = FSDPPlugin(
auto_wrap_policy=FSDP_WRAP_POLICY,
use_orig_params=True,
mixed_precision_policy=MixedPrecision(param_dtype=torch.bfloat16, reduce_dtype=torch.float32),
)
accelerator = Accelerator(mixed_precision="fp8", fsdp_plugin=fsdp_plugin, kwargs_handlers=kwargs_handlers)
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer = accelerator.prepare(model, optimizer)
base_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
model.train()
for _ in range(2):
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC, accelerator=accelerator)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
if __name__ == "__main__":
baseline_not_trained, baseline_trained = train_baseline()
accelerator_not_trained, accelerator_trained = train_integration()
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)
torch.distributed.destroy_process_group()

View File

@ -0,0 +1,132 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script tests to ensure that `accelerate` performs at the same level as raw `TransformersEngine`.
This particular script verifies this for single GPU training.
"""
import evaluate
import torch
import transformer_engine.common.recipe as te_recipe
import transformer_engine.pytorch as te
from fp8_utils import evaluate_model, get_named_parameters, get_training_utilities
from transformer_engine.common.recipe import DelayedScaling
from accelerate import Accelerator
from accelerate.state import AcceleratorState
from accelerate.utils import FP8RecipeKwargs, set_seed
from accelerate.utils.transformer_engine import convert_model
MODEL_NAME = "bert-base-cased"
METRIC = evaluate.load("glue", "mrpc")
def train_baseline():
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(MODEL_NAME)
# Convert the model to TE
old_named_params = get_named_parameters(model)
with torch.no_grad():
convert_model(model)
new_named_params = get_named_parameters(model)
mapping = {p: new_named_params[n] for n, p in old_named_params.items()}
for param_group in optimizer.param_groups:
param_group["params"] = [mapping[p] for p in param_group["params"]]
FP8_RECIPE_KWARGS = {"fp8_format": te_recipe.Format.HYBRID, "amax_history_len": 32, "amax_compute_algo": "max"}
fp8_recipe = DelayedScaling(**FP8_RECIPE_KWARGS)
model.to("cuda")
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
model.train()
for batch in train_dataloader:
with te.fp8_autocast(enabled=True, fp8_recipe=fp8_recipe):
with torch.autocast(device_type="cuda", dtype=torch.bfloat16):
batch = batch.to("cuda")
outputs = model(**batch)
loss = outputs.loss
loss.backward()
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
def train_integration():
FP8_RECIPE_KWARGS = {"fp8_format": "HYBRID", "amax_history_len": 32, "amax_compute_algo": "max"}
kwargs_handlers = [FP8RecipeKwargs(backend="TE", **FP8_RECIPE_KWARGS)]
AcceleratorState()._reset_state(True)
accelerator = Accelerator(mixed_precision="fp8", kwargs_handlers=kwargs_handlers)
set_seed(42)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = get_training_utilities(
MODEL_NAME, accelerator=accelerator
)
model, optimizer, lr_scheduler = accelerator.prepare(model, optimizer, lr_scheduler)
base_model_results = evaluate_model(model, eval_dataloader, METRIC)
model.train()
for batch in train_dataloader:
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
trained_model_results = evaluate_model(model, eval_dataloader, METRIC)
assert trained_model_results["accuracy"] > base_model_results["accuracy"], (
f"Accuracy should be higher for the trained model: {trained_model_results['accuracy']} > {base_model_results['accuracy']}"
)
assert trained_model_results["f1"] > base_model_results["f1"], (
f"F1 score should be higher for the trained model: {trained_model_results['f1']} > {base_model_results['f1']}"
)
return base_model_results, trained_model_results
if __name__ == "__main__":
baseline_not_trained, baseline_trained = train_baseline()
accelerator_not_trained, accelerator_trained = train_integration()
assert baseline_not_trained["accuracy"] == accelerator_not_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_not_trained['accuracy']} == {accelerator_not_trained['accuracy']}"
)
assert baseline_not_trained["f1"] == accelerator_not_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_not_trained['f1']} == {accelerator_not_trained['f1']}"
)
assert baseline_trained["accuracy"] == accelerator_trained["accuracy"], (
f"Accuracy should be the same for the baseline and accelerator: {baseline_trained['accuracy']} == {accelerator_trained['accuracy']}"
)
assert baseline_trained["f1"] == accelerator_trained["f1"], (
f"F1 score should be the same for the baseline and accelerator: {baseline_trained['f1']} == {accelerator_trained['f1']}"
)

View File

@ -0,0 +1,74 @@
# FSDP2 Benchmarks
This benchmark showcases `FSDP2` in 🤗 `accelerate` and compares it to `torch` baseline.
## Overview
This benchmark consists of two parts:
- `main.py` is the main script that runs the benchmark
- `visualize.py` is the script that visualizes the results (if `--output_dir` was specified for the previous command)
## Motivation
We want to showcase that 🤗 `accelerate`'s integration of `FSDP2` is on par raw PyTorch, and highlight a "broken" part in PyTorch that creating an optimizer before applying `FSDP2` **doesn't result in a working training loop**. (more on this later)
This script showcases **matching memory usage and convergence between `accelerate` and `torch`'s baseline.**
To deal with this breaking change (and maintain backward compatibility with FSDP1 in terms of an API), `accelerate` had to come up with a workaround since `accelerate` assumes that the user will nearly always create a model, optimizer, scheduler, etc beforehand and bring them themselves. This lead to an issue of a stark increase in memory as well as the model not even training if the user creates an optimizer beforehand.
To workaround this, we replace the parameters inside the optimizer with the newly created FSDP2 sharded ones. More about this can be found in this [blog post (TBD)](TODO)
> [!WARNING]
> This script is intended to fit on 2x 24GB GPUs, though on so few GPUs it's not possible to see the memory difference (discrepancies in grad allocation result in lower memory usage in the non-fixed case), only the difference in convergence. Below are attached results from 8x H100 GPUs where the difference is visible.
> TLDR: more GPUs = bigger memory difference between fixed and non-fixed cases.
## Results
Here are the results from running the benchmark on 8x H100 GPUs:
<p align="center">
<img src="imgs/allocated_memory.png" width="80%" alt="Allocated Memory Usage">
</p>
<p align="center">
<img src="imgs/reserved_memory.png" width="80%" alt="Reserved Memory Usage">
</p>
As you can see, the memory usage of `accelerate` and `torch_post_shard` (the **intended** way) are very similar, while `torch_pre_shard_not_fixed` uses significantly more memory. Our fix in `torch_pre_shard_fixed` brings the memory usage back in line with the **intended** approach.
> [!WARNING]
> Timing discrepancies are due to the benchmarks being ran in 1 script.
## Running
To run the benchmark, you can either use `accelerate launch` or `torchrun`:
```bash
accelerate launch main.py
```
```bash
# For two GPUs
torchrun --nproc_per_node 2 main.py
```
This supports multiple configurable options, you can learn about them by running:
```bash
python3 main.py --help
```
This script will run 4 different benchmarks:
- `torch_optimizer_after_fsdp`: `torch` baseline where optimizer is created after applying `FSDP2`, this is the **intended** way to do it
- `torch_optimizer_before_fsdp_not_fixed`: `torch` baseline where optimizer is created before applying `FSDP2` without fixing the optimizer parameters
- `torch_optimizer_before_fsdp_fixed`: `torch` baseline where optimizer is created before applying `FSDP2` with our fix to the optimizer
- `accelerate`: `accelerate`'s own integration of `FSDP2` where optimizer is created before applying `FSDP2`, but we apply our fix to the optimizer
Memory results are saved in a folder specified by `--output_dir` argument.
Optionally, you can specify `--save_memory_snapshot` to save the torch memory snapshot, which can then be viewed using [`torch memory viz`](https://pytorch.org/memory_viz)
## Visualizing results
To visualize the results, you can run:
```bash
python3 visualize.py --dir <path_to_output_dir>
```
This will then create two plots, showcasing allocated and reserved memory usage between all the different benchmarks discussed above.

Binary file not shown.

After

Width:  |  Height:  |  Size: 124 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

121
benchmarks/fsdp2/main.py Normal file
View File

@ -0,0 +1,121 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
from typing import Callable
import torch
from accelerate import Accelerator
from utils import parse_args, prepare_accelerate, prepare_torch
MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
LEARNING_RATE = 3e-5
CONFIG = {
"model_name": MODEL_NAME,
"learning_rate": LEARNING_RATE,
}
def train(
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
train_dataloader: torch.utils.data.DataLoader,
accelerator: Accelerator,
) -> torch.Tensor:
losses = []
for batch in train_dataloader:
optimizer.zero_grad()
outputs = model(**batch, use_cache=False)
loss = outputs.loss
losses.append(loss.item())
accelerator.backward(loss)
optimizer.step()
return torch.tensor(losses)
def evaluate(args, config: dict, init_fn: Callable, run_name: str) -> torch.Tensor:
model, optimizer, dataloader, accelerator, memory_tracker = init_fn(args, config)
loss = train(model, optimizer, dataloader, accelerator)
memory_tracker.stop()
msg = f"""Results for {run_name} (rank 0):
Loss: {loss[-1].item()}
Peak Allocated Memory: {float(memory_tracker.peak_allocated_memory):.2f} MB
Peak Reserved Memory: {float(memory_tracker.peak_reserved_memory):.2f} MB
{"-" * 34}"""
accelerator.print(msg)
return loss
def main():
args = parse_args()
evaluations = [
functools.partial(
evaluate,
init_fn=functools.partial(prepare_torch, post_shard_optimizer=False, apply_optimizer_fix=True),
run_name="Optimizer Before FSDP (w/ fix)",
),
functools.partial(
evaluate,
init_fn=functools.partial(prepare_torch, post_shard_optimizer=False, apply_optimizer_fix=False),
run_name="Optimizer Before FSDP (w/o fix)",
),
functools.partial(
evaluate,
init_fn=functools.partial(prepare_torch, post_shard_optimizer=True),
run_name="Optimizer After FSDP",
),
functools.partial(evaluate, init_fn=prepare_accelerate, run_name="Accelerate"),
]
labels = [
"Optimizer Before FSDP (w/ fix)",
"Optimizer Before FSDP (w/o fix)",
"Optimizer After FSDP",
"Accelerate",
]
results = {}
for evaluation, label in zip(evaluations, labels):
results[label] = evaluation(args, CONFIG)
torch.testing.assert_close(
results["Optimizer After FSDP"],
results["Optimizer Before FSDP (w/ fix)"],
msg="Optimizer After FSDP and Optimizer Before FSDP (w/ fix) should be the same",
)
torch.testing.assert_close(
results["Optimizer After FSDP"],
results["Accelerate"],
msg="Optimizer After FSDP and Accelerate should be the same",
)
torch.testing.assert_close(
results["Accelerate"],
results["Optimizer Before FSDP (w/ fix)"],
msg="Accelerate and Optimizer Before FSDP (w/ fix) should be the same",
)
torch.distributed.destroy_process_group()
if __name__ == "__main__":
main()

View File

@ -0,0 +1,129 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import json
import os
import threading
import time
import psutil
import torch
from accelerate import PartialState
class MemoryTracker:
def __init__(
self,
device: torch.device,
output_directory: str,
run_name: str,
save_memory_snapshot: bool,
log_interval: float = 0.01,
):
"""Class for tracking gpu and cpu memory usage of the process.
Args:
device (`torch.device`):
Cuda device to monitor.
output_directory (`str`):
Directory to save the memory usage data to, will be created if it doesn't exist.
run_name (`str`):
Name of the run, will be used to name the output files.
save_memory_snapshot (`bool`):
Whether to also save `torch.cuda.memory._dump_snapshot` to the output directory.
log_interval (`float`, *optional*):
Interval in seconds between memory measurements. Defaults to 0.01.
"""
self.log_interval = log_interval
self.save_memory_snapshot = save_memory_snapshot
self.output_directory = output_directory
self.run_name = run_name
self.timestamps = []
self.allocated_memory = []
self.reserved_memory = []
self.virtual_memory = []
self.start_time = None
self.running = False
self._thread = None
self._state = PartialState()
self._process = psutil.Process()
self._devicee = device
def _monitor(self):
self.start_time = time.time()
while self.running:
allocated = torch.cuda.memory_allocated(self._devicee) / (1024 * 1024)
reserved = torch.cuda.memory_reserved(self._devicee) / (1024 * 1024)
virtual_memory = self._process.memory_info().rss / (1024 * 1024)
self.allocated_memory.append(allocated)
self.reserved_memory.append(reserved)
self.virtual_memory.append(virtual_memory)
self.timestamps.append(time.time() - self.start_time)
time.sleep(self.log_interval)
def start(self):
gc.collect()
torch.cuda.empty_cache()
if self.output_directory:
os.makedirs(self.output_directory, exist_ok=True)
if self.save_memory_snapshot:
torch.cuda.memory._record_memory_history()
self.running = True
self._thread = threading.Thread(target=self._monitor)
self._thread.daemon = True
self._thread.start()
def stop(self):
self.running = False
if self._thread:
self._thread.join()
if self.save_memory_snapshot and self._state.is_main_process and self.output_directory:
output_file = os.path.join(self.output_directory, f"{self.run_name}_memory_snapshot.pkl")
torch.cuda.memory._dump_snapshot(output_file)
if self._state.is_main_process and self.output_directory:
path = os.path.join(self.output_directory, f"{self.run_name}_memory_usage.json")
with open(path, "w") as f:
json.dump(
{
"timestamps": self.timestamps,
"allocated_memory": self.allocated_memory,
"reserved_memory": self.reserved_memory,
"virtual_memory": self.virtual_memory,
},
f,
)
torch.cuda.memory._record_memory_history(False)
torch.cuda.empty_cache()
@property
def peak_allocated_memory(self):
return max(self.allocated_memory)
@property
def peak_reserved_memory(self):
return max(self.reserved_memory)

290
benchmarks/fsdp2/utils.py Normal file
View File

@ -0,0 +1,290 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from types import MethodType
from typing import Union
import torch
from datasets import load_dataset
from measure_utils import MemoryTracker
from torch.distributed.fsdp import MixedPrecisionPolicy, fully_shard
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, DataCollatorForLanguageModeling
from transformers.models.qwen2.modeling_qwen2 import Qwen2DecoderLayer
from accelerate import Accelerator, FullyShardedDataParallelPlugin
from accelerate.state import AcceleratorState, is_initialized
from accelerate.utils import convert_outputs_to_fp32, set_seed
SEED = 421
def get_named_parameters(model: torch.nn.Module, drop_refs: bool = False) -> dict[str, Union[torch.Tensor, int]]:
"""
This function returns a dictionary mapping the parameter names to their data pointers or
the original parameters if `drop_refs` is `False`.
It is used to get the original parameter names before `fully_shard` is applied.
We only return the data pointers, so we drop the references to the original parameters
and `fully_shard` will then trigger a new allocation for the sharded ones.
Args:
model (`torch.nn.Module`): Model instance to get the named parameters from
drop_refs (`bool`, *optional*, defaults to `False`): Whether to drop the references to the original parameters
Returns:
`dict[str, Union[torch.Tensor, int]]`: Dictionary mapping the parameter names to their data pointers or the original parameters if `drop_refs` is `False`
"""
named_parameters = {}
for n, p in model.named_parameters():
# We only preserve the data pointers to have the unique 1:1 mapping between the original and the sharded parameters
named_parameters[n] = p.data_ptr() if drop_refs else p
return named_parameters
def replace_optimizer_params(optimizer: torch.optim.Optimizer):
"""
This function is called before using `fully_shard` on the model. It replaces the parameters of the optimizer with
empty tensors, so `fully_shard` can trigger a new allocation for the sharded ones. After this, we swap the parameters
`data_ptr` to the original one, so we can reuse that later to map the sharded parameters to the original ones.
This function modifies the optimizer in-place.
Args:
optimizer (torch.optim.Optimizer): Optimizer instance which contains the original model parameters
"""
for param_group in optimizer.param_groups:
for i, p in enumerate(param_group["params"]):
# We drop a reference to the original param here, so that _move_states_to_device triggers a reallocation
# This is required or else the `fully_shard` -> `_move_states_to_device` uses the original memory address
# for the sharded parameters, and we get a weird/undefined behavior.
param_group["params"][i] = torch.empty_like(p)
# We save the original data_ptr, so we can swap back the parameters later
param_group["params"][i].data_ptr = p.data_ptr()
def swap_back_optimizer_params(
model: torch.nn.Module, optimizer: torch.optim.Optimizer, old_named_parameter_pointers: dict[str, int]
):
"""
This function is the counterpart of `replace_optimizer_params`. It is called after `fully_shard` being applied to
the model. It swaps the parameters of the optimizer to their sharded counterparts.
It is done using the `data_ptr` mapping prepared in `replace_optimizer_params` and `get_named_parameters`.
Args:
model (`torch.nn.Module`): Model instance to get the new named parameters from
optimizer (`torch.optim.Optimizer`): Optimizer instance to swap the parameters of
old_named_parameter_pointers (`dict[str, int]`): Dictionary mapping the original parameter names: data_ptrs to the new ones
"""
# We get the new named parameters after `fully_shard` being applied
# We don't drop the references as we need the sharded parameters now
new_named_parameters = get_named_parameters(model, drop_refs=False)
# We create a mapping from the original data_ptr to the new sharded param corresponding to it
mapping = {p: new_named_parameters[n] for n, p in old_named_parameter_pointers.items()}
for param_group in optimizer.param_groups:
# We swap the parameters of the optimizer to the new sharded ones
param_group["params"] = [mapping[p.data_ptr] for p in param_group["params"]]
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--output_dir",
type=str,
help="Directory to save the benchmarking results.",
)
parser.add_argument(
"--save_memory_snapshot",
action="store_true",
default=False,
help="If True, `torch.cuda.memory._dump_snapshot` will be used to additionaly save the memory trace.",
)
######################
# Training arguments #
######################
parser.add_argument(
"--batch_size",
type=int,
default=2,
help="Batch size for the training loop.",
)
parser.add_argument(
"--block_size",
type=int,
default=128,
help="The maximum sequence length to use with the model.",
)
parser.add_argument(
"--dataset_fraction",
type=float,
default=1.0,
help="Fraction of the dataset to use.",
)
return parser.parse_args()
def prepare_dataloader(tokenizer, args, accelerator: Accelerator) -> DataLoader:
dataset = load_dataset("tiny_shakespeare", split="train", trust_remote_code=True)
def tokenize_function(example):
return tokenizer(
example["text"],
)
dataset = dataset.map(
tokenize_function,
batched=True,
remove_columns=["text"],
)
block_size = min(tokenizer.model_max_length, args.block_size)
def group_texts(examples):
concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
total_length = (total_length // block_size) * block_size
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
dataset = dataset.map(group_texts, batched=True)
dataset = dataset.select(range(int(len(dataset) * args.dataset_fraction)))
def collate_fn(examples):
return DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False,
)(examples)
dataloader = DataLoader(
dataset,
batch_size=args.batch_size,
collate_fn=collate_fn,
)
dataloader = accelerator.prepare(dataloader)
return dataloader
def get_model(model_name: str):
# We reguire model to be loaded in fp32, otherwise benchmarks don't match as accelerate does upcasting of parameters to fp32
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float32)
model = AutoModelForCausalLM.from_config(config)
return model
def get_tokenizer(model_name: str):
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def prepare_torch(
args, config: dict, post_shard_optimizer: bool = False, apply_optimizer_fix: bool = False
) -> tuple[torch.nn.Module, torch.optim.Optimizer, torch.utils.data.DataLoader, Accelerator]:
mp_policy = MixedPrecisionPolicy(
param_dtype=torch.bfloat16,
reduce_dtype=torch.bfloat16,
output_dtype=torch.bfloat16,
)
accelerator = Accelerator(mixed_precision="bf16")
set_seed(SEED)
is_fixed = "fixed" if apply_optimizer_fix else "not_fixed"
is_post_shard = "optimizer_after_fsdp" if post_shard_optimizer else "optimizer_before_fsdp"
run_name = f"torch_{is_post_shard}" if post_shard_optimizer else f"torch_{is_post_shard}_{is_fixed}"
tokenizer = get_tokenizer(config["model_name"])
train_dataloader = prepare_dataloader(tokenizer, args, accelerator)
memory_tracker = MemoryTracker(accelerator, args.output_dir, run_name, args.save_memory_snapshot)
memory_tracker.start()
model = get_model(config["model_name"])
optimizer = None
if not post_shard_optimizer:
optimizer = AdamW(model.parameters(), lr=config["learning_rate"])
if apply_optimizer_fix:
# We drop the references to the original parameters, so that `fully_shard` can trigger a new allocation
# Then we get the `module_name: data_ptr` mapping, so we can swap back the parameters later
old_named_parameters = get_named_parameters(model, drop_refs=True)
# We replace the parameters of the optimizer with empty tensors, so that `fully_shard` can trigger a new allocation
# We also change the `data_ptr` of the parameters to the original ones, so we can swap back the parameters later
replace_optimizer_params(optimizer)
for module in model.modules():
if isinstance(module, Qwen2DecoderLayer):
fully_shard(module, mp_policy=mp_policy)
fully_shard(model, mp_policy=mp_policy)
# We do this to imitate how accelerate forces outputs to be in fp32 via `convert_outputs_to_fp32`
autocast_context = torch.autocast(device_type=accelerator.state.device.type, dtype=torch.bfloat16)
model_forward_func = model.forward.__func__
new_forward = autocast_context(model_forward_func)
model.forward = MethodType(new_forward, model)
model.forward = MethodType(convert_outputs_to_fp32(model.forward.__func__), model)
if post_shard_optimizer:
optimizer = AdamW(model.parameters(), lr=config["learning_rate"])
if not post_shard_optimizer and apply_optimizer_fix:
# We swap back the parameters of the optimizer to the original ones
swap_back_optimizer_params(model, optimizer, old_named_parameters)
return model, optimizer, train_dataloader, accelerator, memory_tracker
def prepare_accelerate(
args, config: dict
) -> tuple[torch.nn.Module, torch.optim.Optimizer, torch.utils.data.DataLoader, Accelerator]:
if is_initialized():
AcceleratorState()._reset_state(True)
fsdp_plugin = FullyShardedDataParallelPlugin(
fsdp_version=2,
auto_wrap_policy="transformer_based_wrap",
transformer_cls_names_to_wrap=["Qwen2DecoderLayer"],
)
accelerator = Accelerator(
fsdp_plugin=fsdp_plugin,
mixed_precision="bf16",
)
set_seed(SEED)
tokenizer = get_tokenizer(config["model_name"])
train_dataloader = prepare_dataloader(tokenizer, args, accelerator)
memory_tracker = MemoryTracker(accelerator, args.output_dir, "accelerate", args.save_memory_snapshot)
memory_tracker.start()
model = get_model(config["model_name"])
optimizer = AdamW(model.parameters(), lr=config["learning_rate"])
model, optimizer = accelerator.prepare(model, optimizer)
return model, optimizer, train_dataloader, accelerator, memory_tracker

View File

@ -0,0 +1,114 @@
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import matplotlib.pyplot as plt
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--dir", type=str, help="Directory containing the memory usage data")
parser.add_argument(
"--memory_threshold",
type=int,
default=0,
help="Memory threshold to filter data that is below this value (only filters 1st `--filter_partition` of the points which should roughtly correspond to the model loading)",
)
parser.add_argument(
"--filter_partition",
type=float,
default=1 / 3,
help="Partition to drop data from that are below the memory threshold",
)
return parser.parse_args()
def filter_data(data, memory_threshold, filter_partition, key):
timestamps = data["timestamps"]
memory = data[key]
mid_point = int(len(timestamps) * filter_partition)
filtered_times = []
filtered_memory = []
for i, (t, m) in enumerate(zip(timestamps, memory)):
if i < mid_point and m < memory_threshold:
continue
filtered_times.append(t)
filtered_memory.append(m)
return filtered_times, filtered_memory
def compare_memory_usage(data, labels, memory_threshold, filter_partition):
plt.style.use("seaborn-v0_8")
colors = ["#2ecc71", "#e74c3c", "#3498db", "#f1c40f"]
fig1, ax1 = plt.subplots(figsize=(15, 5))
for data_item, label, color in zip(data, labels, colors):
timestamps, allocated = filter_data(data_item, memory_threshold, filter_partition, "allocated_memory")
ax1.plot(timestamps, allocated, label=label, color=color, linewidth=2)
ax1.set_xlabel("Time (s)", fontsize=12)
ax1.set_ylabel("Allocated Memory (GB)", fontsize=12)
ax1.set_title("Allocated Memory Usage Over Time", fontsize=14, pad=15)
ax1.grid(True, linestyle="--", alpha=0.7)
ax1.legend(frameon=True, fancybox=True, shadow=True, fontsize=10)
ax1.spines["top"].set_visible(False)
ax1.spines["right"].set_visible(False)
plt.tight_layout()
fig2, ax2 = plt.subplots(figsize=(15, 5))
for data_item, label, color in zip(data, labels, colors):
timestamps, reserved = filter_data(data_item, memory_threshold, filter_partition, "reserved_memory")
ax2.plot(timestamps, reserved, label=label, color=color, linewidth=2)
ax2.set_xlabel("Time (s)", fontsize=12)
ax2.set_ylabel("Reserved Memory (GB)", fontsize=12)
ax2.set_title("Reserved Memory Usage Over Time", fontsize=14, pad=15)
ax2.grid(True, linestyle="--", alpha=0.7)
ax2.legend(frameon=True, fancybox=True, shadow=True, fontsize=10)
ax2.spines["top"].set_visible(False)
ax2.spines["right"].set_visible(False)
plt.tight_layout()
return fig1, fig2
if __name__ == "__main__":
args = parse_args()
DIR = args.dir
with open(f"{DIR}/torch_optimizer_before_fsdp_not_fixed_memory_usage.json") as f:
optimizer_before_fsdp_not_fixed = json.load(f)
with open(f"{DIR}/torch_optimizer_after_fsdp_memory_usage.json") as f:
optimizer_after_fsdp = json.load(f)
with open(f"{DIR}/torch_optimizer_before_fsdp_fixed_memory_usage.json") as f:
optimizer_before_fsdp_fixed = json.load(f)
with open(f"{DIR}/accelerate_memory_usage.json") as f:
accelerate = json.load(f)
data = [optimizer_before_fsdp_not_fixed, optimizer_before_fsdp_fixed, optimizer_after_fsdp, accelerate]
labels = [
"Optimizer Before FSDP (w/o fix)",
"Optimizer Before FSDP (w/ fix)",
"Optimizer After FSDP",
"Accelerate",
]
fig1, fig2 = compare_memory_usage(data, labels, args.memory_threshold, args.filter_partition)
fig1.savefig(f"{DIR}/allocated_memory.png")
fig2.savefig(f"{DIR}/reserved_memory.png")

74
docker/README.md Normal file
View File

@ -0,0 +1,74 @@
<!---
Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Official Hugging Face Accelerate Docker Images
Accelerate publishes a variety of docker versions as part of our CI that users can also use. These are stable images that Accelerate can run off of which comes with a variety of different setup configurations, all of which are officially hosted on [Docker Hub](https://hub.docker.com/r/huggingface/accelerate).
A breakdown of each are given below
## Naming Conventions
Accelerate docker images follow a tagging convention of:
```bash
huggingface/accelerate:{accelerator}-{nightly,release}
```
`accelerator` in this instance is one of many applical pre-configured backend supports:
* `gpu`: Comes compiled off of the `nvidia/cuda` image and includes core parts like `bitsandbytes`. Runs off python 3.9.
* `cpu`: Comes compiled off of `python:3.9-slim` and is designed for non-CUDA based workloads.
* More to come soon
* `gpu-deepspeed`: Comes compiled off of the `nvidia/cuda` image and includes core parts like `bitsandbytes` as well as the latest `deepspeed` version. Runs off python 3.10.
* `gpu-fp8-transformerengine`: Comes compiled off of `nvcr.io/nvidia/pytorch` and is specifically for running the `benchmarks/fp8` scripts on devices which support FP8 operations using the `TransformerEngine` library (RTX 4090, H100, etc)
## Nightlies vs Releases
Each release a new build is pushed with a version number included in the name. For a GPU-supported image of version 0.28.0 for instance, it would look like the following:
```bash
huggingface/accelerate:gpu-release-0.28.0
```
Nightlies contain two different image tags. There is a general `nightly` tag which is built each night, and a `nightly-YYYY-MM-DD` which corresponds to a build from a particular date.
For instance, here is an example nightly CPU image from 3/14/2024
```bash
huggingface/accelerate:cpu-nightly-2024-03-14
```
## Running the images
Each image comes compiled with `conda` and an `accelerate` environment contains all of the installed dependencies.
To pull down the latest nightly run:
```bash
docker pull huggingface/accelerate:gpu-nightly
```
To then run it in interactive mode with GPU-memory available, run:
```bash
docker container run --gpus all -it huggingface/accelerate:gpu-nightly
```
## DEPRECATED IMAGES
CPU and GPU docker images were hosted at `huggingface/accelerate-gpu` and `huggingface/accelerate-cpu`. These builds are now outdated and will not receive updates.
The builds at the corresponding `huggingface/accelerate:{gpu,cpu}` contain the same `Dockerfile`, so it's as simple as changing the docker image to the desired ones from above. We will not be deleting these images for posterity, but they will not be receiving updates going forward.

View File

@ -0,0 +1,35 @@
# Builds CPU-only Docker image of PyTorch
# Uses multi-staged approach to reduce size
# Stage 1
FROM python:3.9-slim as compile-image
ARG DEBIAN_FRONTEND=noninteractive
RUN apt update
RUN apt-get install -y --no-install-recommends \
build-essential \
git \
gcc
# Setup virtual environment for Docker
ENV VIRTUAL_ENV=/opt/venv
RUN python3 -m venv ${VIRTUAL_ENV}
# Make sure we use the virtualenv
ENV PATH="${VIRTUAL_ENV}/bin:$PATH"
WORKDIR /workspace
# Install specific CPU torch wheel to save on space
RUN python3 -m pip install --upgrade --no-cache-dir pip
RUN python3 -m pip install --no-cache-dir \
jupyter \
git+https://github.com/huggingface/accelerate#egg=accelerate[testing,test_trackers] \
--extra-index-url https://download.pytorch.org/whl/cpu
# Stage 2
FROM python:3.9-slim AS build-image
COPY --from=compile-image /opt/venv /opt/venv
RUN useradd -ms /bin/bash user
USER user
# Make sure we use the virtualenv
ENV PATH="/opt/venv/bin:$PATH"
CMD ["/bin/bash"]

View File

@ -0,0 +1,46 @@
# Builds GPU docker image of PyTorch specifically
# Uses multi-staged approach to reduce size
# Stage 1
# Use base conda image to reduce time
FROM continuumio/miniconda3:latest AS compile-image
# Specify py version
# Note: DeepSpeed beyond v0.12.6 requires py 3.10
ENV PYTHON_VERSION=3.10
# Install apt libs
RUN apt-get update && \
apt-get install -y curl git wget && \
apt-get clean && \
rm -rf /var/lib/apt/lists*
# Create our conda env
RUN conda create --name accelerate python=${PYTHON_VERSION} ipython jupyter pip
# We don't install pytorch here yet since CUDA isn't available
# instead we use the direct torch wheel
ENV PATH /opt/conda/envs/accelerate/bin:$PATH
# Activate our bash shell
RUN chsh -s /bin/bash
SHELL ["/bin/bash", "-c"]
# Activate the conda env, install mpy4pi, and install torch + accelerate
RUN source activate accelerate && conda install -c conda-forge mpi4py
RUN source activate accelerate && \
python3 -m pip install --no-cache-dir \
git+https://github.com/huggingface/accelerate#egg=accelerate[testing,test_trackers,deepspeed] \
--extra-index-url https://download.pytorch.org/whl/cu117
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Stage 2
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04 AS build-image
COPY --from=compile-image /opt/conda /opt/conda
ENV PATH /opt/conda/bin:$PATH
# Install apt libs
RUN apt-get update && \
apt-get install -y curl git wget && \
apt-get clean && \
rm -rf /var/lib/apt/lists*
RUN echo "source activate accelerate" >> ~/.profile
# Activate the virtualenv
CMD ["/bin/bash"]

View File

@ -0,0 +1,45 @@
# Builds GPU docker image of PyTorch specifically
# Uses multi-staged approach to reduce size
# Stage 1
# Use base conda image to reduce time
FROM continuumio/miniconda3:latest AS compile-image
# Specify py version
ENV PYTHON_VERSION=3.9
# Install apt libs
RUN apt-get update && \
apt-get install -y curl git wget && \
apt-get clean && \
rm -rf /var/lib/apt/lists*
# Create our conda env
RUN conda create --name accelerate python=${PYTHON_VERSION} ipython jupyter pip
# We don't install pytorch here yet since CUDA isn't available
# instead we use the direct torch wheel
ENV PATH /opt/conda/envs/accelerate/bin:$PATH
# Activate our bash shell
RUN chsh -s /bin/bash
SHELL ["/bin/bash", "-c"]
# Activate the conda env, install mpy4pi, and install torch + accelerate
RUN source activate accelerate && conda install -c conda-forge mpi4py
RUN source activate accelerate && \
python3 -m pip install --no-cache-dir \
git+https://github.com/huggingface/accelerate#egg=accelerate[testing,test_trackers] \
--extra-index-url https://download.pytorch.org/whl/cu117
RUN python3 -m pip install --no-cache-dir bitsandbytes
# Stage 2
FROM nvidia/cuda:12.1.0-cudnn8-devel-ubuntu20.04 AS build-image
COPY --from=compile-image /opt/conda /opt/conda
ENV PATH /opt/conda/bin:$PATH
# Install apt libs
RUN apt-get update && \
apt-get install -y curl git wget && \
apt-get clean && \
rm -rf /var/lib/apt/lists*
RUN echo "source activate accelerate" >> ~/.profile
# Activate the virtualenv
CMD ["/bin/bash"]

19
docs/Makefile Normal file
View File

@ -0,0 +1,19 @@
# Minimal makefile for Sphinx documentation
#
# You can set these variables from the command line.
SPHINXOPTS =
SPHINXBUILD = sphinx-build
SOURCEDIR = source
BUILDDIR = _build
# Put it first so that "make" without argument is like "make help".
help:
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
.PHONY: help Makefile
# Catch-all target: route all unknown targets to Sphinx using the new
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
%: Makefile
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)

267
docs/README.md Normal file
View File

@ -0,0 +1,267 @@
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Generating the documentation
To generate the documentation, you first have to build it. Several packages are necessary to build the doc,
you can install them with the following command, at the root of the code repository:
```bash
pip install -e ".[docs]"
```
Then you need to install our special tool that builds the documentation:
```bash
pip install git+https://github.com/huggingface/doc-builder
```
---
**NOTE**
You only need to generate the documentation to inspect it locally (if you're planning changes and want to
check how they look before committing for instance). You don't have to commit the built documentation.
---
## Building the documentation
Once you have setup the `doc-builder` and additional packages, you can generate the documentation by
typing the following command:
```bash
doc-builder build accelerate docs/source/ --build_dir ~/tmp/test-build
```
You can adapt the `--build_dir` to set any temporary folder that you prefer. This command will create it and generate
the MDX files that will be rendered as the documentation on the main website. You can inspect them in your favorite
Markdown editor.
## Previewing the documentation
To preview the docs, first install the `watchdog` module with:
```bash
pip install watchdog
```
Then run the following command:
```bash
doc-builder preview {package_name} {path_to_docs}
```
For example:
```bash
doc-builder preview accelerate docs/source/
```
The docs will be viewable at [http://localhost:3000](http://localhost:3000). You can also preview the docs once you have opened a PR. You will see a bot add a comment to a link where the documentation with your changes lives.
---
**NOTE**
The `preview` command only works with existing doc files. When you add a completely new file, you need to update `_toctree.yml` & restart `preview` command (`ctrl-c` to stop it & call `doc-builder preview ...` again).
---
## Adding a new element to the navigation bar
Accepted files are Markdown (.md).
Create a file with its extension and put it in the source directory. You can then link it to the toc-tree by putting
the filename without the extension in the [`_toctree.yml`](https://github.com/huggingface/accelerate/blob/main/docs/source/_toctree.yml) file.
## Renaming section headers and moving sections
It helps to keep the old links working when renaming the section header and/or moving sections from one document to another. This is because the old links are likely to be used in Issues, Forums, and Social media and it'd make for a much more superior user experience if users reading those months later could still easily navigate to the originally intended information.
Therefore, we simply keep a little map of moved sections at the end of the document where the original section was. The key is to preserve the original anchor.
So if you renamed a section from: "Section A" to "Section B", then you can add at the end of the file:
```
Sections that were moved:
[ <a href="#section-b">Section A</a><a id="section-a"></a> ]
```
and of course, if you moved it to another file, then:
```
Sections that were moved:
[ <a href="../new-file#section-b">Section A</a><a id="section-a"></a> ]
```
Use the relative style to link to the new file so that the versioned docs continue to work.
## Writing Documentation - Specification
The `huggingface/accelerate` documentation follows the
[Google documentation](https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html) style for docstrings,
although we can write them directly in Markdown.
### Adding a new tutorial
Adding a new tutorial or section is done in two steps:
- Add a new file under `./source`. This file can either be ReStructuredText (.rst) or Markdown (.md).
- Link that file in `./source/_toctree.yml` on the correct toc-tree.
Make sure to put your new file under the proper section. It's unlikely to go in the first section (*Get Started*), so
depending on the intended targets (beginners, more advanced users, or researchers) it should go in sections two, three, or
four.
### Writing source documentation
Values that should be put in `code` should either be surrounded by backticks: \`like so\`. Note that argument names
and objects like True, None, or any strings should usually be put in `code`.
When mentioning a class, function, or method, it is recommended to use our syntax for internal links so that our tool
adds a link to its documentation with this syntax: \[\`XXXClass\`\] or \[\`function\`\]. This requires the class or
function to be in the main package.
If you want to create a link to some internal class or function, you need to
provide its path. For instance: \[\`utils.gather\`\]. This will be converted into a link with
`utils.gather` in the description. To get rid of the path and only keep the name of the object you are
linking to in the description, add a ~: \[\`~utils.gather\`\] will generate a link with `gather` in the description.
The same works for methods so you can either use \[\`XXXClass.method\`\] or \[~\`XXXClass.method\`\].
#### Defining arguments in a method
Arguments should be defined with the `Args:` (or `Arguments:` or `Parameters:`) prefix, followed by a line return and
an indentation. The argument should be followed by its type, with its shape if it is a tensor, a colon, and its
description:
```
Args:
n_layers (`int`): The number of layers of the model.
```
If the description is too long to fit in one line (more than 119 characters in total), another indentation is necessary
before writing the description after the argument.
Finally, to maintain uniformity if any *one* description is too long to fit on one line, the
rest of the parameters should follow suit and have an indention before their description.
Here's an example showcasing everything so far:
```
Args:
gradient_accumulation_steps (`int`, *optional*, default to 1):
The number of steps that should pass before gradients are accumulated. A number > 1 should be combined with `Accelerator.accumulate`.
cpu (`bool`, *optional*):
Whether or not to force the script to execute on CPU. Will ignore GPU available if set to `True` and force the execution on one process only.
```
For optional arguments or arguments with defaults we follow the following syntax: imagine we have a function with the
following signature:
```
def my_function(x: str = None, a: float = 1):
```
then its documentation should look like this:
```
Args:
x (`str`, *optional*):
This argument controls ... and has a description longer than 119 chars.
a (`float`, *optional*, defaults to 1):
This argument is used to ... and has a description longer than 119 chars.
```
Note that we always omit the "defaults to \`None\`" when None is the default for any argument. Also note that even
if the first line describing your argument type and its default gets long, you can't break it on several lines. You can
however write as many lines as you want in the indented description (see the example above with `input_ids`).
#### Writing a multi-line code block
Multi-line code blocks can be useful for displaying examples. They are done between two lines of three backticks as usual in Markdown:
````
```python
# first line of code
# second line
# etc
```
````
#### Writing a return block
The return block should be introduced with the `Returns:` prefix, followed by a line return and an indentation.
The first line should be the type of the return, followed by a line return. No need to indent further for the elements
building the return.
Here's an example of a single value return:
```
Returns:
`List[int]`: A list of integers in the range [0, 1] --- 1 for a special token, 0 for a sequence token.
```
Here's an example of a tuple return, comprising several objects:
```
Returns:
`tuple(torch.FloatTensor)` comprising various elements depending on the configuration ([`BertConfig`]) and inputs:
- ** loss** (*optional*, returned when `masked_lm_labels` is provided) `torch.FloatTensor` of shape `(1,)` --
Total loss is the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
- **prediction_scores** (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`) --
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
```
## Styling the docstring
We have an automatic script running with the `make style` comment that will make sure that:
- the docstrings fully take advantage of the line width
- all code examples are formatted using black, like the code of the Transformers library
This script may have some weird failures if you made a syntax mistake or if you uncover a bug. Therefore, it's
recommended to commit your changes before running `make style`, so you can revert the changes done by that script
easily.
## Writing documentation examples
The syntax for Example docstrings can look as follows:
```
Example:
```python
>>> import time
>>> from accelerate import Accelerator
>>> accelerator = Accelerator()
>>> if accelerator.is_main_process:
... time.sleep(2)
>>> else:
... print("I'm waiting for the main process to finish its sleep...")
>>> accelerator.wait_for_everyone()
>>> # Should print on every process at the same time
>>> print("Everyone is here")
```
```
The docstring should give a minimal, clear example of how the respective function
is to be used in inference and also include the expected (ideally sensible)
output.
Often, readers will try out the example before even going through the function
or class definitions. Therefore, it is of utmost importance that the example
works as expected.

127
docs/source/_toctree.yml Normal file
View File

@ -0,0 +1,127 @@
- sections:
- local: index
title: 🤗 Accelerate
- local: basic_tutorials/install
title: Installation
- local: quicktour
title: Quicktour
title: Getting started
- sections:
- local: basic_tutorials/overview
title: Overview
- local: basic_tutorials/migration
title: Add Accelerate to your code
- local: basic_tutorials/execution
title: Execution process
- local: basic_tutorials/tpu
title: TPU training
- local: basic_tutorials/launch
title: Launching Accelerate scripts
- local: basic_tutorials/notebook
title: Launching distributed training from Jupyter Notebooks
title: Tutorials
- sections:
- isExpanded: true
sections:
- local: usage_guides/explore
title: Start Here!
- local: usage_guides/model_size_estimator
title: Model memory estimator
- local: usage_guides/quantization
title: Model quantization
- local: usage_guides/tracking
title: Experiment trackers
- local: usage_guides/profiler
title: Profiler
- local: usage_guides/checkpoint
title: Checkpointing
- local: basic_tutorials/troubleshooting
title: Troubleshoot
- local: usage_guides/training_zoo
title: Example Zoo
title: Accelerate
- isExpanded: true
sections:
- local: usage_guides/gradient_accumulation
title: Gradient accumulation
- local: usage_guides/local_sgd
title: Local SGD
- local: usage_guides/low_precision_training
title: Low precision (FP8) training
- local: usage_guides/deepspeed
title: DeepSpeed
- local: usage_guides/deepspeed_multiple_model
title: Using multiple models with DeepSpeed
- local: usage_guides/ddp_comm_hook
title: DDP Communication Hooks
- local: usage_guides/fsdp
title: Fully Sharded Data Parallel
- local: usage_guides/megatron_lm
title: Megatron-LM
- local: usage_guides/sagemaker
title: Amazon SageMaker
- local: usage_guides/mps
title: Apple M1 GPUs
- local: usage_guides/ipex
title: IPEX training with CPU
title: Training
- isExpanded: true
sections:
- local: usage_guides/big_modeling
title: Big Model Inference
- local: usage_guides/distributed_inference
title: Distributed inference
title: Inference
title: How to guides
- sections:
- local: concept_guides/internal_mechanism
title: Accelerate's internal mechanism
- local: concept_guides/big_model_inference
title: Loading big models into memory
- local: concept_guides/performance
title: Comparing performance across distributed setups
- local: concept_guides/deferring_execution
title: Executing and deferring jobs
- local: concept_guides/gradient_synchronization
title: Gradient synchronization
- local: concept_guides/fsdp_and_deepspeed
title: FSDP vs DeepSpeed
- local: concept_guides/fsdp1_vs_fsdp2
title: FSDP1 vs FSDP2
- local: concept_guides/low_precision_training
title: Low precision training methods
- local: concept_guides/training_tpu
title: Training on TPUs
title: Concepts and fundamentals
- sections:
- local: package_reference/accelerator
title: Accelerator
- local: package_reference/state
title: Stateful classes
- local: package_reference/cli
title: The Command Line
- local: package_reference/torch_wrappers
title: DataLoaders, Optimizers, Schedulers
- local: package_reference/tracking
title: Experiment trackers
- local: package_reference/launchers
title: Launchers
- local: package_reference/deepspeed
title: DeepSpeed utilities
- local: package_reference/logging
title: Logging
- local: package_reference/big_modeling
title: Working with large models
- local: package_reference/inference
title: Pipeline parallelism
- local: package_reference/kwargs
title: Kwargs handlers
- local: package_reference/fp8
title: FP8
- local: package_reference/utilities
title: Utility functions and classes
- local: package_reference/megatron_lm
title: Megatron-LM utilities
- local: package_reference/fsdp
title: Fully Sharded Data Parallel utilities
title: "Reference"

View File

@ -0,0 +1,128 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Execution process
When working with distributed training systems, it is important to manage how and when processes are executed across GPUs. Some processes are completed faster than others, and some processes shouldn't begin if others haven't finished yet. Accelerate provides tools for orchestrating when processes are executed to ensure everything remains synchronized across all devices.
This tutorial will teach you how to execute a process on only one machine and how to delay execution until all processes have reached a certain point.
## Execute on one process
Certain code only needs to be run once on a given machine, such as printing a log statement or only displaying one progress bar on the local main process.
<hfoptions id="local-execution">
<hfoption id="statements">
You should use `accelerator.is_local_main_process` to indicate code that should only be executed once.
```py
from tqdm.auto import tqdm
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
```
You could also wrap a statement with `accelerator.is_local_main_process`.
> [!TIP]
> For standalone `print` statements that aren't wrapped in `accelerator.is_local_main_process`, replace `print` with Accelerate's [`~Accelerator.print`] method to only print once per process.
```py
if accelerator.is_local_main_process:
print("Accelerate is the best")
```
</hfoption>
<hfoption id="function">
For a function that should only be executed once, use [`~Accelerator.on_local_main_process`].
```py
@accelerator.on_local_main_process
def do_my_thing():
"Something done once per server"
do_thing_once_per_server()
```
</hfoption>
</hfoptions>
You could also direct Accelerate to execute code once across *all processes* regardless of the number of machines. This is useful if you're uploading a final model to the Hub.
<hfoptions id="main-execution">
<hfoption id="statement">
You should use `accelerator.is_main_process` to indicate code that should only be executed once across all processes.
```py
if accelerator.is_main_process:
repo.push_to_hub()
```
</hfoption>
<hfoption id="function">
For a function that should only be executed once across all processes, use [`~Accelerator.on_main_process`].
```py
@accelerator.on_main_process
def do_my_thing():
"Something done once per server"
do_thing_once()
```
</hfoption>
</hfoptions>
## Execute on a specific process
Accelerate can also help you execute functions that should only be executed on a specific process or a local process index.
<hfoptions id="specific-execution">
<hfoption id="specific process">
Use the [`~Accelerator.on_process`] method and specify the process index to execute a function on.
```py
@accelerator.on_process(process_index=0)
def do_my_thing():
"Something done on process index 0"
do_thing_on_index_zero()
```
</hfoption>
<hfoption id="local process">
Use the [`~Accelerator.on_local_process`] method and specify the local process index to execute a function on.
```py
@accelerator.on_local_process(local_process_idx=0)
def do_my_thing():
"Something done on process index 0 on each server"
do_thing_on_index_zero_on_each_server()
```
</hfoption>
</hfoptions>
## Defer execution
When you run your script on several GPUs at the same time, some code may be executed faster than others. You might need to wait for all processes to reach a certain point before executing the next set of instructions. For instance, you shouldnt save a model before making sure every process is done with training.
To do this, add [`~Accelerator.wait_for_everyone`] in your code. This blocks all processes that have finished first from continuing until all remaining processes have reached the same point (this has no effect if you're running on a single GPU or CPU).
```py
accelerator.wait_for_everyone()
```

View File

@ -0,0 +1,114 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Installation
Before you start, you will need to setup your environment, install the appropriate packages, and configure Accelerate. Accelerate is tested on **Python 3.8+**.
Accelerate is available on pypi and conda, as well as on GitHub. Details to install from each are below:
## pip
To install Accelerate from pypi, perform:
```bash
pip install accelerate
```
## conda
Accelerate can also be installed with conda with:
```bash
conda install -c conda-forge accelerate
```
## Source
New features are added every day that haven't been released yet. To try them out yourself, install
from the GitHub repository:
```bash
pip install git+https://github.com/huggingface/accelerate
```
If you're working on contributing to the library or wish to play with the source code and see live
results as you run the code, an editable version can be installed from a locally-cloned version of the
repository:
```bash
git clone https://github.com/huggingface/accelerate
cd accelerate
pip install -e .
```
## Configuration
After installing, you need to configure Accelerate for how the current system is setup for training.
To do so run the following and answer the questions prompted to you:
```bash
accelerate config
```
To write a barebones configuration that doesn't include options such as DeepSpeed configuration or running on TPUs, you can quickly run:
```bash
python -c "from accelerate.utils import write_basic_config; write_basic_config(mixed_precision='fp16')"
```
Accelerate will automatically utilize the maximum number of GPUs available and set the mixed precision mode.
To check that your configuration looks fine, run:
```bash
accelerate env
```
An example output is shown below, which describes two GPUs on a single machine with no mixed precision being used:
```bash
- `Accelerate` version: 1.2.0.dev0
- Platform: Linux-6.8.0-47-generic-x86_64-with-glibc2.35
- `accelerate` bash location: /home/zach/miniconda3/envs/accelerate/bin/accelerate
- Python version: 3.10.13
- Numpy version: 1.26.4
- PyTorch version (GPU?): 2.5.1+cu124 (True)
- PyTorch XPU available: False
- PyTorch NPU available: False
- PyTorch MLU available: False
- PyTorch MUSA available: False
- System RAM: 187.91 GB
- GPU type: NVIDIA GeForce RTX 4090
- `Accelerate` default config:
- compute_environment: LOCAL_MACHINE
- distributed_type: MULTI_GPU
- mixed_precision: no
- use_cpu: False
- debug: False
- num_processes: 2
- machine_rank: 0
- num_machines: 1
- gpu_ids: all
- rdzv_backend: static
- same_network: True
- main_training_function: main
- enable_cpu_affinity: False
- downcast_bf16: no
- tpu_use_cluster: False
- tpu_use_sudo: False
- tpu_env: []
```

View File

@ -0,0 +1,235 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Launching Accelerate scripts
In the previous tutorial, you were introduced to how to modify your current training script to use Accelerate.
The final version of that code is shown below:
```python
from accelerate import Accelerator
accelerator = Accelerator()
model, optimizer, training_dataloader, scheduler = accelerator.prepare(
model, optimizer, training_dataloader, scheduler
)
for batch in training_dataloader:
optimizer.zero_grad()
inputs, targets = batch
outputs = model(inputs)
loss = loss_function(outputs, targets)
accelerator.backward(loss)
optimizer.step()
scheduler.step()
```
But how do you run this code and have it utilize the special hardware available to it?
First, you should rewrite the above code into a function, and make it callable as a script. For example:
```diff
from accelerate import Accelerator
+ def main():
accelerator = Accelerator()
model, optimizer, training_dataloader, scheduler = accelerator.prepare(
model, optimizer, training_dataloader, scheduler
)
for batch in training_dataloader:
optimizer.zero_grad()
inputs, targets = batch
outputs = model(inputs)
loss = loss_function(outputs, targets)
accelerator.backward(loss)
optimizer.step()
scheduler.step()
+ if __name__ == "__main__":
+ main()
```
Next, you need to launch it with `accelerate launch`.
<Tip warning={true}>
It's recommended you run `accelerate config` before using `accelerate launch` to configure your environment to your liking.
Otherwise Accelerate will use very basic defaults depending on your system setup.
</Tip>
## Using accelerate launch
Accelerate has a special CLI command to help you launch your code in your system through `accelerate launch`.
This command wraps around all of the different commands needed to launch your script on various platforms, without you having to remember what each of them is.
<Tip>
If you are familiar with launching scripts in PyTorch yourself such as with `torchrun`, you can still do this. It is not required to use `accelerate launch`.
</Tip>
You can launch your script quickly by using:
```bash
accelerate launch {script_name.py} --arg1 --arg2 ...
```
Just put `accelerate launch` at the start of your command, and pass in additional arguments and parameters to your script afterward like normal!
Since this runs the various torch spawn methods, all of the expected environment variables can be modified here as well.
For example, here is how to use `accelerate launch` with a single GPU:
```bash
# for cuda device:
CUDA_VISIBLE_DEVICES="0" accelerate launch {script_name.py} --arg1 --arg2 ...
# for xpu device:
ZE_AFFINITY_MASK="0" accelerate launch {script_name.py} --arg1 --arg2 ...
```
You can also use `accelerate launch` without performing `accelerate config` first, but you may need to manually pass in the right configuration parameters.
In this case, Accelerate will make some hyperparameter decisions for you, e.g., if GPUs are available, it will use all of them by default without the mixed precision.
Here is how you would use all GPUs and train with mixed precision disabled:
```bash
accelerate launch --multi_gpu {script_name.py} {--arg1} {--arg2} ...
```
Or by specifying a number of GPUs to use:
```bash
accelerate launch --num_processes=2 {script_name.py} {--arg1} {--arg2} ...
```
To get more specific you should pass in the needed parameters yourself. For instance, here is how you
would also launch that same script on two GPUs using mixed precision while avoiding all of the warnings:
```bash
accelerate launch --multi_gpu --mixed_precision=fp16 --num_processes=2 {script_name.py} {--arg1} {--arg2} ...
```
For a complete list of parameters you can pass in, run:
```bash
accelerate launch -h
```
<Tip>
Even if you are not using Accelerate in your code, you can still use the launcher for starting your scripts!
</Tip>
For a visualization of this difference, that earlier `accelerate launch` on multi-gpu would look something like so with `torchrun`:
```bash
MIXED_PRECISION="fp16" torchrun --nproc_per_node=2 --nnodes=1 {script_name.py} {--arg1} {--arg2} ...
```
You can also launch your script utilizing the launch CLI as a python module itself, enabling the ability to pass in other python-specific
launching behaviors. To do so, use `accelerate.commands.launch` instead of `accelerate launch`:
```bash
python -m accelerate.commands.launch --num_processes=2 {script_name.py} {--arg1} {--arg2}
```
If you want to execute the script with any other python flags, you can pass them in as well similar to `-m`, such as
the below example enabling unbuffered stdout and stderr:
```bash
python -u -m accelerate.commands.launch --num_processes=2 {script_name.py} {--arg1} {--arg2}
```
<Tip>
You can run your code on CPU as well! This is helpful for debugging and testing purposes on toy models and datasets.
```bash
accelerate launch --cpu {script_name.py} {--arg1} {--arg2}
```
</Tip>
## Why you should always use `accelerate config`
Why is it useful to the point you should **always** run `accelerate config`?
Remember that earlier call to `accelerate launch` as well as `torchrun`?
Post configuration, to run that script with the needed parts you just need to use `accelerate launch` outright, without passing anything else in:
```bash
accelerate launch {script_name.py} {--arg1} {--arg2} ...
```
## Custom Configurations
As briefly mentioned earlier, `accelerate launch` should be mostly used through combining set configurations
made with the `accelerate config` command. These configs are saved to a `default_config.yaml` file in your cache folder for Accelerate.
This cache folder is located at (with decreasing order of priority):
- The content of your environment variable `HF_HOME` suffixed with `accelerate`.
- If it does not exist, the content of your environment variable `XDG_CACHE_HOME` suffixed with
`huggingface/accelerate`.
- If this does not exist either, the folder `~/.cache/huggingface/accelerate`.
To have multiple configurations, the flag `--config_file` can be passed to the `accelerate launch` command paired
with the location of the custom yaml.
An example yaml may look something like the following for two GPUs on a single machine using `fp16` for mixed precision:
```yaml
compute_environment: LOCAL_MACHINE
deepspeed_config: {}
distributed_type: MULTI_GPU
fsdp_config: {}
machine_rank: 0
main_process_ip: null
main_process_port: null
main_training_function: main
mixed_precision: fp16
num_machines: 1
num_processes: 2
use_cpu: false
```
Launching a script from the location of that custom yaml file looks like the following:
```bash
accelerate launch --config_file {path/to/config/my_config_file.yaml} {script_name.py} {--arg1} {--arg2} ...
```
## Multi-node training
Multi-node training with Accelerate is similar to [multi-node training with torchrun](https://pytorch.org/tutorials/intermediate/ddp_series_multinode.html). The simplest way to launch a multi-node training run is to do the following:
- Copy your codebase and data to all nodes. (or place them on a shared filesystem)
- Setup your python packages on all nodes.
- Run `accelerate config` on the main single node first. After specifying the number of nodes, you will be asked to specify the rank of each node (this will be 0 for the main/master node), along with the IP address and port for the main process. This is required for the worker nodes to communicate with the main process. Afterwards, you can copy or send this config file across all of your nodes, changing the `machine_rank` to 1, 2,3, etc. to avoid having to run the command (or just follow their directions directly for launching with `torchrun` as well)
Once you have done this, you can start your multi-node training run by running `accelerate launch` (or `torchrun`) on all nodes.
<Tip>
It is required that the command be ran on all nodes for everything to start, not just running it from the main node. You can use something like SLURM or a different process executor to wrap around this requirement and call everything from a single command.
</Tip>
<Tip>
It is recommended to use the intranet IP of your main node over the public IP for better latency. This is the `192.168.x.x` or the `172.x.x.x` address you see when you run `hostname -I` on the main node.
</Tip>
To get a better idea about multi-node training, check out our example for [multi-node training with FSDP](https://huggingface.co/blog/ram-efficient-pytorch-fsdp).

View File

@ -0,0 +1,224 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Add Accelerate to your code
Each distributed training framework has their own way of doing things which can require writing a lot of custom code to adapt it to your PyTorch training code and training environment. Accelerate offers a friendly way to interface with these distributed training frameworks without having to learn the specific details of each one. Accelerate takes care of those details for you, so you can focus on the training code and scale it to any distributed training environment.
In this tutorial, you'll learn how to adapt your existing PyTorch code with Accelerate and get you on your way toward training on distributed systems with ease! You'll start with a basic PyTorch training loop (it assumes all the training objects like `model` and `optimizer` have been setup already) and progressively integrate Accelerate into it.
```python
device = "cuda"
model.to(device)
for batch in training_dataloader:
optimizer.zero_grad()
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = loss_function(outputs, targets)
loss.backward()
optimizer.step()
scheduler.step()
```
## Accelerator
The [`Accelerator`] is the main class for adapting your code to work with Accelerate. It knows about the distributed setup you're using such as the number of different processes and your hardware type. This class also provides access to many of the necessary methods for enabling your PyTorch code to work in any distributed training environment and for managing and executing processes across devices.
That's why you should always start by importing and creating an [`Accelerator`] instance in your script.
```python
from accelerate import Accelerator
accelerator = Accelerator()
```
The [`Accelerator`] also knows which device to move your PyTorch objects to, so it is recommended to let Accelerate handle this for you.
```diff
- device = "cuda"
+ device = accelerator.device
model.to(device)
```
## Prepare PyTorch objects
Next, you need to prepare your PyTorch objects (model, optimizer, scheduler, etc.) for distributed training. The [`~Accelerator.prepare`] method takes care of placing your model in the appropriate container (like single GPU or multi-GPU) for your training setup, adapting the optimizer and scheduler to use Accelerate's [`~optimizer.AcceleratedOptimizer`] and [`~scheduler.AcceleratedScheduler`], and creating a new dataloader that can be sharded across processes.
> [!TIP]
> Accelerate only prepares objects that inherit from their respective PyTorch classes such as `torch.optim.Optimizer`.
The PyTorch objects are returned in the same order they're sent.
```py
model, optimizer, training_dataloader, scheduler = accelerator.prepare(
model, optimizer, training_dataloader, scheduler
)
```
## Training loop
Finally, remove the `to(device)` calls to the inputs and targets in the training loop because Accelerate's DataLoader classes automatically places them on the right device. You should also replace the usual `backward()` pass with Accelerate's [`~Accelerator.backward`] method which scales the gradients for you and uses the appropriate `backward()` method depending on your distributed setup (for example, DeepSpeed or Megatron).
```diff
- inputs = inputs.to(device)
- targets = targets.to(device)
outputs = model(inputs)
loss = loss_function(outputs, targets)
- loss.backward()
+ accelerator.backward(loss)
```
Put everything together and your new Accelerate training loop should now look like this!
```python
from accelerate import Accelerator
accelerator = Accelerator()
device = accelerator.device
model, optimizer, training_dataloader, scheduler = accelerator.prepare(
model, optimizer, training_dataloader, scheduler
)
for batch in training_dataloader:
optimizer.zero_grad()
inputs, targets = batch
outputs = model(inputs)
loss = loss_function(outputs, targets)
accelerator.backward(loss)
optimizer.step()
scheduler.step()
```
## Training features
Accelerate offers additional features - like gradient accumulation, gradient clipping, mixed precision training and more - you can add to your script to improve your training run. Let's explore these three features.
### Gradient accumulation
Gradient accumulation enables you to train on larger batch sizes by accumulating the gradients over multiple batches before updating the weights. This can be useful for getting around memory limitations. To enable this feature in Accelerate, specify the `gradient_accumulation_steps` parameter in the [`Accelerator`] class and add the [`~Accelerator.accumulate`] context manager to your script.
```diff
+ accelerator = Accelerator(gradient_accumulation_steps=2)
model, optimizer, training_dataloader = accelerator.prepare(model, optimizer, training_dataloader)
for input, label in training_dataloader:
+ with accelerator.accumulate(model):
predictions = model(input)
loss = loss_function(predictions, label)
accelerator.backward(loss)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
```
### Gradient clipping
Gradient clipping is a technique to prevent "exploding gradients", and Accelerate offers:
* [`~Accelerator.clip_grad_value_`] to clip gradients to a minimum and maximum value
* [`~Accelerator.clip_grad_norm_`] for normalizing gradients to a certain value
### Mixed precision
Mixed precision accelerates training by using a lower precision data type like fp16 (half-precision) to calculate the gradients. For the best performance with Accelerate, the loss should be computed inside your model (like in Transformers models) because computations outside of the model are computed in full precision.
Set the mixed precision type to use in the [`Accelerator`], and then use the [`~Accelerator.autocast`] context manager to automatically cast the values to the specified data type.
> [!WARNING]
> Accelerate enables automatic mixed precision, so [`~Accelerator.autocast`] is only needed if there are other mixed precision operations besides those performed on loss by [`~Accelerator.backward`] which already handles the scaling.
```diff
+ accelerator = Accelerator(mixed_precision="fp16")
+ with accelerator.autocast():
loss = complex_loss_function(outputs, target)
```
## Save and load
Accelerate can also save and load a *model* once training is complete or you can also save the model and optimizer *state* which could be useful for resuming training.
### Model
Once all processes are complete, unwrap the model with the [`~Accelerator.unwrap_model`] method before saving it because the [`~Accelerator.prepare`] method wrapped your model into the proper interface for distributed training. If you don't unwrap the model, saving the model state dictionary also saves any potential extra layers from the larger model and you won't be able to load the weights back into your base model.
You should use the [`~Accelerator.save_model`] method to unwrap and save the model state dictionary. This method can also save a model into sharded checkpoints or into the [safetensors](https://hf.co/docs/safetensors/index) format.
<hfoptions id="save">
<hfoption id="single checkpoint">
```py
accelerator.wait_for_everyone()
accelerator.save_model(model, save_directory)
```
<Tip>
For models from the [Transformers](https://hf.co/docs/transformers/index) library, save the model with the [`~transformers.PreTrainedModel.save_pretrained`] method so that it can be reloaded with the [`~transformers.PreTrainedModel.from_pretrained`] method.
```py
from transformers import AutoModel
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
"path/to/my_model_directory",
is_main_process=accelerator.is_main_process,
save_function=accelerator.save,
)
model = AutoModel.from_pretrained("path/to/my_model_directory")
```
</Tip>
To load your weights, use the [`~Accelerator.unwrap_model`] method to unwrap the model first before loading the weights. All model parameters are references to tensors, so this loads your weights inside `model`.
```py
unwrapped_model = accelerator.unwrap_model(model)
path_to_checkpoint = os.path.join(save_directory,"pytorch_model.bin")
unwrapped_model.load_state_dict(torch.load(path_to_checkpoint))
```
</hfoption>
<hfoption id="sharded checkpoint">
Set `safe_serialization=True` to save the model in the safetensor format.
```py
accelerator.wait_for_everyone()
accelerator.save_model(model, save_directory, max_shard_size="1GB", safe_serialization=True)
```
To load a sharded checkpoint or a safetensor formatted checkpoint, use the [`~accelerate.load_checkpoint_in_model`] method. This method allows you to load a checkpoint onto a specific device.
```py
load_checkpoint_in_model(unwrapped_model, save_directory, device_map={"":device})
```
</hfoption>
</hfoptions>
### State
During training, you may want to save the current state of the model, optimizer, random generators, and potentially learning rate schedulers so they can be restored in the *same script*. You should add the [`~Accelerator.save_state`] and [`~Accelerator.load_state`] methods to your script to save and load states.
To further customize where and how states are saved through [`~Accelerator.save_state`], use the [`~utils.ProjectConfiguration`] class. For example, if `automatic_checkpoint_naming` is enabled, each saved checkpoint is stored at `Accelerator.project_dir/checkpoints/checkpoint_{checkpoint_number}`.
Any other stateful items to be stored should be registered with the [`~Accelerator.register_for_checkpointing`] method so they can be saved and loaded. Every object passed to this method to be stored must have a `load_state_dict` and `state_dict` function.
> [!TIP]
> If you have [`torchdata>=0.8.0`](https://github.com/pytorch/data/tree/main) installed, you can additionally pass `use_stateful_dataloader=True` into your [`~utils.DataLoaderConfiguration`]. This extends Accelerate's DataLoader classes with a `load_state_dict` and `state_dict` function, and makes it so `Accelerator.save_state` and `Accelerator.load_state` also track how far into the training dataset it has read when persisting the model.

View File

@ -0,0 +1,476 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Launching distributed training from Jupyter Notebooks
This tutorial teaches you how to fine tune a computer vision model with 🤗 Accelerate from a Jupyter Notebook on a distributed system.
You will also learn how to setup a few requirements needed for ensuring your environment is configured properly, your data has been prepared properly, and finally how to launch training.
<Tip>
This tutorial is also available as a Jupyter Notebook [here](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_cv_example.ipynb)
</Tip>
## Configuring the Environment
Before any training can be performed, a Accelerate config file must exist in the system. Usually this can be done by running the following in a terminal and answering the prompts:
```bash
accelerate config
```
However, if general defaults are fine and you are *not* running on a TPU, Accelerate has a utility to quickly write your GPU configuration into a config file via [`utils.write_basic_config`].
The following code will restart Jupyter after writing the configuration, as CUDA code was called to perform this.
<Tip warning={true}>
CUDA can't be initialized more than once on a multi-GPU system. It's fine to debug in the notebook and have calls to CUDA, but in order to finally train a full cleanup and restart will need to be performed.
</Tip>
```python
import os
from accelerate.utils import write_basic_config
write_basic_config() # Write a config file
os._exit(00) # Restart the notebook
```
## Preparing the Dataset and Model
Next you should prepare your dataset. As mentioned at earlier, great care should be taken when preparing the `DataLoaders` and model to make sure that **nothing** is put on *any* GPU.
If you do, it is recommended to put that specific code into a function and call that from within the notebook launcher interface, which will be shown later.
Make sure the dataset is downloaded based on the directions [here](https://github.com/huggingface/accelerate/tree/main/examples#simple-vision-example)
```python
import os, re, torch, PIL
import numpy as np
from torch.optim.lr_scheduler import OneCycleLR
from torch.utils.data import DataLoader, Dataset
from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor
from accelerate import Accelerator
from accelerate.utils import set_seed
from timm import create_model
```
First you need to create a function to extract the class name based on a filename:
```python
import os
data_dir = "../../images"
fnames = os.listdir(data_dir)
fname = fnames[0]
print(fname)
```
```python out
beagle_32.jpg
```
In the case here, the label is `beagle`. Using regex you can extract the label from the filename:
```python
import re
def extract_label(fname):
stem = fname.split(os.path.sep)[-1]
return re.search(r"^(.*)_\d+\.jpg$", stem).groups()[0]
```
```python
extract_label(fname)
```
And you can see it properly returned the right name for our file:
```python out
"beagle"
```
Next a `Dataset` class should be made to handle grabbing the image and the label:
```python
class PetsDataset(Dataset):
def __init__(self, file_names, image_transform=None, label_to_id=None):
self.file_names = file_names
self.image_transform = image_transform
self.label_to_id = label_to_id
def __len__(self):
return len(self.file_names)
def __getitem__(self, idx):
fname = self.file_names[idx]
raw_image = PIL.Image.open(fname)
image = raw_image.convert("RGB")
if self.image_transform is not None:
image = self.image_transform(image)
label = extract_label(fname)
if self.label_to_id is not None:
label = self.label_to_id[label]
return {"image": image, "label": label}
```
Now to build the dataset. Outside the training function you can find and declare all the filenames and labels and use them as references inside the
launched function:
```python
fnames = [os.path.join("../../images", fname) for fname in fnames if fname.endswith(".jpg")]
```
Next gather all the labels:
```python
all_labels = [extract_label(fname) for fname in fnames]
id_to_label = list(set(all_labels))
id_to_label.sort()
label_to_id = {lbl: i for i, lbl in enumerate(id_to_label)}
```
Next, you should make a `get_dataloaders` function that will return your built dataloaders for you. As mentioned earlier, if data is automatically
sent to the GPU or a TPU device when building your `DataLoaders`, they must be built using this method.
```python
def get_dataloaders(batch_size: int = 64):
"Builds a set of dataloaders with a batch_size"
random_perm = np.random.permutation(len(fnames))
cut = int(0.8 * len(fnames))
train_split = random_perm[:cut]
eval_split = random_perm[cut:]
# For training a simple RandomResizedCrop will be used
train_tfm = Compose([RandomResizedCrop((224, 224), scale=(0.5, 1.0)), ToTensor()])
train_dataset = PetsDataset([fnames[i] for i in train_split], image_transform=train_tfm, label_to_id=label_to_id)
# For evaluation a deterministic Resize will be used
eval_tfm = Compose([Resize((224, 224)), ToTensor()])
eval_dataset = PetsDataset([fnames[i] for i in eval_split], image_transform=eval_tfm, label_to_id=label_to_id)
# Instantiate dataloaders
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size, num_workers=4)
eval_dataloader = DataLoader(eval_dataset, shuffle=False, batch_size=batch_size * 2, num_workers=4)
return train_dataloader, eval_dataloader
```
Finally, you should import the scheduler to be used later:
```python
from torch.optim.lr_scheduler import CosineAnnealingLR
```
## Writing the Training Function
Now you can build the training loop. [`notebook_launcher`] works by passing in a function to call that will be ran across the distributed system.
Here is a basic training loop for the animal classification problem:
<Tip>
The code has been split up to allow for explanations on each section. A full version that can be copy and pasted will be available at the end
</Tip>
```python
def training_loop(mixed_precision="fp16", seed: int = 42, batch_size: int = 64):
set_seed(seed)
accelerator = Accelerator(mixed_precision=mixed_precision)
```
First you should set the seed and create an [`Accelerator`] object as early in the training loop as possible.
<Tip warning={true}>
If training on the TPU, your training loop should take in the model as a parameter and it should be instantiated
outside of the training loop function. See the [TPU best practices](../concept_guides/training_tpu)
to learn why
</Tip>
Next you should build your dataloaders and create your model:
```python
train_dataloader, eval_dataloader = get_dataloaders(batch_size)
model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id))
```
<Tip>
You build the model here so that the seed also controls the new weight initialization
</Tip>
As you are performing transfer learning in this example, the encoder of the model starts out frozen so the head of the model can be
trained only initially:
```python
for param in model.parameters():
param.requires_grad = False
for param in model.get_classifier().parameters():
param.requires_grad = True
```
Normalizing the batches of images will make training a little faster:
```python
mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None]
std = torch.tensor(model.default_cfg["std"])[None, :, None, None]
```
To make these constants available on the active device, you should set it to the Accelerator's device:
```python
mean = mean.to(accelerator.device)
std = std.to(accelerator.device)
```
Next instantiate the rest of the PyTorch classes used for training:
```python
optimizer = torch.optim.Adam(params=model.parameters(), lr=3e-2 / 25)
lr_scheduler = OneCycleLR(optimizer=optimizer, max_lr=3e-2, epochs=5, steps_per_epoch=len(train_dataloader))
```
Before passing everything to [`~Accelerator.prepare`].
<Tip>
There is no specific order to remember, you just need to unpack the objects in the same order you gave them to the prepare method.
</Tip>
```python
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
```
Now train the model:
```python
for epoch in range(5):
model.train()
for batch in train_dataloader:
inputs = (batch["image"] - mean) / std
outputs = model(inputs)
loss = torch.nn.functional.cross_entropy(outputs, batch["label"])
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
```
The evaluation loop will look slightly different compared to the training loop. The number of elements passed as well as the overall
total accuracy of each batch will be added to two constants:
```python
model.eval()
accurate = 0
num_elems = 0
```
Next you have the rest of your standard PyTorch loop:
```python
for batch in eval_dataloader:
inputs = (batch["image"] - mean) / std
with torch.no_grad():
outputs = model(inputs)
predictions = outputs.argmax(dim=-1)
```
Before finally the last major difference.
When performing distributed evaluation, the predictions and labels need to be passed through
[`~Accelerator.gather`] so that all of the data is available on the current device and a properly calculated metric can be achieved:
```python
accurate_preds = accelerator.gather(predictions) == accelerator.gather(batch["label"])
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
```
Now you just need to calculate the actual metric for this problem, and you can print it on the main process using [`~Accelerator.print`]:
```python
eval_metric = accurate.item() / num_elems
accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}")
```
A full version of this training loop is available below:
```python
def training_loop(mixed_precision="fp16", seed: int = 42, batch_size: int = 64):
set_seed(seed)
# Initialize accelerator
accelerator = Accelerator(mixed_precision=mixed_precision)
# Build dataloaders
train_dataloader, eval_dataloader = get_dataloaders(batch_size)
# Instantiate the model (you build the model here so that the seed also controls new weight initializations)
model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id))
# Freeze the base model
for param in model.parameters():
param.requires_grad = False
for param in model.get_classifier().parameters():
param.requires_grad = True
# You can normalize the batches of images to be a bit faster
mean = torch.tensor(model.default_cfg["mean"])[None, :, None, None]
std = torch.tensor(model.default_cfg["std"])[None, :, None, None]
# To make these constants available on the active device, set it to the accelerator device
mean = mean.to(accelerator.device)
std = std.to(accelerator.device)
# Instantiate the optimizer
optimizer = torch.optim.Adam(params=model.parameters(), lr=3e-2 / 25)
# Instantiate the learning rate scheduler
lr_scheduler = OneCycleLR(optimizer=optimizer, max_lr=3e-2, epochs=5, steps_per_epoch=len(train_dataloader))
# Prepare everything
# There is no specific order to remember, you just need to unpack the objects in the same order you gave them to the
# prepare method.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
# Now you train the model
for epoch in range(5):
model.train()
for batch in train_dataloader:
inputs = (batch["image"] - mean) / std
outputs = model(inputs)
loss = torch.nn.functional.cross_entropy(outputs, batch["label"])
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
accurate = 0
num_elems = 0
for batch in eval_dataloader:
inputs = (batch["image"] - mean) / std
with torch.no_grad():
outputs = model(inputs)
predictions = outputs.argmax(dim=-1)
accurate_preds = accelerator.gather(predictions) == accelerator.gather(batch["label"])
num_elems += accurate_preds.shape[0]
accurate += accurate_preds.long().sum()
eval_metric = accurate.item() / num_elems
# Use accelerator.print to print only on the main process.
accelerator.print(f"epoch {epoch}: {100 * eval_metric:.2f}")
```
## Using the notebook_launcher
All that's left is to use the [`notebook_launcher`].
You pass in the function, the arguments (as a tuple), and the number of processes to train on. (See the [documentation](../package_reference/launchers) for more information)
```python
from accelerate import notebook_launcher
```
```python
args = ("fp16", 42, 64)
notebook_launcher(training_loop, args, num_processes=2)
```
In the case of running on multiple nodes, you need to set up a Jupyter session at each node and run the launching cell at the same time.
For an environment containing 2 nodes (computers) with 8 GPUs each and the main computer with an IP address of "172.31.43.8", it would look like so:
```python
notebook_launcher(training_loop, args, master_addr="172.31.43.8", node_rank=0, num_nodes=2, num_processes=8)
```
And in the second Jupyter session on the other machine:
<Tip>
Notice how the `node_rank` has changed
</Tip>
```python
notebook_launcher(training_loop, args, master_addr="172.31.43.8", node_rank=1, num_nodes=2, num_processes=8)
```
In the case of running on the TPU, it would look like so:
```python
model = create_model("resnet50d", pretrained=True, num_classes=len(label_to_id))
args = (model, "fp16", 42, 64)
notebook_launcher(training_loop, args, num_processes=8)
```
To launch the training process with elasticity, enabling fault tolerance, you can use the `elastic_launch` feature provided by PyTorch. This requires setting additional parameters such as `rdzv_backend` and `max_restarts`. Here is an example of how to use `notebook_launcher` with elastic capabilities:
```python
notebook_launcher(
training_loop,
args,
num_processes=2,
max_restarts=3
)
```
As it's running it will print the progress as well as state how many devices you ran on. This tutorial was ran with two GPUs:
```python out
Launching training on 2 GPUs.
epoch 0: 88.12
epoch 1: 91.73
epoch 2: 92.58
epoch 3: 93.90
epoch 4: 94.71
```
And that's it!
Please note that [`notebook_launcher`] ignores the Accelerate config file, to launch based on the config use:
```bash
accelerate launch
```
## Debugging
A common issue when running the `notebook_launcher` is receiving a CUDA has already been initialized issue. This usually stems
from an import or prior code in the notebook that makes a call to the PyTorch `torch.cuda` sublibrary. To help narrow down what went wrong,
you can launch the `notebook_launcher` with `ACCELERATE_DEBUG_MODE=yes` in your environment and an additional check
will be made when spawning that a regular process can be created and utilize CUDA without issue. (Your CUDA code can still be ran afterwards).
## Conclusion
This notebook showed how to perform distributed training from inside of a Jupyter Notebook. Some key notes to remember:
- Make sure to save any code that use CUDA (or CUDA imports) for the function passed to [`notebook_launcher`]
- Set the `num_processes` to be the number of devices used for training (such as number of GPUs, CPUs, TPUs, etc)
- If using the TPU, declare your model outside the training loop function

View File

@ -0,0 +1,24 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Overview
Welcome to the Accelerate tutorials! These introductory guides will help catch you up to speed on working with Accelerate.
You'll learn how to modify your code to have it work with the API seamlessly, how to launch your script properly,
and more!
These tutorials assume some basic knowledge of Python and familiarity with the PyTorch framework.
If you have any questions about Accelerate, feel free to join and ask the community on our [forum](https://discuss.huggingface.co/c/accelerate/18).

View File

@ -0,0 +1,38 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# TPU training
A [TPU (Tensor Processing Unit)](https://cloud.google.com/tpu/docs/intro-to-tpu) is a type of hardware specifically designed for training models efficiently. Accelerate supports TPU training, but there are a few things you should be aware of, namely graph compilation. This tutorial briefly discusses compilation, and for more details, take a look at the [Training on TPUs with Accelerate](../concept_guides/training_tpu) guide.
## Compilation
A TPU creates a graph of all the operations in the training step such as the forward pass, backward pass and optimizer step. This is why the first training step always takes a while because building and compiling this graph takes time. But once compilation is complete, it is cached and all subsequent steps are much faster.
The key is to avoid compiling your code again or else training is super slow. This means all your operations must be exactly the same:
* all tensors in your batches must have the same length (for example, no dynamic padding for NLP tasks)
* your code must be static (for example, no layers with for loops that have different lengths depending on the input such as a LSTM)
## Weight tying
A common language model design is to tie the weights of the embedding and softmax layers. However, moving the model to a TPU (either yourself or passing it to the [`~Accelerator.prepare`] method) breaks the weight tying and you'll need to retie the weights.
To add special behavior (like weight tying) in your script for TPUs, set [`~Accelerator.distributed_type`] to `DistributedType.TPU` first. Then you can use the [`~transformers.PreTrainedModel.tie_weights`] method to tie the weights.
```py
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
```

View File

@ -0,0 +1,211 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Troubleshoot
This guide provides solutions to some issues you might encounter when using Accelerate. Not all errors are covered because Accelerate is an active library that is continuously evolving and there are many different use cases and distributed training setups. If the solutions described here don't help with your specific error, please take a look at the [Ask for help](#ask-for-help) section to learn where and how to get help.
## Logging
Logging can help you identify where an error is coming from. In a distributed setup with multiple processes, logging can be a challenge, but Accelerate provides the [`~accelerate.logging`] utility to ensure logs are synchronized.
To troubleshoot an issue, use [`~accelerate.logging`] instead of the standard Python [`logging`](https://docs.python.org/3/library/logging.html#module-logging) module. Set the verbosity level (`INFO`, `DEBUG`, `WARNING`, `ERROR`, `CRITICAL`) with the `log_level` parameter, and then you can either:
1. Export the `log_level` as the `ACCELERATE_LOG_LEVEL` environment variable.
2. Pass the `log_level` directly to `get_logger`.
For example, to set `log_level="INFO"`:
```py
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="DEBUG")
```
By default, the log is called on main processes only. To call it on all processes, pass `main_process_only=False`.
If a log should be called on all processes and in order, also pass `in_order=True`.
```py
from accelerate.logging import get_logger
logger = get_logger(__name__, log_level="DEBUG")
# log all processes
logger.debug("thing_to_log", main_process_only=False)
# log all processes in order
logger.debug("thing_to_log", main_process_only=False, in_order=True)
```
## Hanging code and timeout errors
There can be many reasons why your code is hanging. Let's take a look at how to solve some of the most common issues that can cause your code to hang.
### Mismatched tensor shapes
Mismatched tensor shapes is a common issue that can cause your code to hang for a significant amount of time on a distributed setup.
When running scripts in a distributed setup, functions such as [`Accelerator.gather`] and [`Accelerator.reduce`] are necessary to grab tensors across devices to collectively perform operations on them. These (and other) functions rely on `torch.distributed` to perform a `gather` operation, which requires tensors to have the **exact same shape** across all processes. When the tensor shapes don't match, your code hangs and you'll eventually hit a timeout exception.
You can use Accelerate's operational debug mode to immediately catch this issue. We recommend enabling this mode during the `accelerate config` setup, but you can also enable it from the CLI, as an environment variable, or by manually editing the `config.yaml` file.
<hfoptions id="mismatch">
<hfoption id="CLI">
```bash
accelerate launch --debug {my_script.py} --arg1 --arg2
```
</hfoption>
<hfoption id="environment variable">
If enabling debug mode as an environment variable, you don't need to call `accelerate launch`.
```bash
ACCELERATE_DEBUG_MODE="1" torchrun {my_script.py} --arg1 --arg2
```
</hfoption>
<hfoption id="config.yaml">
Add `debug: true` to your `config.yaml` file.
```yaml
compute_environment: LOCAL_MACHINE
debug: true
```
</hfoption>
</hfoptions>
Once you enable debug mode, you should get a traceback that points to the tensor shape mismatch issue.
```py
Traceback (most recent call last):
File "/home/zach_mueller_huggingface_co/test.py", line 18, in <module>
main()
File "/home/zach_mueller_huggingface_co/test.py", line 15, in main
broadcast_tensor = broadcast(tensor)
File "/home/zach_mueller_huggingface_co/accelerate/src/accelerate/utils/operations.py", line 303, in wrapper
accelerate.utils.operations.DistributedOperationException:
Cannot apply desired operation due to shape mismatches. All shapes across devices must be valid.
Operation: `accelerate.utils.operations.broadcast`
Input shapes:
- Process 0: [1, 5]
- Process 1: [1, 2, 5]
```
### Early stopping
For early stopping in distributed training, if each process has a specific stopping condition (e.g. validation loss), it may not be synchronized across all processes. As a result, a break can happen on process 0 but not on process 1 which will cause your code to hang indefinitely until a timeout occurs.
If you have early stopping conditionals, use the `set_trigger` and `check_trigger` methods to make sure all the processes
are ended correctly.
```py
# Assume `should_do_breakpoint` is a custom defined function that returns a conditional,
# and that conditional might be true only on process 1
if should_do_breakpoint(loss):
accelerator.set_trigger()
# Later in the training script when we need to check for the breakpoint
if accelerator.check_trigger():
break
```
### Low kernel versions on Linux
On Linux with kernel version < 5.5, hanging processes have been reported. To avoid this problem, upgrade your system to a later kernel version.
### MPI
If your distributed CPU training job using MPI is hanging, ensure that you have
[passwordless SSH](https://www.open-mpi.org/faq/?category=rsh#ssh-keys) setup (using keys) between the nodes. This means
that for all nodes in your hostfile, you should to be able to SSH from one node to another without being prompted for a password.
Next, try to run the `mpirun` command as a sanity check. For example, the command below should print out the
hostnames for each of the nodes.
```bash
mpirun -f hostfile -n {number of nodes} -ppn 1 hostname
```
## Out-of-Memory
One of the most frustrating errors when it comes to running training scripts is hitting "Out-of-Memory" on devices like CUDA, XPU or CPU. The entire script needs to be restarted and any progress is lost.
To address this problem, Accelerate provides the [`find_executable_batch_size`] utility that is heavily based on [toma](https://github.com/BlackHC/toma).
This utility retries code that fails due to OOM (out-of-memory) conditions and automatically lowers batch sizes. For each OOM condition, the algorithm decreases the batch size by half and retries the code until it succeeds.
To use [`find_executable_batch_size`], restructure your training function to include an inner function with `find_executable_batch_size` and build your dataloaders inside it. At a minimum, this only takes 4 new lines of code.
<Tip warning={true}>
The inner function **must** take batch size as the first parameter, but we do not pass one to it when called. The wrapper will handles this for you. Any object (models, optimizers) that consumes device memory and is passed to the [`Accelerator`] also **must** be declared inside the inner function.
</Tip>
```diff
def training_function(args):
accelerator = Accelerator()
+ @find_executable_batch_size(starting_batch_size=args.batch_size)
+ def inner_training_loop(batch_size):
+ nonlocal accelerator # Ensure they can be used in our context
+ accelerator.free_memory() # Free all lingering references
model = get_model()
model.to(accelerator.device)
optimizer = get_optimizer()
train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)
lr_scheduler = get_scheduler(
optimizer,
num_training_steps=len(train_dataloader)*num_epochs
)
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
)
train(model, optimizer, train_dataloader, lr_scheduler)
validate(model, eval_dataloader)
+ inner_training_loop()
```
## Non-reproducible results between device setups
If you changed the device setup and observe different model performance, it is likely you didn't update your script when moving from one setup to another. Even if you're using the same script with the same batch size, the results will still be different on a TPU, multi-GPU, and single GPU.
For example, if you were training on a single GPU with a batch size of 16 and you move to a dual GPU setup, you need to change the batch size to 8 to have the same effective batch size. This is because when training with Accelerate, the batch size passed to the dataloader is the **batch size per GPU**.
To make sure you can reproduce the results between the setups, make sure to use the same seed, adjust the batch size accordingly, and consider scaling the learning rate.
For more details and a quick reference for batch sizes, check out the [Comparing performance between different device setups](../concept_guides/performance) guide.
## Performance issues on different GPUs
If your multi-GPU setup consists of different GPUs, you may encounter some performance issues:
- There may be an imbalance in GPU memory between the GPUs. In this case, the GPU with the smaller memory will limit the batch size or the size of the model that can be loaded onto the GPUs.
- If you are using GPUs with different performance profiles, the performance will be driven by the slowest GPU you are using because the other GPUs will have to wait for it to complete its workload.
Vastly different GPUs within the same setup can lead to performance bottlenecks.
## Ask for help
If none of the solutions and advice here helped resolve your issue, you can always reach out to the community and Accelerate team for help.
- Ask for help on the Hugging Face forums by posting your question in the [Accelerate category](https://discuss.huggingface.co/c/accelerate/18). Make sure to write a descriptive post with relevant context about your setup and reproducible code to maximize the likelihood that your problem is solved!
- Post a question on [Discord](http://hf.co/join/discord), and let the team and the community help you.
- Create an Issue on the Accelerate [GitHub repository](https://github.com/huggingface/accelerate/issues) if you think you've found a bug related to the library. Include context regarding the bug and details about your distributed setup to help us better figure out what's wrong and how we can fix it.

View File

@ -0,0 +1,341 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Loading big models into memory
When loading a pre-trained model in PyTorch, the usual workflow looks like this:
```py
import torch
my_model = ModelClass(...)
state_dict = torch.load(checkpoint_file)
my_model.load_state_dict(state_dict)
```
In plain English, those steps are:
1. Create the model with randomly initialized weights
2. Load the model weights (in a dictionary usually called a state dict) from the disk
3. Load those weights inside the model
While this works very well for regularly sized models, this workflow has some clear limitations when we deal with a huge model: in step 1, we load a full version of the model in RAM, and spend some time randomly initializing the weights (which will be discarded in step 3). In step 2, we load another full version of the model in RAM, with the pre-trained weights. If you're loading a model with 6 billion parameters, this means you will need 24GB of RAM for each copy of the model, so 48GB in total (half of it to load the model in FP16).
<Tip warning={true}>
This API is quite new and still in its experimental stage. While we strive to provide a stable API, it's possible some small parts of the public API will change in the future.
</Tip>
## How the Process Works: A Quick Overview
<Youtube id="MWCSGj9jEAo" />
## How the Process Works: Working with Code
### Instantiating an empty model
The first tool Accelerate introduces to help with big models is a context manager [`init_empty_weights`] that helps you initialize a model without using any RAM so that step 1 can be done on models of any size. Here is how it works:
```py
from accelerate import init_empty_weights
with init_empty_weights():
my_model = ModelClass(...)
```
For instance:
```py
with init_empty_weights():
model = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
```
initializes an empty model with a bit more than 100B parameters. Behind the scenes, this relies on the meta device introduced in PyTorch 1.9. During the initialization under the context manager, each time a parameter is created, it is instantly moved to that device.
<Tip warning={true}>
You can't move a model initialized like this on CPU or another device directly, since it doesn't have any data. It's also very likely that a forward pass with that empty model will fail, as not all operations are supported on the meta device.
</Tip>
### Sharded checkpoints
It's possible your model is so big that even a single copy won't fit in RAM. That doesn't mean it can't be loaded: if you have one or several GPUs, this is more memory available to store your model. In this case, it's better if your checkpoint is split into several smaller files that we call checkpoint shards.
Accelerate will handle sharded checkpoints as long as you follow the following format: your checkpoint should be in a folder, with several files containing the partial state dicts, and there should be an index in the JSON format that contains a dictionary mapping parameter names to the file containing their weights. You can easily shard your model with [`~Accelerator.save_model`]. For instance, we could have a folder containing:
```bash
first_state_dict.bin
index.json
second_state_dict.bin
```
with index.json being the following file:
```
{
"linear1.weight": "first_state_dict.bin",
"linear1.bias": "first_state_dict.bin",
"linear2.weight": "second_state_dict.bin",
"linear2.bias": "second_state_dict.bin"
}
```
and `first_state_dict.bin` containing the weights for `"linear1.weight"` and `"linear1.bias"`, `second_state_dict.bin` the ones for `"linear2.weight"` and `"linear2.bias"`
### Loading weights
The second tool Accelerate introduces is a function [`load_checkpoint_and_dispatch`], that will allow you to load a checkpoint inside your empty model. This supports full checkpoints (a single file containing the whole state dict) as well as sharded checkpoints. It will also automatically dispatch those weights across the devices you have available (GPUs, CPU RAM), so if you are loading a sharded checkpoint, the maximum RAM usage will be the size of the biggest shard.
If you want to use big model inference with Transformers models, check out this [documentation](https://huggingface.co/docs/transformers/main/en/main_classes/model#large-model-loading).
Here is how we can use this to load the [GPT2-1.5B](https://huggingface.co/marcsun13/gpt2-xl-linear-sharded) model.
Let's download the sharded version of this model.
```bash
pip install huggingface_hub
```
```py
from huggingface_hub import snapshot_download
checkpoint = "marcsun13/gpt2-xl-linear-sharded"
weights_location = snapshot_download(repo_id=checkpoint)
```
In order to initialize the model, we will use the library minGPT.
```bash
git clone https://github.com/karpathy/minGPT.git
pip install minGPT/
```
```py
from accelerate import init_empty_weights
from mingpt.model import GPT
model_config = GPT.get_default_config()
model_config.model_type = 'gpt2-xl'
model_config.vocab_size = 50257
model_config.block_size = 1024
with init_empty_weights():
model = GPT(model_config)
```
Then, load the checkpoint we just downloaded with:
```py
from accelerate import load_checkpoint_and_dispatch
model = load_checkpoint_and_dispatch(
model, checkpoint=weights_location, device_map="auto", no_split_module_classes=['Block']
)
```
By passing `device_map="auto"`, we tell Accelerate to determine automatically where to put each layer of the model depending on the available resources:
- first, we use the maximum space available on the GPU(s)
- if we still need space, we store the remaining weights on the CPU
- if there is not enough RAM, we store the remaining weights on the hard drive as memory-mapped tensors
#### `no_split_module_classes`
This parameter will indicate that some of the modules with the name `"Block"` should not be split across different devices. You should set here all blocks that
include a residual connection of some kind.
#### The `device_map`
You can see the `device_map` that Accelerate picked by accessing the `hf_device_map` attribute of your model:
```py
model.hf_device_map
```
```python out
{'transformer.wte': 0,
'transformer.wpe': 0,
'transformer.drop': 0,
'transformer.h.0': 0,
...
'transformer.h.21': 0,
'transformer.h.22': 1,
'transformer.h.23': 1,
'transformer.h.24': 1,
...
'transformer.h.47': 1,
'transformer.ln_f': 1,
'lm_head': 1}
```
It's fully possible to create your own device map for the layers to use as well, specifying the GPU device to use (a number), `"cpu"`, or `"disk"` and pass this in:
```python
device_map = {
"transformer.wte": "cpu",
"transformer.wpe": 0,
"transformer.drop": "cpu",
"transformer.h.0": "disk"
}
model = load_checkpoint_and_dispatch(
model, checkpoint=weights_location, device_map=device_map
)
```
### Run the model
Now that we have done this, our model lies across several devices, and maybe the hard drive. But it can still be used as a regular PyTorch model:
```py
from mingpt.bpe import BPETokenizer
tokenizer = BPETokenizer()
inputs = tokenizer("Hello, my name is").to(0)
outputs = model.generate(x1, max_new_tokens=10, do_sample=False)[0]
tokenizer.decode(outputs.cpu().squeeze())
```
Behind the scenes, Accelerate added hooks to the model, so that:
- at each layer, the inputs are put on the right device (so even if your model is spread across several GPUs, it works)
- for the weights offloaded on the CPU, they are put on a GPU just before the forward pass and cleaned up just after
- for the weights offloaded on the hard drive, they are loaded in RAM then put on a GPU just before the forward pass and cleaned up just after
This way, your model can run for inference even if it doesn't fit on one of the GPUs or the CPU RAM!
<Tip warning={true}>
This only supports the inference of your model, not training. Most of the computation happens behind `torch.no_grad()` context managers to avoid spending some GPU memory with intermediate activations.
</Tip>
### Designing a device map
You can let Accelerate handle the device map computation by setting `device_map` to one of the supported options (`"auto"`, `"balanced"`, `"balanced_low_0"`, `"sequential"`) or create one yourself if you want more control over where each layer should go.
<Tip>
You can derive all sizes of the model (and thus compute a `device_map`) on a model that is on the meta device.
</Tip>
All the options will produce the same result when you don't have enough GPU memory to accommodate the whole model (which is to fit everything that can on the GPU, then offload weights on the CPU or even on the disk if there is not enough RAM).
When you have more GPU memory available than the model size, here is the difference between each option:
- `"auto"` and `"balanced"` evenly split the model on all available GPUs, making it possible for you to use a batch size greater than 1.
- `"balanced_low_0"` evenly splits the model on all GPUs except the first one, and only puts on GPU 0 what does not fit on the others. This option is great when you need to use GPU 0 for some processing of the outputs, like when using the `generate` function for Transformers models
- `"sequential"` will fit what it can on GPU 0, then move on GPU 1 and so forth (so won't use the last GPUs if it doesn't need to).
<Tip>
The options `"auto"` and `"balanced"` produce the same results for now, but the behavior of `"auto"` might change in the future if we find a strategy that makes more sense, while `"balanced"` will stay stable.
</Tip>
First note that you can limit the memory used on each GPU by using the `max_memory` argument (available in [`infer_auto_device_map`] and in all functions using it). When setting `max_memory`, you should pass along a dictionary containing the GPU identifiers (for instance `0`, `1` etc.) and the `"cpu"` key for the maximum RAM you want to use for CPU offload. The values can either be an integer (in bytes) or a string representing a number with its unit, such as `"10GiB"` or `"10GB"`.
Here is an example where we don't want to use more than 10GiB on each of the two GPUs and no more than 30GiB of CPU RAM for the model weights:
```python
from accelerate import infer_auto_device_map
device_map = infer_auto_device_map(my_model, max_memory={0: "10GiB", 1: "10GiB", "cpu": "30GiB"})
```
<Tip warning={true}>
When a first allocation happens in PyTorch, it loads CUDA kernels which take about 1-2GB of memory depending on the GPU. Therefore you always have less usable memory than the actual size of the GPU. To see how much memory is actually used do `torch.ones(1).cuda()` and look at the memory usage.
Therefore when you create memory maps with `max_memory` make sure to adjust the available memory accordingly to avoid out-of-memory errors.
</Tip>
Additionally, if you do some additional operations with your outputs without placing them back on the CPU (for instance inside the `generate` method of Transformers) and if you placed your inputs on a GPU, that GPU will consume more memory than the others (Accelerate always place the output back to the device of the input). Therefore if you would like to optimize the maximum batch size and you have many GPUs, give the first GPU less memory. For example, with BLOOM-176B on 8x80 A100 setup, the close-to-ideal map is:
```python
max_memory = {0: "30GIB", 1: "46GIB", 2: "46GIB", 3: "46GIB", 4: "46GIB", 5: "46GIB", 6: "46GIB", 7: "46GIB"}
```
as you can see we gave the remaining 7 GPUs ~50% more memory than GPU 0.
If you opt to fully design the `device_map` yourself, it should be a dictionary with keys being module names of your model and values being a valid device identifier (for instance an integer for the GPUs) or `"cpu"` for CPU offload, `"disk"` for disk offload. The keys need to cover the whole model, you can then define your device map as you wish: for instance, if your model has two blocks (let's say `block1` and `block2`) which each contain three linear layers (let's say `linear1`, `linear2` and `linear3`), a valid device map can be:
```python
device_map = {"block1": 0, "block2": 1}
```
another one that is valid could be:
```python
device_map = {"block1": 0, "block2.linear1": 0, "block2.linear2": 1, "block2.linear3": 1}
```
On the other hand, this one is not valid as it does not cover every parameter of the model:
```python
device_map = {"block1": 0, "block2.linear1": 1, "block2.linear2": 1}
```
<Tip>
To be the most efficient, make sure your device map puts the parameters on the GPUs in a sequential manner (e.g. don't put one of the first weights on GPU 0, then weights on GPU 1 and the last weight back to GPU 0) to avoid making many transfers of data between the GPUs.
</Tip>
## CPU offload only
If you want to offload your model on CPU, you can use [`cpu_offload`]. As a result, all parameters of the model will be offloaded and only one copy of the state dict of the model will be kept. During the forward pass, parameters will be extracted from that state dict and put on the execution device and passed as they are needed, then offloaded again.
```python
cpu_offload(model, execution_device)
```
You can also use [`cpu_offload_with_hook`]. This function will offloads a model on the CPU and puts it back to an execution device when executed. The difference with [`cpu_offload`] is that the model stays on the execution device after the forward and is only offloaded again when the `offload` method of the returned `hook` is called. Furthermore, [`cpu_offload_with_hook`] is more performant but less memory saving. It is useful for pipelines running a model in a loop:
```python
model_1, hook_1 = cpu_offload_with_hook(model_1, execution_device)
model_2, hook_2 = cpu_offload_with_hook(model_2, execution_device, prev_module_hook=hook_1)
model_3, hook_3 = cpu_offload_with_hook(model_3, execution_device, prev_module_hook=hook_2)
hid_1 = model_1(input)
for i in range(50):
# model1 is offloaded on the CPU at the first iteration, model 2 stays on the GPU for this whole loop.
hid_2 = model_2(hid_1)
# model2 is offloaded to the CPU just before this forward.
hid_3 = model_3(hid_3)
# For model3, you need to manually call the hook offload method.
hook_3.offload()
```
## Disk offload only
To perform disk offload, you can use [`disk_offload`]. As a result, all parameters of the model will be offloaded as memory-mapped array in a given folder. During the forward pass, parameters will be accessed from that folder and put on the execution device passed as they are needed, then offloaded again.
```python
disk_offload(model, offload_dir, execution_device)
```
## Limits and further development
We are aware of the current limitations in the API:
- [`infer_auto_device_map`] (or `device_map="auto"` in [`load_checkpoint_and_dispatch`]) tries to maximize GPU and CPU RAM it sees available when you execute it. While PyTorch is very good at managing GPU RAM efficiently (and giving it back when not needed), it's not entirely true with Python and CPU RAM. Therefore, an automatically computed device map might be too intense on the CPU. Move a few modules to the disk device if you get crashes due to a lack of RAM.
- [`infer_auto_device_map`] (or `device_map="auto"` in [`load_checkpoint_and_dispatch`]) attributes devices sequentially (to avoid moving things back and forth) so if your first layer is bigger than the size of the GPU you have, it will end up with everything on the CPU/Disk.
- [`load_checkpoint_and_dispatch`] and [`load_checkpoint_in_model`] do not perform any check on the correctness of your state dict compared to your model at the moment (this will be fixed in a future version), so you may get some weird errors if trying to load a checkpoint with mismatched or missing keys.
- The model parallelism used when your model is split on several GPUs is naive and not optimized, meaning that only one GPU works at a given time and the other sits idle.
- When weights are offloaded on the CPU/hard drive, there is no pre-fetching (yet, we will work on this for future versions) which means the weights are put on the GPU when they are needed and not before.
- Hard-drive offloading might be very slow if the hardware you run on does not have fast communication between disk and CPU (like NVMes).

View File

@ -0,0 +1,130 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Executing and deferring jobs
When you run your usual script, instructions are executed in order. Using Accelerate to deploy your script on several
GPUs at the same time introduces a complication: while each process executes all instructions in order, some may be
faster than others.
You might need to wait for all processes to have reached a certain point before executing a given instruction. For
instance, you shouldn't save a model before being sure every process is done with training, and you wouldn't want to
continue training before all the model weights have been loaded in. To do this, just write the following line in your code:
```
accelerator.wait_for_everyone()
```
This instruction will block all the processes that arrive first until all the other processes have reached that
point (if you run your script on just one GPU or CPU, this won't do anything).
A few example cases of when to use this utility are listed below:
<Tip>
Some of these are utilized with the [`~Accelerator.main_process_first`] context manager, which utilizes [`~Accelerator.wait_for_everyone`] to
run a particular set of code on the main process beforehand before triggering and launching the other processes
</Tip>
## Downloading a Dataset
When downloading a dataset, you should download it first on the main process and then load the cached dataset afterward
<Tip>
`load_dataset` will perform a lock under the hood to stop multiple downloads from happening at once, but if you are downloading something
not using this library you should use this method.
</Tip>
```python
with accelerator.main_process_first():
datasets = load_dataset("glue", "mrpc")
```
Under the hood this is the same as calling:
```python
# First do something on the main process
if accelerator.is_main_process:
datasets = load_dataset("glue", "mrpc")
else:
accelerator.wait_for_everyone()
# And then send it to the rest of them
if not accelerator.is_main_process:
datasets = load_dataset("glue", "mrpc")
else:
accelerator.wait_for_everyone()
```
## Saving the `state_dict`
When saving the `state_dict` of the model, since you would normally save one file on just the main process
you should specify that:
```python
if accelerator.is_main_process:
model = accelerator.unwrap_model(model)
torch.save(model.state_dict(), "weights.pth")
```
## Loading in the `state_dict`
When loading in the `state_dict` to a model, optimizer, or scheduler, you should wait
for all workers to have the weights loaded in before moving on to training
```python
with accelerator.main_process_first():
state = torch.load("weights.pth")
model.load_state_dict(state)
```
## Applying a multi-worker CPU operation
Applying a `map()` operation on multiple workers, such as tokenizing should be done on the
main process first, and then propagated to each one.
```python
datasets = load_dataset("glue", "mrpc")
with accelerator.main_process_first():
tokenized_datasets = datasets.map(
tokenize_function,
batched=True,
remove_columns=["idx", "sentence1", "sentence2"],
)
```
## Applying checks such as Early Stopping
To have a check that works with a flag set by a particular process, the `set_trigger` and `check_trigger` API should be used. Useful examples
for doing so can include situations such as using early stopping and monitoring the loss (as each loss slightly differs on each process).
Call [`Accelerator.set_trigger`] when your condition has been met, and [`Accelerator.check_trigger`] when checking if that condition has been met in any process:
```python
for (x,y) in data_loader:
logits = model(x)
loss = loss_func(logits, y)
# Assume `should_do_early_stopping` is a custom defined function that returns a conditional
if should_do_early_stopping(loss):
accelerator.set_trigger()
# Later in the training script when we need to check for the breakpoint
if accelerator.check_trigger():
break
```

View File

@ -0,0 +1,105 @@
<!--Copyright 2025 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# FSDP1 vs FSDP2
This guide explains the key differences between `FSDP1` and `FSDP2` and helps you migrate your existing code to use `FSDP2` with minimal changes.
## How is FSDP2 better than FSDP1?
First, we want to understand how `FSDP1` and `FSDP2` work internally to understand the differences between them. This also helps us understand the limitations of `FSDP1` and how `FSDP2` solves them.
We'll be discussing a scenario where we have a single `Layer` that contains 3 `Linear` layers and is wrapped using `FSDP` to be sharded across 2 GPUs.
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/accelerate/layer.png" alt="Layer">
</div>
### FSDP1
First, we have to understand the original `FSDP1` and the limitations it brings. It represents each `FSDP` module as a single `FlatParameter` which is a single 1D tensor that contains all of the module parameters, which then get sharded across ranks. I.e. if you wrap the `Layer` with `FSDP1`, you'd achieve something as such:
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/accelerate/fsdp1.png" alt="FSDP1">
</div>
You might notice a problem. The whole `Layer` gets flattened into a single `FlatParameter`, which then gets sharded across ranks. But if it's a single `FlatParameter` object, how do we store metadata? That is one of the limitations. Properly storing per-parameter metadata such as `dtype`, `requires_grad`, etc. is not possible without some ugly hacks.
### FSDP2
This is why `FSDP2` was introduced. It doesn't use `FlatParameter`, instead it uses `DTensor` which is short for "Distributed Tensor". Each `DTensor` basically represents a vanilla `torch.Tensor` that has been sharded across ranks. It contains metadata about the original `torch.Tensor` and how it's sharded, what is the [placement type](https://pytorch.org/docs/stable/distributed.tensor.html#module-torch.distributed.tensor.placement_types) and so on. This is why it's called `per-parameter sharding`. The following figure shows the difference:
<div align="center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/accelerate/fsdp2.png" alt="FSDP2">
</div>
Each Parameter of the original `Layer` is sharded across the 0th dimension, and split between 2 GPUs. Now, each `Linear` layer is a separate `DTensor` and storing metadata per-parameter is possible and straightforward.
> [!TIP]
> In the image above, the tensors were sharded across the 1st dimension for the sake of fitting the image on the screen, in reality, they are sharded across the 0th dimension as stated above
## What does FSDP2 offer?
`FSDP2` is a new and improved version of PyTorch's fully-sharded data parallel training API. Its main advantage is using `DTensor` to represent sharded parameters. Compared to `FSDP1`, it offers:
- Simpler internal implementation, where each `Parameter` is a separate `DTensor`
- Enables simple partial parameter freezing because of the above, which makes methods as [`LORA`](https://arxiv.org/abs/2106.09685) work out of the box
- With `DTensor`, `FSDP2` supports mixing `fp8` and other parameter types in the same model out of the box
- Faster and simpler checkpointing without extra communication across ranks using `SHARDED_STATE_DICT` and [`torch.distributed.checkpoint`](https://pytorch.org/docs/stable/distributed.checkpoint.html), this way, each rank only saves its own shard and corresponding metadata
- For loading, it uses a `state_dict` of the sharded model to directly load the sharded parameters
- Support for asynchronous checkpointing, where parameters are first copied to CPU memory, after this, main thread continues training while another thread stores the parameters on disk
- Memory efficiency and deterministic memory usage, `FSDP2` doesn't use `recordStream` anymore and uses stream-to-stream synchronization (for more technical details see [this forum post](https://dev-discuss.pytorch.org/t/fsdp-cudacachingallocator-an-outsider-newb-perspective/1486) and [this issue](https://github.com/pytorch/pytorch/issues/114299))
- In the future, optimizations of the communication patterns via `torch.compile` are planned, further improving the performance and memory efficiency
## API Differences
We have already discussed the internal differences, now let's discuss the differences, you, as a user, will need to know.
Here are the main changes in configuration options when using `FSDP2` through the `accelerate` CLI:
Previous (`FSDP1`) | New (`FSDP2`) | What Changed
-- | -- | --
`--fsdp_sharding_strategy` | `--fsdp_reshard_after_forward` | replaces `--fsdp_sharding_strategy`, changed to `true` (previously `FULL_SHARD`) or `false` (previously `SHARD_GRAD_OP`)
`--fsdp_backward_prefetch` | \*\***REMOVED**\*\* | `FSDP2` uses previous `BACKWARD_PRE` option by default, as only this allows communication and computation overlap
`--fsdp_forward_prefetch` | \*\***NOT YET IMPLEMENTED**\*\* | How to implement this is under active discussion, for now it is not supported in `FSDP2`
`--fsdp_sync_module_states` | \*\***REMOVED**\*\* | with `FSDP2`, this parameter becomes redundant
`--fsdp_cpu_ram_efficient_loading` | `--fsdp_cpu_ram_efficient_loading` | if `true`, `FSDP2` will similarly load the model only on rank 0, and then parameters get synced to other ranks, this is the same behavior as `FSDP1`, however, setting `--fsdp_sync_module_states` isn't required anymore
`--fsdp_state_dict_type` | `--fsdp_state_dict_type` | `LOCAL_STATE_DICT` becomes obsolete and with `FSDP2` `SHARDED_STATE_DICT` is the default option, which results in no extra communication and each rank saving its own shard, other possible option is `FULL_STATE_DICT` which results in extra communication and spike in memory usage but saves the full model from rank 0. `FULL_STATE_DICT` is not supported in `accelerate` yet.
`--fsdp_use_orig_params` | \*\***REMOVED**\*\* | `FSDP2` uses a `DTensor` class on the background, which means it *always* uses the original parameters by default
\*\***NEW**\*\* | `--fsdp_version` | `1` is the default option, to not break existing code, set to `2` to use `FSDP2`
For all other options that remain unchanged, see the [`FSDP` documentation](../usage_guides/fsdp.md).
## How to Switch to FSDP2
### If using Python code:
Simply set `fsdp_version=2` when creating your plugin and replace options according to the table above.
```python
from accelerate import FullyShardedDataParallelPlugin, Accelerator
fsdp_plugin = FullyShardedDataParallelPlugin(
fsdp_version=2
# other options...
)
accelerator = Accelerator(fsdp_plugin=fsdp_plugin)
```
### If using YAML config:
Use our conversion tool:
```bash
accelerate to-fsdp2 --config_file config.yaml --output_file new_config.yaml
```
This will automatically convert all FSDP1 settings to their FSDP2 equivalents. Use `--overwrite` to update the existing file instead of creating a new one.

View File

@ -0,0 +1,192 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# FSDP vs DeepSpeed
Accelerate offers flexibilty of training frameworks, by integrating two extremely powerful tools for distributed training, namely [Pytorch FSDP](../usage_guides/fsdp) and [Microsoft DeepSpeed](../usage_guides/deepspeed). The aim of this tutorial is to draw parallels, as well as to outline potential differences, to empower the user to switch seamlessly between these two frameworks.
<Tip>
To switch between the frameworks, we recommend launching code `accelerate launch` passing in the correct config file with `--config_file`, or passing in the respective arguments directly for [FSDP and DeepSpeed](../package_reference/cli#accelerate-launch) .
Example Accelerate configurations can be found here for [DeepSpeed](../usage_guides/deepspeed#accelerate-deepspeed-plugin) and [FSDP](../usage_guides/fsdp#how-it-works-out-of-the-box), or in the [example zoo under "Launch Configurations"](../usage_guides/explore)
</Tip>
<Tip warning={true}>
This tutorial is for single-node, multi-GPU, scenarios only.
</Tip>
## Configuring Functionalities
Model tensors are split into different GPUs in an attempt to scale up model sizes; this is termed *sharding* in FSDP, and *partitioning* in DeepSpeed. FSDP sharding and DeepSpeed ZeRO (partitioning) stages are configured by `--fsdp_sharding_strategy`, and `--zero_stage`, respectively. In particular, FSDP `FULL_SHARD` maps to DeepSpeed ZeRO stage `3`; see this [comprehensive mapping between FSDP sharding and DeepSpeed ZeRO settings](../usage_guides/fsdp#mapping-between-fsdp-sharding-strategies-and-deepspeed-zero-stages). The below table summarizes and groups similar settings:
Group | Framework | Configuration | Example | Restrictions (if any)
--|--|--|--|--
sharding / partitioning | FSDP<br>DeepSpeed | `--fsdp_sharding_strategy`<br>`--zero_stage` | `1` (`FULL_SHARD`) <br>`3` |
offload | FSDP<br>DeepSpeed | `--fsdp_offload_params`<br>`--offload_param_device`<br>`--offload_optimizer_device` | `true`<br>`cpu`<br>`cpu` | all or nothing <br><br>
model loading | FSDP<br>DeepSpeed | <span style="white-space:nowrap;">`--fsdp_cpu_ram_efficient_loading`</span><br>`--zero3_init_flag` | `true`<br>`true` | <br>only ZeRO 3
efficient checkpointing | FSDP<br>DeepSpeed | `--fsdp_state_dict_type`<br>`--zero3_save_16bit_model` | `SHARDED_STATE_DICT`<br>`true` | <br>only ZeRO 3
weights prefetching | FSDP<br><br>DeepSpeed | `--fsdp_forward_prefetch`<br>`--fsdp_backward_prefetch`<br>None | `true`<br>`BACKWARD_PRE` | <br><br>
model | FSDP<br><br>DeepSpeed | `--fsdp_auto_wrap_policy`<br><span style="white-space:nowrap;">`--fsdp_transformer_layer_cls_to_wrap`</span><br>None | `TRANSFORMER_BASED_WRAP`<br><Layer Class> |<br>Usually not needed <br>Transparent to user.
parameters summoning | FSDP<br>DeepSpeed | `--fsdp_use_orig_params`<br>None | `true` | required for `torch.compile`<br>Transparent to user
parameters syncing | FSDP<br>DeepSpeed | `--fsdp_sync_module_states`<br>None | `true` |
training | FSDP<br>DeepSpeed | None<br>`--gradient_accumulation_steps`<br>`--gradient_clipping` | <br>`auto`<br>`auto` | Transparent to user
For detailed descriptions of the above, refer to [`Accelerate` launch documentation](../package_reference/cli#accelerate-launch).
<Tip>
To access other DeepSpeed configurations, such as mixed precision settings,
you need to pass in a `--deepspeed_config_file`, see the [documentation](../usage_guides/deepspeed#deepspeed-config-file).
DeepSpeed can be also configured via [`DeepSpeedPlugin`], e.g., `DeepSpeedPlugin.zero_stage` is equivalent of `--zero_stage`, and `DeepSpeedPlugin.hf_ds_config` can be used to pass `--deepeed_config_file.`
</Tip>
<Tip>
FSDP can be also configured via [`FullyShardedDataParallelPlugin`], e.g., `FullyShardedDataParallelPlugin.sharding_strategy` is equivalent of `--fsdp_sharding_strategy`.
</Tip>
### Checkpointing
Do note that while FSDP can be configured via `--fsdp_state_dict_type` to save either full / sharded checkpoints.
<Tip>
For DeepSpeed Zero3, one could pass a `--zero3_save_16bit_model true`, which conveniently consolidates the model to a single rank and saves; this is the FSDP equivalent of `fsdp_state_dict_type: FULL_STATE_DICT`.
</Tip>
<Tip warning={true}>
For large models, consolidating the model to a single rank can be very slow.
</Tip>
<Tip>
For quicker checkpointing, for FSDP use `fsdp_state_dict_type: SHARDED_STATE_DICT`, and for DeepSpeed Zero3 [use the `zero_to_fp32.py` script to post-convert sharded checkpoints](https://www.deepspeed.ai/tutorials/zero/#extracting-weights).
</Tip>
### Offloading
FSDP only allows *all-or-nothing* offload (i.e., either offload parameters, gradients, and optimizer, or keep them all in GPU), but DeepSpeed can offload parameters and optimizer differently. Furthermore, DeepSpeed also supports [offloading to NVME](https://www.deepspeed.ai/docs/config-json/#parameter-offloading).
### Prefetching
FSDP allows two prefetching configurations `--fsdp_forward_prefetch` and `--fsdp_backward_prefetch` to improve overlap of comms / computation at a cost of extra memory, see [FSDP documentation](https://pytorch.org/docs/stable/fsdp.html).
For DeepSpeed, the prefetching will be turned on when needed, and it turns on depending on certain hyper-params like `stage3_param_persistence_threshold`, `stage3_max_reuse_distance`, etc, [that can be configured for Zero3](https://www.deepspeed.ai/docs/config-json/#parameter-offloading); `accelerate` may set these hyper-params automatically if you don't set those explicitly in the deepspeed config file.
<Tip>
For FSDP set `fsdp_backward_prefetch: BACKWARD_PRE` for improved throughputs if memory allows.
</Tip>
### Model Loading
While FSDP require an explicit `--fsdp_cpu_ram_efficient_loading true` to activate efficient model loading, `transformers` will activate the similar feature whenever DeepSpeed Zero3 is used.
<Tip>
For FSDP, whenever setting `--fsdp_cpu_ram_efficient_loading true`, `accelerate` will automatically set `sync_module_states` to true.
For RAM efficient loading the weights will be loaded only in a singe rank, and thus requires `sync_module_states` to broadcast weights to other ranks.
</Tip>
### Model
FSDP requires an explicit `--fsdp_auto_wrap_policy` for the algorithm to decide how to schedule the all-gather and reduce-scatter operations. But for DeepSpeed this is transparent to the user.
<Tip>
For FSDP, simply set `fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP`. With the latest [`transformers`] versions, we try our best to figure out the suitable `fsdp_transformer_layer_cls_to_wrap` for HF transformers models. However, if you get an error regarding it, please specify this.
</Tip>
### Parameters Summoning
FSDP requires an explicit `--fsdp_use_orig_params` flag if using `torch.compile`, see [the pytorch documenation](https://pytorch.org/docs/stable/fsdp.html#module-torch.distributed.fsdp). For DeepSpeed this is transparent to the user.
<Tip>
For FSDP, when using `torch.compile` please set `fsdp_use_orig_params: True`.
</Tip>
## Training
Deepspeed requires explicit `--gradient_accumulation_steps` and `--gradient_clipping` flags. For FSDP this is transparent to the user.
<Tip>
When using DeepSpeed, set `gradient_accumulation_steps: "auto"` and `gradient_clipping: "auto"` to automatically pick up values set in the [`Accelerator`] or [`TrainingArguments`] (if using `transformers`).
</Tip>
## On Differences in Data Precision Handling
To discuss the how data precision is handled in both FSDP and Deepspeed, it is instructive to first give an overview of how model parameters are handled in these frameworks. Before the model / optimizer parameters are distributed across GPUs, parameter preparation is involved to first "flatten" them to one-dimensional [`torch.Tensor`](https://pytorch.org/docs/stable/tensors.html#torch-tensor). The implementation of FSDP / DeepSpeed varies in the respect of the `dtype` in which these "flattened" parameters are stored, and there are ramifications with regards to how [`torch.Optimizer`](https://pytorch.org/docs/stable/optim.html#module-torch.optim) allocate their `dtype`s. The table below outlines the processes for both frameworks; the "Local" column indicates the process occurring at a per-gpu level, therefore any memory overheads by upcasting should be understood to be amortized by the number of gpus used.
<Tip>
As a rule of thumb, for stable training with automatic mixed precision, all the trainable parameters have to be in `torch.float32`.
</Tip>
Process | Local | Framework | Details
--|--|--|--
Loading, i.e., [`AutoModel.from_pretrained(..., torch_dtype=torch_dtype)`] |
Preparation, i.e., creation of "flat params" | ✅ | FSDP<br>DeepSpeed | created in `torch_dtype`.<br> disregards `torch_dtype`, created in `float32`.
Optimizer initialization | ✅ | FSDP<br>DeepSpeed | creates parameters in `torch_dtype`<br> creates parameters in `float32`
Training Step, i.e, forward, backward, reduction | | FSDP<br>DeepSpeed | follows [`MixedPrecision`](https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.MixedPrecision)<br> follows `deepspeed_config_file` mixed precision settings.
Optimizer (Pre-Step) | ✅ | FSDP<br>DeepSpeed | upcasting (if any) to `torch_dtype`<br>upcasted to `float32`
Optimizer (Actual Step) | ✅ | FSDP<br>DeepSpeed | occurs in `torch_dtype` <br> occurs in `float32`.
<Tip warning={true}>
Therefore when using DeepSpeed a small number of GPUs, be aware of potentially significant memory overheads due to the upcasting during preperation.
</Tip>
<Tip>
With FSDP, in the absence of mixed precision, it is possible to operate the [`torch.Optimizer`](https://pytorch.org/docs/stable/optim.html#module-torch.optim) in low precision `torch_dtype`, which may be helpful when using small number of GPUs.
</Tip>
<Tip warning={true}>
With mixed precision, FSDP and DeepSpeed will upcast in the model preparation step (c.f. table above). But do note that FSDP will then save checkpoints in the upcasted precision; Deepspeed may still save low precision checkpoints if `--zero3_save_16bit_model` is specified.
</Tip>
To clarify the above table consider the concrete examples below; the optimizer pre- and actual step combined for brevity. With FSDP it is possible to operate in the two modes shown below, but DeepSpeed can only operate in one.
Framework | Model Loading (`torch_dtype`) | Mixed Precision | Preparation (Local) | Training | Optimizer (Local)
--|--|--|--|--|--
FSDP | bf16 | default (none) | bf16 | bf16 | bf16
FSDP | bf16 | bf16 | fp32 | bf16 | fp32
DeepSpeed | bf16 | bf16 | fp32 | bf16 | fp32

View File

@ -0,0 +1,184 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Gradient synchronization
PyTorch's distributed module operates by communicating back and forth between all of the GPUs in your system.
This communication takes time, and ensuring all processes know the states of each other happens at particular triggerpoints
when using the `ddp` module.
These triggerpoints are added to the PyTorch model, specifically their `forward()` and `backward()` methods.
This happens when the model is wrapped with `DistributedDataParallel`:
```python
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
model = nn.Linear(10, 10)
ddp_model = DistributedDataParallel(model)
```
In Accelerate this conversion happens automatically when calling [`~Accelerator.prepare`] and passing in your model.
```diff
+ from accelerate import Accelerator
+ accelerator = Accelerator()
import torch.nn as nn
- from torch.nn.parallel import DistributedDataParallel
model = nn.Linear(10,10)
+ model = accelerator.prepare(model)
```
## The slowdown in gradient accumulation
You now understand that PyTorch adds hooks to the `forward` and `backward` method of your PyTorch model when
training in a distributed setup. But how does this risk slowing down your code?
In DDP (distributed data parallel), the specific order in which processes are performed and ran are expected
at specific points and these must also occur at roughly the same time before moving on.
The most direct example is when you update model parameters through
`optimizer.step()`.
Without gradient accumulation, all instances of the model need to have updated
their gradients computed, collated, and updated before moving on to the next
batch of data.
When performing gradient accumulation, you accumulate `n` loss gradients and
skip `optimizer.step()` until `n` batches have been reached. As all training
processes only need to synchronize by the time `optimizer.step()` is called,
without any modification to your training step, this needless inter-process
communication can cause a significant slowdown.
How can you avoid this overhead?
## Solving the slowdown problem
Since you are skipping model parameter updates when training on these batches, their gradients do not need to be synchronized until the point where `optimizer.step()` is actually called.
PyTorch cannot automagically tell when you need to do this, but they do provide a tool to help through the [`no_sync`](https://pytorch.org/docs/stable/generated/torch.nn.parallel.DistributedDataParallel.html#torch.nn.parallel.DistributedDataParallel.no_sync) context manager
that is added to your model after converting it to DDP.
Under this context manager, PyTorch will skip synchronizing the gradients when
`.backward()` is called, and the first call to `.backward()` outside this
context manager will trigger the synchronization. See an example below:
```python
ddp_model, dataloader, optimizer = accelerator.prepare(model, dataloader, optimizer)
for index, batch in enumerate(dataloader):
inputs, targets = batch
# Trigger gradient synchronization on the last batch
if index != (len(dataloader) - 1):
with ddp_model.no_sync():
# Gradients only accumulate
outputs = ddp_model(inputs)
loss = loss_func(outputs)
accelerator.backward(loss)
else:
# Gradients finally sync
outputs = ddp_model(inputs)
loss = loss_func(outputs)
accelerator.backward(loss)
optimizer.step()
```
In Accelerate to make this an API that can be called no matter the training device (though it may not do anything if you are not in a distributed system!),
`ddp_model.no_sync` gets replaced with [`~Accelerator.no_sync`] and operates the same way:
```diff
ddp_model, dataloader, optimizer = accelerator.prepare(model, dataloader, optimizer)
for index, batch in enumerate(dataloader):
inputs, targets = batch
# Trigger gradient synchronization on the last batch
if index != (len(dataloader)-1):
- with ddp_model.no_sync():
+ with accelerator.no_sync(model):
# Gradients only accumulate
outputs = ddp_model(inputs)
loss = loss_func(outputs, targets)
accelerator.backward(loss)
else:
# Gradients finally sync
outputs = ddp_model(inputs)
loss = loss_func(outputs)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
```
As you may expect, the [`~Accelerator.accumulate`] function wraps around this conditional check by keeping track of the current batch number, leaving you with the final
gradient accumulation API:
```python
ddp_model, dataloader, optimizer = accelerator.prepare(model, dataloader, optimizer)
for batch in dataloader:
with accelerator.accumulate(model):
optimizer.zero_grad()
inputs, targets = batch
outputs = model(inputs)
loss = loss_function(outputs, targets)
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
```
As a result, you should either use *`accelerator.accumulate` or `accelerator.no_sync`* when it comes to API choice.
## Just how much of a slowdown is there, and easy mistakes you can make
To set up a realistic example, consider the following setup:
* Two single-GPU T4 nodes and one node with two GPUs
* Each GPU is a T4, and are hosted on GCP
* The script used is a modification of the [NLP Example](https://github.com/muellerzr/timing_experiments/blob/main/baseline.py) script
* Batch size per GPU is 16, and gradients are accumulated every 4 steps
All scripts are available in [this repository](https://github.com/muellerzr/timing_experiments).
If not careful about gradient synchronization and GPU communication, a *large* amount of time can be wasted
from when these GPUs communicate to each other during unnecessary periods.
By how much?
Reference:
- Baseline: uses no synchronization practices discussed here
- `no_sync` improperly: `no_sync` only around the `backward` call, not the `forward`
- `no_sync`: using the `no_sync` pattern properly
- `accumulate`: using [`~Accelerator.accumulate`] properly
Below are the average seconds per batch iterating over 29 batches of data for each setup on both a single node and on the dual-node setup:
| | Baseline | `no_sync` improperly | `no_sync` | `accumulate`|
| :---------: | :-------: | :------------------: | :-------: | :---------: |
| Multi-Node | 2±0.01s | 2.13±0.08s | **0.91±0.11s** | **0.91±0.11s** |
| Single Node | 0.50±0.01s | 0.50±0.01s | **0.41±0.015s** | **0.41±0.015s** |
As you can see, if you are not careful about how you set up your gradient synchronization, you can get upwards of more than a 2x slowdown during training!
If you are worried about making sure everything is done properly, we highly recommend utilizing the [`~Accelerator.accumulate`] function and passing in
`gradient_accumulation_steps` or `gradient_accumulation_plugin` to the [`Accelerator`] object so Accelerate can handle this for you.
### `no_sync` requires additional GPU memory when using FSDP
Be aware that not syncing gradients can have adverse effects while performing FSDP training. As it has been warned in `torch`, the [`no_sync` context manager for FSDP](https://pytorch.org/docs/stable/fsdp.html#torch.distributed.fsdp.FullyShardedDataParallel.no_sync) will require additional memory.
Therefore in memory intensive situations while using FSDP, we recommend to set `sync_each_batch` to `True` in the [`~utils.GradientAccumulationPlugin`] to disable `no_sync`.
See the example below where we fine-tune Mixtral (47B parameters) on 8 A100-80GB GPUs. We see that even for a modest `gradient_accumulation_steps=2` we quickly go out-of-memory (OOM) if `no_sync` is enabled. Again, this is due to additional memory overheads due to FSDP's `no_sync`. However, if `no_sync` is disabled via `sync_each_batch=True`, then the memory consumption for `gradient_accumulation_steps=16` reverts to that of `gradient_accumulation_steps=1`.
| Model | `no_sync` (accum=1) | `no_sync` (accum=2) | `no_sync` disabled (accum=16)
| :-------------: | :-----------------: | :-----------------: | :-----------------:
mixtral 8x7B | 69G | OOM | 69G
> [!WARNING]
> Disabling `no_sync` means there _will be slowdown_ due the extra data syncs, as explained by the earlier sections of this guide.

View File

@ -0,0 +1,74 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Accelerate's internal mechanisms
Internally, Accelerate works by first analyzing the environment in which the script is launched to determine which
kind of distributed setup is used, how many different processes there are and which one the current script is in. All
that information is stored in the [`~AcceleratorState`].
This class is initialized the first time you instantiate an [`~Accelerator`] as well as performing any
specific initialization your distributed setup needs. Its state is then uniquely shared through all instances of
[`~state.AcceleratorState`]. (The same can also be done with the [`PartialState`], a more barebones version it inherits)
Then, when calling [`~Accelerator.prepare`], the library:
- wraps your model(s) in the container adapted for the distributed setup,
- wraps your optimizer(s) in an [`~optimizer.AcceleratedOptimizer`],
- wraps your scheduler(s) in an [`~scheduler.AcceleratedScheduler`]
- creates a new version of your dataloader(s) in a [`~data_loader.DataLoaderShard`] or [`~data_loader.DataLoaderDispatcher`]
While the model(s), optimizer(s), and scheduler(s) are just put in simple wrappers, the dataloader(s) are re-created. This is mostly
because PyTorch does not let the user change the `batch_sampler` of a dataloader once it's been created and the
library handles the sharding of your data between processes by changing that `batch_sampler` to yield every other
`num_processes` batches (if enabled).
The [`~data_loader.DataLoaderShard`] subclasses `DataLoader` to add the following functionality:
- it synchronizes the appropriate random number generator of all processes at each new iteration, to ensure any
randomization (like shuffling) is done the exact same way across processes.
- it puts the batches on the proper device before yielding them (unless you have opted out of
`device_placement=True`).
The [`~data_loader.DataLoaderDispatcher`] subclasses differs from the [`~data_loader.DataLoaderShard`] in that when iterating through the `DataLoader`, the data is all starting from process 0 and *then* split and sent off to each process rather than it happening at the dataset level.
The random number generator synchronization will by default synchronize:
- the `generator` attribute of a given sampler (like the PyTorch `RandomSampler`) for PyTorch >= 1.6
- the main random number generator in PyTorch <=1.5.1
You can choose which random number generator(s) to synchronize with the `rng_types` argument of the main
[`Accelerator`]. In PyTorch >= 1.6, it is recommended to rely on a local `generator` to avoid
setting the same seed in the main random number generator in all processes.
<Tip warning={true}>
Synchronization of the main torch (or CUDA or XLA) random number generator will affect any other potential random
artifacts you could have in your dataset (like random data augmentation) in the sense that all processes will get
the same random numbers from the torch random modules (so will apply the same random data augmentation if it's
controlled by torch).
</Tip>
<Tip>
The randomization part of your custom sampler, batch sampler or iterable dataset should be done using a local
`torch.Generator` object (in PyTorch >= 1.6), see the traditional `RandomSampler`, as an example.
</Tip>
If you have [`torchdata>=0.8.0`](https://github.com/pytorch/data/tree/main) installed, and you have passed `use_stateful_dataloader=True` into your [`~utils.DataLoaderConfiguration`], these classes will directly inherit from `StatefulDataLoader` instead, and maintain a `state_dict`.
For more details about the internals, see the [Internals page](package_reference/torch_wrappers).

View File

@ -0,0 +1,74 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Low precision training methods
The release of new kinds of hardware led to the emergence of new training paradigms that better utilize them. Currently, this is in the form of training
in 8-bit precision using packages such as [TransformersEngine](https://github.com/NVIDIA/TransformerEngine) (TE) or [MS-AMP](https://github.com/Azure/MS-AMP/tree/main).
For an introduction to the topics discussed today, we recommend reviewing the [low-precision usage guide](../usage_guides/low_precision_training) as this documentation will reference it regularly.
## A Quick Chart
Below is a quick chart from the MS-AMP documentation showing the different bit-precisions for each solution during training:
Optimization Level | Computation(GEMM) | Comm | Weight | Master Weight | Weight Gradient | Optimizer States
-- | -- | -- | -- | -- | -- | --
FP16 AMP | FP16 | FP32 | FP32 | N/A | FP32 | FP32+FP32
Nvidia TE | FP8 | FP32 | FP32 | N/A | FP32 | FP32+FP32
MS-AMP O1 | FP8 | FP8 | FP16 | N/A | FP8 | FP32+FP32
MS-AMP O2 | FP8 | FP8 | FP16 | N/A | FP8 | FP8+FP16
MS-AMP O3 | FP8 | FP8 | FP8 | FP16 | FP8 | FP8+FP16
## `TransformersEngine`
`TransformersEngine` is the first solution to trying to train in 8-bit floating point. It works by using drop-in replacement layers for certain ones in a model that utilizes their FP8-engine to reduce the number of bits (such as 32 to 8) without degrading the final accuracy of the model.
Specifically, Accelerate will find and replace the following layers with `TransformersEngine` versions:
* `nn.LayerNorm` for `te.LayerNorm`
* `nn.Linear` for `te.Linear`
As a result we wind up with a model that has most of its layers in BF16, while some layers are in FP8 reducing some of the memory.
Anecdotally, we have noticed that performance gains don't really start showing when using `TransformerEngine` until a large majority of the layers
in the model are made up of those two layers to replace. As a result, only larger models have shown performance improvements when the number of parameters is around and upwards of a few billion.
The `TransformerEngine` can receive many different arguments that customize how it performs FP8 calculations and what they do. A full list of the arguments is available below:
* `margin`: The margin to use for the gradient scaling.
* `interval`: The interval to use for how often the scaling factor is recomputed.
* `fp8_format``: The format to use for the FP8 recipe. Must be one of `HYBRID` or `E4M3`. (Generally `HYBRID` for training, `E4M3` for evaluation)
* `amax_history_len`: The length of the history to use for the scaling factor computation
* `amax_compute_algo`: The algorithm to use for the scaling factor computation. Must be one of `max` or `most_recent`.
* `override_linear_precision`: Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision.
You can customize each of these as part of [`utils.FP8RecipeKwargs`] to help optimize performance of your models.
If we notice in the chart mentioned earlier, TE simply casts the computation layers into FP8, while everything else is in FP32. As a result this winds up utilizing the most memory but does so with the benefit of guaranteeing the least amount of loss in end accuracy during training.
## `MS-AMP`
MS-AMP takes a different approach to `TransformersEngine` by providing three different optimization levels to convert more operations in FP8 or FP16.
* The base optimization level (`O1`), passes communications of the weights (such as in DDP) in FP8, stores the weights of the model in FP16, and leaves the optimizer states in FP32. The main benefit of this optimization level is that we can reduce the communication bandwidth by essentially half. Additionally, more GPU memory is saved due to 1/2 of everything being cast in FP8, and the weights being cast to FP16. Notably, both the optimizer states remain in FP32.
* The second optimization level (`O2`) improves upon this by also reducing the precision of the optimizer states. One is in FP8 while the other is in FP16. Generally it's been shown that this will only provide a net-gain of no degraded end accuracy, increased training speed, and reduced memory as now every state is either in FP16 or FP8.
* Finally, MS-AMP has a third optimization level (`O3`) which helps during DDP scenarios such as DeepSpeed. The weights of the model in memory are fully cast to FP8, and the master weights are now stored in FP16. This fully reduces memory by the highest factor as now not only is almost everything in FP8, only two states are left in FP16. Currently, only DeepSpeed versions up through 0.9.2 are supported, so this capability is not included in the Accelerate integration
## Combining the two
More experiments need to be performed but it's been noted that combining both MS-AMP and TransformersEngine can lead to the highest throughput by relying on NVIDIA's optimized FP8 operators and utilizing how MS-AMP reduces the memory overhead.

View File

@ -0,0 +1,103 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Comparing performance across distributed setups
Evaluating and comparing the performance from different setups can be quite tricky if you don't know what to look for.
For example, you cannot run the same script with the same batch size across TPU, multi-GPU, and single-GPU with Accelerate
and expect your results to line up.
But why?
There are three reasons for this that this tutorial will cover:
1. **Setting the right seeds**
2. **Observed Batch Sizes**
3. **Learning Rates**
## Setting the Seed
While this issue has not come up as much, make sure to use [`utils.set_seed`] to fully set the seed in all distributed cases so training will be reproducible:
```python
from accelerate.utils import set_seed
set_seed(42)
```
Why is this important? Under the hood this will set **5** different seed settings:
```python
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # or torch.xpu.manual_seed_all, etc
# ^^ safe to call this function even if cuda is not available
if is_torch_xla_available():
xm.set_rng_state(seed)
```
The random state, numpy's state, torch, torch's device state, and if TPUs are available torch_xla's cuda state.
## Observed Batch Sizes
When training with Accelerate, the batch size passed to the dataloader is the **batch size per GPU**. What this entails is
a batch size of 64 on two GPUs is truly a batch size of 128. As a result, when testing on a single GPU this needs to be accounted for,
as well as similarly for TPUs.
The below table can be used as a quick reference to try out different batch sizes:
<Tip>
In this example, there are two GPUs for "Multi-GPU" and a TPU pod with 8 workers
</Tip>
| Single GPU Batch Size | Multi-GPU Equivalent Batch Size | TPU Equivalent Batch Size |
|-----------------------|---------------------------------|---------------------------|
| 256 | 128 | 32 |
| 128 | 64 | 16 |
| 64 | 32 | 8 |
| 32 | 16 | 4 |
## Learning Rates
As noted in multiple sources[[1](https://aws.amazon.com/blogs/machine-learning/scalable-multi-node-deep-learning-training-using-gpus-in-the-aws-cloud/)][[2](https://docs.nvidia.com/clara/clara-train-sdk/pt/model.html#classification-models-multi-gpu-training)], the learning rate should be scaled *linearly* based on the number of devices present. The below
snippet shows doing so with Accelerate:
<Tip>
Since users can have their own learning rate schedulers defined, we leave this up to the user to decide if they wish to scale their
learning rate or not.
</Tip>
```python
learning_rate = 1e-3
accelerator = Accelerator()
learning_rate *= accelerator.num_processes
optimizer = AdamW(params=model.parameters(), lr=learning_rate)
```
You will also find that `accelerate` will step the learning rate based on the number of processes being trained on. This is because
of the observed batch size noted earlier. So in the case of 2 GPUs, the learning rate will be stepped twice as often as a single GPU
to account for the batch size being twice as large (if no changes to the batch size on the single GPU instance are made).
## Gradient Accumulation and Mixed Precision
When using gradient accumulation and mixed precision, due to how gradient averaging works (accumulation) and the precision loss (mixed precision),
some degradation in performance is expected. This will be explicitly seen when comparing the batch-wise loss between different compute
setups. However, the overall loss, metric, and general performance at the end of training should be _roughly_ the same.

View File

@ -0,0 +1,167 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Training on TPUs
Training on TPUs can be slightly different from training on multi-gpu, even with Accelerate. This guide aims to show you
where you should be careful and why, as well as the best practices in general.
## Training in a Notebook
The main carepoint when training on TPUs comes from the [`notebook_launcher`]. As mentioned in the [notebook tutorial](../usage_guides/notebook), you need to
restructure your training code into a function that can get passed to the [`notebook_launcher`] function and be careful about not declaring any tensors on the GPU.
While on a TPU that last part is not as important, a critical part to understand is that when you launch code from a notebook you do so through a process called **forking**.
When launching from the command-line, you perform **spawning**, where a python process is not currently running and you *spawn* a new process in. Since your Jupyter notebook is already
utilizing a python process, you need to *fork* a new process from it to launch your code.
Where this becomes important is in regard to declaring your model. On forked TPU processes, it is recommended that you instantiate your model *once* and pass this into your
training function. This is different than training on GPUs where you create `n` models that have their gradients synced and back-propagated at certain moments. Instead, one
model instance is shared between all the nodes and it is passed back and forth. This is important especially when training on low-resource TPUs such as those provided in Kaggle kernels or
on Google Colaboratory.
Below is an example of a training function passed to the [`notebook_launcher`] if training on CPUs or GPUs:
<Tip>
This code snippet is based off the one from the `simple_nlp_example` notebook found [here](https://github.com/huggingface/notebooks/blob/main/examples/accelerate_examples/simple_nlp_example.ipynb) with slight
modifications for the sake of simplicity
</Tip>
```python
def training_function():
# Initialize accelerator
accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)
train_dataloader, eval_dataloader = create_dataloaders(
train_batch_size=hyperparameters["train_batch_size"], eval_batch_size=hyperparameters["eval_batch_size"]
)
# Instantiate optimizer
optimizer = AdamW(params=model.parameters(), lr=hyperparameters["learning_rate"])
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
num_epochs = hyperparameters["num_epochs"]
# Now we train the model
for epoch in range(num_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
accelerator.backward(loss)
optimizer.step()
optimizer.zero_grad()
```
```python
from accelerate import notebook_launcher
notebook_launcher(training_function)
```
<Tip>
The `notebook_launcher` will default to 8 processes if Accelerate has been configured for a TPU
</Tip>
If you use this example and declare the model *inside* the training loop, then on a low-resource system you will potentially see an error
like:
```
ProcessExitedException: process 0 terminated with signal SIGSEGV
```
This error is *extremely* cryptic but the basic explanation is you ran out of system RAM. You can avoid this entirely by reconfiguring the training function to
accept a single `model` argument, and declare it in an outside cell:
```python
# In another Jupyter cell
model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)
```
```diff
+ def training_function(model):
# Initialize accelerator
accelerator = Accelerator()
- model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=2)
train_dataloader, eval_dataloader = create_dataloaders(
train_batch_size=hyperparameters["train_batch_size"], eval_batch_size=hyperparameters["eval_batch_size"]
)
...
```
And finally calling the training function with:
```diff
from accelerate import notebook_launcher
- notebook_launcher(training_function)
+ notebook_launcher(training_function, (model,))
```
<Tip>
The above workaround is only needed when launching a TPU instance from a Jupyter Notebook on a low-resource server such as Google Colaboratory or Kaggle. If
using a script or launching on a much beefier server declaring the model beforehand is not needed.
</Tip>
## Mixed Precision and Global Variables
As mentioned in the [mixed precision tutorial](../usage_guides/mixed_precision), Accelerate supports fp16 and bf16, both of which can be used on TPUs.
That being said, ideally `bf16` should be utilized as it is extremely efficient to use.
There are two "layers" when using `bf16` and Accelerate on TPUs, at the base level and at the operation level.
At the base level, this is enabled when passing `mixed_precision="bf16"` to `Accelerator`, such as:
```python
accelerator = Accelerator(mixed_precision="bf16")
```
By default, this will cast `torch.float` and `torch.double` to `bfloat16` on TPUs.
The specific configuration being set is an environmental variable of `XLA_USE_BF16` is set to `1`.
There is a further configuration you can perform which is setting the `XLA_DOWNCAST_BF16` environmental variable. If set to `1`, then
`torch.float` is `bfloat16` and `torch.double` is `float32`.
This is performed in the `Accelerator` object when passing `downcast_bf16=True`:
```python
accelerator = Accelerator(mixed_precision="bf16", downcast_bf16=True)
```
Using downcasting instead of bf16 everywhere is good for when you are trying to calculate metrics, log values, and more where raw bf16 tensors would be unusable.
## Training Times on TPUs
As you launch your script, you may notice that training seems exceptionally slow at first. This is because TPUs
first run through a few batches of data to see how much memory to allocate before finally utilizing this configured
memory allocation extremely efficiently.
If you notice that your evaluation code to calculate the metrics of your model takes longer due to a larger batch size being used,
it is recommended to keep the batch size the same as the training data if it is too slow. Otherwise the memory will reallocate to this
new batch size after the first few iterations.
<Tip>
Just because the memory is allocated does not mean it will be used or that the batch size will increase when going back to your training dataloader.
</Tip>

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 105 KiB

74
docs/source/index.md Normal file
View File

@ -0,0 +1,74 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Accelerate
Accelerate is a library that enables the same PyTorch code to be run across any distributed configuration by adding just four lines of code! In short, training and inference at scale made simple, efficient and adaptable.
```diff
+ from accelerate import Accelerator
+ accelerator = Accelerator()
+ model, optimizer, training_dataloader, scheduler = accelerator.prepare(
+ model, optimizer, training_dataloader, scheduler
+ )
for batch in training_dataloader:
optimizer.zero_grad()
inputs, targets = batch
inputs = inputs.to(device)
targets = targets.to(device)
outputs = model(inputs)
loss = loss_function(outputs, targets)
+ accelerator.backward(loss)
optimizer.step()
scheduler.step()
```
Built on `torch_xla` and `torch.distributed`, Accelerate takes care of the heavy lifting, so you don't have to write any custom code to adapt to these platforms.
Convert existing codebases to utilize [DeepSpeed](usage_guides/deepspeed), perform [fully sharded data parallelism](usage_guides/fsdp), and have automatic support for mixed-precision training!
<Tip>
To get a better idea of this process, make sure to check out the [Tutorials](basic_tutorials/overview)!
</Tip>
This code can then be launched on any system through Accelerate's CLI interface:
```bash
accelerate launch {my_script.py}
```
<div class="mt-10">
<div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./basic_tutorials/overview"
><div class="w-full text-center bg-gradient-to-br from-blue-400 to-blue-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Tutorials</div>
<p class="text-gray-700">Learn the basics and become familiar with using Accelerate. Start here if you are using Accelerate for the first time!</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./usage_guides/explore"
><div class="w-full text-center bg-gradient-to-br from-indigo-400 to-indigo-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">How-to guides</div>
<p class="text-gray-700">Practical guides to help you achieve a specific goal. Take a look at these guides to learn how to use Accelerate to solve real-world problems.</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./concept_guides/gradient_synchronization"
><div class="w-full text-center bg-gradient-to-br from-pink-400 to-pink-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Conceptual guides</div>
<p class="text-gray-700">High-level explanations for building a better understanding of important topics such as avoiding subtle nuances and pitfalls in distributed training and DeepSpeed.</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="./package_reference/accelerator"
><div class="w-full text-center bg-gradient-to-br from-purple-400 to-purple-500 rounded-lg py-1.5 font-semibold mb-5 text-white text-lg leading-relaxed">Reference</div>
<p class="text-gray-700">Technical descriptions of how Accelerate classes and methods work.</p>
</a>
</div>
</div>

View File

@ -0,0 +1,26 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Accelerator
The [`Accelerator`] is the main class for enabling distributed training on any type of training setup. Read the [Add Accelerator to your code](../basic_tutorials/migration) tutorial to learn more about how to add the [`Accelerator`] to your script.
## Accelerator[[api]]
[[autodoc]] Accelerator
## Utilities
[[autodoc]] accelerate.utils.gather_object

View File

@ -0,0 +1,102 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Working with large models
## Dispatch and offload
### init_empty_weights
[[autodoc]] big_modeling.init_empty_weights
### cpu_offload
[[autodoc]] big_modeling.cpu_offload
### cpu_offload_with_hook
[[autodoc]] big_modeling.cpu_offload_with_hook
### disk_offload
[[autodoc]] big_modeling.disk_offload
### dispatch_model
[[autodoc]] big_modeling.dispatch_model
### load_checkpoint_and_dispatch
[[autodoc]] big_modeling.load_checkpoint_and_dispatch
### load_checkpoint_in_model
[[autodoc]] big_modeling.load_checkpoint_in_model
### infer_auto_device_map
[[autodoc]] utils.infer_auto_device_map
## Hooks
### ModelHook
[[autodoc]] hooks.ModelHook
### AlignDevicesHook
[[autodoc]] hooks.AlignDevicesHook
### SequentialHook
[[autodoc]] hooks.SequentialHook
## Adding Hooks
### add_hook_to_module
[[autodoc]] hooks.add_hook_to_module
### attach_execution_device_hook
[[autodoc]] hooks.attach_execution_device_hook
### attach_align_device_hook
[[autodoc]] hooks.attach_align_device_hook
### attach_align_device_hook_on_blocks
[[autodoc]] hooks.attach_align_device_hook_on_blocks
## Removing Hooks
### remove_hook_from_module
[[autodoc]] hooks.remove_hook_from_module
### remove_hook_from_submodules
[[autodoc]] hooks.remove_hook_from_submodules
## Utilities
### has_offloaded_params
[[autodoc]] utils.has_offloaded_params
### align_module_device
[[autodoc]] utils.align_module_device

View File

@ -0,0 +1,335 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# The Command Line
Below is a list of all the available commands 🤗 Accelerate with their parameters
## accelerate config
**Command**:
`accelerate config` or `accelerate-config`
Launches a series of prompts to create and save a `default_config.yml` configuration file for your training system. Should
always be ran first on your machine.
**Usage**:
```bash
accelerate config [arguments]
```
**Optional Arguments**:
* `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content
of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory
(`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`.
* `-h`, `--help` (`bool`) -- Show a help message and exit
## accelerate config default
**Command**:
`accelerate config default` or `accelerate-config default`
Create a default config file for Accelerate with only a few flags set.
**Usage**:
```bash
accelerate config default [arguments]
```
**Optional Arguments**:
* `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content
of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory
(`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`.
* `-h`, `--help` (`bool`) -- Show a help message and exit
* `--mixed_precision {no,fp16,bf16}` (`str`) -- Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.
## accelerate config update
**Command**:
`accelerate config update` or `accelerate-config update`
Update an existing config file with the latest defaults while maintaining the old configuration.
**Usage**:
```bash
accelerate config update [arguments]
```
**Optional Arguments**:
* `--config_file CONFIG_FILE` (`str`) -- The path to the config file to update. Will default to a file named default_config.yaml in the cache location, which is the content
of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory
(`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`.
* `-h`, `--help` (`bool`) -- Show a help message and exit
## accelerate env
**Command**:
`accelerate env` or `accelerate-env` or `python -m accelerate.commands.env`
Lists the contents of the passed 🤗 Accelerate configuration file. Should always be used when opening an issue on the [GitHub repository](https://github.com/huggingface/accelerate).
**Usage**:
```bash
accelerate env [arguments]
```
**Optional Arguments**:
* `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content
of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory
(`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`.
* `-h`, `--help` (`bool`) -- Show a help message and exit
## accelerate launch
**Command**:
`accelerate launch` or `accelerate-launch` or `python -m accelerate.commands.launch`
Launches a specified script on a distributed system with the right parameters.
**Usage**:
```bash
accelerate launch [arguments] {training_script} --{training_script-argument-1} --{training_script-argument-2} ...
```
**Positional Arguments**:
- `{training_script}` -- The full path to the script to be launched in parallel
- `--{training_script-argument-1}` -- Arguments of the training script
**Optional Arguments**:
* `-h`, `--help` (`bool`) -- Show a help message and exit
* `--config_file CONFIG_FILE` (`str`)-- The config file to use for the default values in the launching script.
* `-m`, `--module` (`bool`) -- Change each process to interpret the launch script as a Python module, executing with the same behavior as 'python -m'.
* `--no_python` (`bool`) -- Skip prepending the training script with 'python' - just execute it directly. Useful when the script is not a Python script.
* `--debug` (`bool`) -- Whether to print out the torch.distributed stack trace when something fails.
* `-q`, `--quiet` (`bool`) -- Silence subprocess errors from the launch stack trace to only show the relevant tracebacks. (Only applicable to DeepSpeed and single-process configurations).
The rest of these arguments are configured through `accelerate config` and are read in from the specified `--config_file` (or default configuration) for their
values. They can also be passed in manually.
**Hardware Selection Arguments**:
* `--cpu` (`bool`) -- Whether or not to force the training on the CPU.
* `--multi_gpu` (`bool`) -- Whether or not this should launch a distributed GPU training.
* `--tpu` (`bool`) -- Whether or not this should launch a TPU training.
* `--ipex` (`bool`) -- Whether or not this should launch an Intel Pytorch Extension (IPEX) training.
**Resource Selection Arguments**:
The following arguments are useful for fine-tuning how available hardware should be used
* `--mixed_precision {no,fp16,bf16,fp8}` (`str`) -- Whether or not to use mixed precision training. Choose between FP16 and BF16 (bfloat16) training. BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.
* `--num_processes NUM_PROCESSES` (`int`) -- The total number of processes to be launched in parallel.
* `--num_machines NUM_MACHINES` (`int`) -- The total number of machines used in this training.
* `--num_cpu_threads_per_process NUM_CPU_THREADS_PER_PROCESS` (`int`) -- The number of CPU threads per process. Can be tuned for optimal performance.
* `--enable_cpu_affinity` (`bool`) -- Whether or not CPU affinity and balancing should be enabled. Currently only supported on NVIDIA hardware.
**Training Paradigm Arguments**:
The following arguments are useful for selecting which training paradigm to use.
* `--use_deepspeed` (`bool`) -- Whether or not to use DeepSpeed for training.
* `--use_fsdp` (`bool`) -- Whether or not to use FullyShardedDataParallel for training.
* `--use_megatron_lm` (`bool`) -- Whether or not to use Megatron-LM for training.
* `--use_xpu` (`bool`) -- Whether to use IPEX plugin to speed up training on XPU specifically. **This argument is deprecated and ignored, will be removed in Accelerate v1.20**
**Distributed GPU Arguments**:
The following arguments are only useful when `multi_gpu` is passed or multi-gpu training is configured through `accelerate config`:
* `--gpu_ids` (`str`) -- What GPUs (by id) should be used for training on this machine as a comma-seperated list
* `--same_network` (`bool`) -- Whether all machines used for multinode training exist on the same local network.
* `--machine_rank` (`int`) -- The rank of the machine on which this script is launched.
* `--main_process_ip` (`str`) -- The IP address of the machine of rank 0.
* `--main_process_port` (`int`) -- The port to use to communicate with the machine of rank 0.
* `-t`, `--tee` (`str`) -- Tee std streams into a log file and also to console.
* `--log_dir` (`str`) -- Base directory to use for log files when using torchrun/torch.distributed.run as launcher. Use with --tee to redirect std streams info log files.
* `--role` (`str`) -- User-defined role for the workers.
* `--rdzv_backend` (`str`) -- The rendezvous method to use, such as 'static' (the default) or 'c10d'
* `--rdzv_conf` (`str`) -- Additional rendezvous configuration (<key1>=<value1>,<key2>=<value2>,...).
* `--max_restarts` (`int`) -- Maximum number of worker group restarts before failing.
* `--monitor_interval` (`int`) -- Interval, in seconds, to monitor the state of workers.
**TPU Arguments**:
The following arguments are only useful when `tpu` is passed or TPU training is configured through `accelerate config`:
* `--tpu_cluster` (`bool`) -- Whether to use a GCP TPU pod for training.
* `--tpu_use_sudo` (`bool`) -- Whether to use `sudo` when running the TPU training script in each pod.
* `--vm` (`str`) -- List of single Compute VM instance names. If not provided we assume usage of instance groups. For TPU pods.
* `--env` (`str`) -- List of environment variables to set on the Compute VM instances. For TPU pods.
* `--main_training_function` (`str`) -- The name of the main function to be executed in your script (only for TPU training).
* `--downcast_bf16` (`bool`) -- Whether when using bf16 precision on TPUs if both float and double tensors are cast to bfloat16 or if double tensors remain as float32.
**DeepSpeed Arguments**:
The following arguments are only useful when `use_deepspeed` is passed or `deepspeed` is configured through `accelerate config`:
* `--deepspeed_config_file` (`str`) -- DeepSpeed config file.
* `--zero_stage` (`int`) -- DeepSpeed's ZeRO optimization stage.
* `--offload_optimizer_device` (`str`) -- Decides where (none|cpu|nvme) to offload optimizer states.
* `--offload_param_device` (`str`) -- Decides where (none|cpu|nvme) to offload parameters.
* `--offload_optimizer_nvme_path` (`str`) -- Decides Nvme Path to offload optimizer states.
* `--gradient_accumulation_steps` (`int`) -- No of gradient_accumulation_steps used in your training script.
* `--gradient_clipping` (`float`) -- Gradient clipping value used in your training script.
* `--zero3_init_flag` (`str`) -- Decides Whether (true|false) to enable `deepspeed.zero.Init` for constructing massive models. Only applicable with DeepSpeed ZeRO Stage-3.
* `--zero3_save_16bit_model` (`str`) -- Decides Whether (true|false) to save 16-bit model weights when using ZeRO Stage-3. Only applicable with DeepSpeed ZeRO Stage-3.
* `--deepspeed_hostfile` (`str`) -- DeepSpeed hostfile for configuring multi-node compute resources.
* `--deepspeed_exclusion_filter` (`str`) -- DeepSpeed exclusion filter string when using multi-node setup.
* `--deepspeed_inclusion_filter` (`str`) -- DeepSpeed inclusion filter string when using multi-node setup.
* `--deepspeed_multinode_launcher` (`str`) -- DeepSpeed multi-node launcher to use.
* `--deepspeed_moe_layer_cls_names` (`str`) -- comma-separated list of transformer MoE layer class names (case-sensitive) to wrap, e.g, `MixtralSparseMoeBlock` `Qwen2MoeSparseMoeBlock`, `JetMoEAttention,JetMoEBlock`
**Fully Sharded Data Parallelism Arguments**:
The following arguments are only useful when `use_fsdp` is passed or Fully Sharded Data Parallelism is configured through `accelerate config`:
* `--fsdp_offload_params` (`str`) -- Decides Whether (true|false) to offload parameters and gradients to CPU.
* `--fsdp_min_num_params` (`int`) -- FSDP's minimum number of parameters for Default Auto Wrapping.
* `--fsdp_sharding_strategy` (`int`) -- FSDP's Sharding Strategy.
* `--fsdp_auto_wrap_policy` (`str`) -- FSDP's auto wrap policy.
* `--fsdp_transformer_layer_cls_to_wrap` (`str`) -- Transformer layer class name (case-sensitive) to wrap, e.g, `BertLayer`, `GPTJBlock`, `T5Block` ...
* `--fsdp_backward_prefetch_policy` (`str`) -- FSDP's backward prefetch policy.
* `--fsdp_state_dict_type` (`str`) -- FSDP's state dict type.
* `--fsdp_forward_prefetch` (`str`) -- FSDP forward prefetch.
* `--fsdp_use_orig_params` (`str`) -- If True, allows non-uniform `requires_grad` mixed in a FSDP unit.
* `--fsdp_cpu_ram_efficient_loading` (`str`) -- If true, only the first process loads the pretrained model checkoint while all other processes have empty weights. When using this, `--fsdp_sync_module_states` needs to True.
* `--fsdp_sync_module_states` (`str`) -- If true, each individually wrapped FSDP unit will broadcast module parameters from rank 0.
* `--fsdp_activation_checkpointing` (`bool`) -- Decides Whether intermediate activations are freed during the forward pass, and a checkpoint is left as a placeholder
**Megatron-LM Arguments**:
The following arguments are only useful when `use_megatron_lm` is passed or Megatron-LM is configured through `accelerate config`:
* `--megatron_lm_tp_degree` (``) -- Megatron-LM's Tensor Parallelism (TP) degree.
* `--megatron_lm_pp_degree` (``) -- Megatron-LM's Pipeline Parallelism (PP) degree.
* `--megatron_lm_num_micro_batches` (``) -- Megatron-LM's number of micro batches when PP degree > 1.
* `--megatron_lm_sequence_parallelism` (``) -- Decides Whether (true|false) to enable Sequence Parallelism when TP degree > 1.
* `--megatron_lm_recompute_activations` (``) -- Decides Whether (true|false) to enable Selective Activation Recomputation.
* `--megatron_lm_use_distributed_optimizer` (``) -- Decides Whether (true|false) to use distributed optimizer which shards optimizer state and gradients across Data Parallel (DP) ranks.
* `--megatron_lm_gradient_clipping` (``) -- Megatron-LM's gradient clipping value based on global L2 Norm (0 to disable).
**FP8 Arguments**:
* `--fp8_backend` (`str`) -- Choose a backend to train with FP8 (`te` or `msamp`)
* `--fp8_use_autocast_during_eval` (`bool`) -- Whether to use FP8 autocast during eval mode (useful only when `--fp8_backend=te` is passed). Generally better metrics are found when this is not passed.
* `--fp8_margin` (`int`) -- The margin to use for the gradient scaling (useful only when `--fp8_backend=te` is passed).
* `--fp8_interval` (`int`) -- The interval to use for how often the scaling factor is recomputed (useful only when `--fp8_backend=te` is passed).
* `--fp8_format` (`str`) -- The format to use for the FP8 recipe (useful only when `--fp8_backend=te` is passed).
* `--fp8_amax_history_len` (`int`) -- The length of the history to use for the scaling factor computation (useful only when `--fp8_backend=te` is passed).
* `--fp8_amax_compute_algo` (`str`) -- The algorithm to use for the scaling factor computation. (useful only when `--fp8_backend=te` is passed).
* `--fp8_override_linear_precision` (`Tuple[bool, bool, bool]`) -- Whether or not to execute `fprop`, `dgrad`, and `wgrad` GEMMS in higher precision.
* `--fp8_opt_level` (`str`) -- What level of 8-bit collective communication should be used with MS-AMP (useful only when `--fp8_backend=msamp` is passed)
**AWS SageMaker Arguments**:
The following arguments are only useful when training in SageMaker
* `--aws_access_key_id AWS_ACCESS_KEY_ID` (`str`) -- The AWS_ACCESS_KEY_ID used to launch the Amazon SageMaker training job
* `--aws_secret_access_key AWS_SECRET_ACCESS_KEY` (`str`) -- The AWS_SECRET_ACCESS_KEY used to launch the Amazon SageMaker training job
## accelerate estimate-memory
**Command**:
`accelerate estimate-memory` or `accelerate-estimate-memory` or `python -m accelerate.commands.estimate`
Estimates the total vRAM a particular model hosted on the Hub needs to be loaded in with an estimate for training. Requires that `huggingface_hub` be installed.
<Tip>
When performing inference, typically add ≤20% to the result as overall allocation [as referenced here](https://blog.eleuther.ai/transformer-math/). We will have more extensive estimations in the future that will automatically be included in the calculation.
</Tip>
**Usage**:
```bash
accelerate estimate-memory {MODEL_NAME} --library_name {LIBRARY_NAME} --dtypes {dtype_1} {dtype_2} ...
```
**Required Arguments**:
* `MODEL_NAME` (`str`)-- The model name on the Hugging Face Hub
**Optional Arguments**:
* `--library_name {timm,transformers}` (`str`) -- The library the model has an integration with, such as `transformers`, needed only if this information is not stored on the Hub
* `--dtypes {float32,float16,int8,int4}` (`[{float32,float16,int8,int4} ...]`) -- The dtypes to use for the model, must be one (or many) of `float32`, `float16`, `int8`, and `int4`
* `--trust_remote_code` (`bool`) -- Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be passed for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.
## accelerate tpu-config
`accelerate tpu-config`
**Usage**:
```bash
accelerate tpu-config [arguments]
```
**Optional Arguments**:
* `-h`, `--help` (`bool`) -- Show a help message and exit
**Config Arguments**:
Arguments that can be configured through `accelerate config`.
* `--config_file` (`str`) -- Path to the config file to use for accelerate.
* `--tpu_name` (`str`) -- The name of the TPU to use. If not specified, will use the TPU specified in the config file.
* `--tpu_zone` (`str`) -- The zone of the TPU to use. If not specified, will use the zone specified in the config file.
**TPU Arguments**:
Arguments for options ran inside the TPU.
* `--command_file` (`str`) -- The path to the file containing the commands to run on the pod on startup.
* `--command` (`str`) -- A command to run on the pod. Can be passed multiple times.
* `--install_accelerate` (`bool`) -- Whether to install accelerate on the pod. Defaults to False.
* `--accelerate_version` (`str`) -- The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.
* `--debug` (`bool`) -- If set, will print the command that would be run instead of running it.
## accelerate test
`accelerate test` or `accelerate-test`
Runs `accelerate/test_utils/test_script.py` to verify that 🤗 Accelerate has been properly configured on your system and runs.
**Usage**:
```bash
accelerate test [arguments]
```
**Optional Arguments**:
* `--config_file CONFIG_FILE` (`str`) -- The path to use to store the config file. Will default to a file named default_config.yaml in the cache location, which is the content
of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have such an environment variable, your cache directory
(`~/.cache` or the content of `XDG_CACHE_HOME`) suffixed with `huggingface`.
* `-h`, `--help` (`bool`) -- Show a help message and exit

View File

@ -0,0 +1,44 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DeepSpeed utilities
## DeepSpeedPlugin
## get_active_deepspeed_plugin
[[autodoc]] utils.get_active_deepspeed_plugin
[[autodoc]] utils.DeepSpeedPlugin
[[autodoc]] utils.deepspeed.DummyScheduler
## DeepSpeedEnginerWrapper
[[autodoc]] utils.deepspeed.DeepSpeedEngineWrapper
## DeepSpeedOptimizerWrapper
[[autodoc]] utils.deepspeed.DeepSpeedOptimizerWrapper
## DeepSpeedSchedulerWrapper
[[autodoc]] utils.deepspeed.DeepSpeedSchedulerWrapper
## DummyOptim
[[autodoc]] utils.deepspeed.DummyOptim
## DummyScheduler

View File

@ -0,0 +1,38 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# FP8
Below are functions and classes relative to the underlying FP8 implementation
## FP8RecipeKwargs
[[autodoc]] utils.FP8RecipeKwargs
## convert_model
[[autodoc]] utils.convert_model
## has_transformer_engine_layers
[[autodoc]] utils.has_transformer_engine_layers
## contextual_fp8_autocast
[[autodoc]] utils.contextual_fp8_autocast
## apply_fp8_autowrap
[[autodoc]] utils.apply_fp8_autowrap

View File

@ -0,0 +1,46 @@
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Fully Sharded Data Parallel utilities
## enable_fsdp_ram_efficient_loading
[[autodoc]] utils.enable_fsdp_ram_efficient_loading
## disable_fsdp_ram_efficient_loading
[[autodoc]] utils.disable_fsdp_ram_efficient_loading
## merge_fsdp_weights
[[autodoc]] utils.merge_fsdp_weights
## FullyShardedDataParallelPlugin
[[autodoc]] utils.FullyShardedDataParallelPlugin
## fsdp2_load_full_state_dict
[[autodoc]] utils.fsdp2_load_full_state_dict
## fsdp2_switch_optimizer_parameters
[[autodoc]] utils.fsdp2_switch_optimizer_parameters
## fsdp2_prepare_model
[[autodoc]] utils.fsdp2_prepare_model
## fsdp2_prepare_auto_wrap_policy

View File

@ -0,0 +1,22 @@
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Pipeline parallelism
Accelerate supports pipeline parallelism for large-scale training with the PyTorch [torch.distributed.pipelining](https://pytorch.org/docs/stable/distributed.pipelining.html) API.
## prepare_pippy
[[autodoc]] inference.prepare_pippy

View File

@ -0,0 +1,47 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Kwargs handlers
The following objects can be passed to the main [`Accelerator`] to customize how some PyTorch objects
related to distributed training or mixed precision are created.
## AutocastKwargs
[[autodoc]] AutocastKwargs
## DistributedDataParallelKwargs
[[autodoc]] DistributedDataParallelKwargs
## FP8RecipeKwargs
[[autodoc]] utils.FP8RecipeKwargs
## ProfileKwargs
[[autodoc]] utils.ProfileKwargs
## GradScalerKwargs
[[autodoc]] GradScalerKwargs
## InitProcessGroupKwargs
[[autodoc]] InitProcessGroupKwargs
## KwargsHandler
[[autodoc]] utils.KwargsHandler

View File

@ -0,0 +1,26 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Launchers
Functions for launching training on distributed processes.
## notebook_launcher
[[autodoc]] accelerate.notebook_launcher
## debug_launcher
[[autodoc]] accelerate.debug_launcher

View File

@ -0,0 +1,21 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Logging
Refer to the [Troubleshooting guide](../usage_guides/troubleshooting#logging) or to the example below to learn
how to use Accelerate's logger.
[[autodoc]] logging.get_logger

View File

@ -0,0 +1,48 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Megatron-LM utilities
## MegatronLMPlugin
[[autodoc]] utils.MegatronLMPlugin
## MegatronLMDummyScheduler
[[autodoc]] utils.MegatronLMDummyScheduler
## MegatronLMDummyDataLoader
[[autodoc]] utils.MegatronLMDummyDataLoader
## AbstractTrainStep
[[autodoc]] utils.AbstractTrainStep
## GPTTrainStep
[[autodoc]] utils.GPTTrainStep
## BertTrainStep
[[autodoc]] utils.BertTrainStep
## T5TrainStep
[[autodoc]] utils.T5TrainStep
## avg_losses_across_data_parallel_group
[[autodoc]] utils.avg_losses_across_data_parallel_group

View File

@ -0,0 +1,34 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Stateful Classes
Below are variations of a [singleton class](https://en.wikipedia.org/wiki/Singleton_pattern) in the sense that all
instances share the same state, which is initialized on the first instantiation.
These classes are immutable and store information about certain configurations or
states.
## PartialState
[[autodoc]] state.PartialState
## AcceleratorState
[[autodoc]] state.AcceleratorState
## GradientState
[[autodoc]] state.GradientState

View File

@ -0,0 +1,48 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DataLoaders, Optimizers, and Schedulers
The internal classes Accelerate uses to prepare objects for distributed training
when calling [`~Accelerator.prepare`].
## DataLoader utilities
[[autodoc]] data_loader.prepare_data_loader
[[autodoc]] data_loader.skip_first_batches
## BatchSamplerShard
[[autodoc]] data_loader.BatchSamplerShard
## IterableDatasetShard
[[autodoc]] data_loader.IterableDatasetShard
## DataLoaderShard
[[autodoc]] data_loader.DataLoaderShard
## DataLoaderDispatcher
[[autodoc]] data_loader.DataLoaderDispatcher
## AcceleratedOptimizer
[[autodoc]] optimizer.AcceleratedOptimizer
## AcceleratedScheduler
[[autodoc]] scheduler.AcceleratedScheduler

View File

@ -0,0 +1,50 @@
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Experiment Trackers
## GeneralTracker
[[autodoc]] tracking.GeneralTracker
## TensorBoardTracker
[[autodoc]] tracking.TensorBoardTracker
- __init__
## WandBTracker
[[autodoc]] tracking.WandBTracker
- __init__
## CometMLTracker
[[autodoc]] tracking.CometMLTracker
- __init__
## AimTracker
[[autodoc]] tracking.AimTracker
- __init__
## MLflowTracker
[[autodoc]] tracking.MLflowTracker
- __init__
## ClearMLTracker
[[autodoc]] tracking.ClearMLTracker
- __init__

View File

@ -0,0 +1,253 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Utility functions and classes
Below are a variety of utility functions that 🤗 Accelerate provides, broken down by use-case.
## Constants
Constants used throughout 🤗 Accelerate for reference
The following are constants used when utilizing [`Accelerator.save_state`]
`utils.MODEL_NAME`: `"pytorch_model"`
`utils.OPTIMIZER_NAME`: `"optimizer"`
`utils.RNG_STATE_NAME`: `"random_states"`
`utils.SCALER_NAME`: `"scaler.pt`
`utils.SCHEDULER_NAME`: `"scheduler`
The following are constants used when utilizing [`Accelerator.save_model`]
`utils.WEIGHTS_NAME`: `"pytorch_model.bin"`
`utils.SAFE_WEIGHTS_NAME`: `"model.safetensors"`
`utils.WEIGHTS_INDEX_NAME`: `"pytorch_model.bin.index.json"`
`utils.SAFE_WEIGHTS_INDEX_NAME`: `"model.safetensors.index.json"`
## Data Classes
These are basic dataclasses used throughout 🤗 Accelerate and they can be passed in as parameters.
### Standalone
These are standalone dataclasses used for checks, such as the type of distributed system being used
[[autodoc]] utils.ComputeEnvironment
[[autodoc]] utils.DistributedType
[[autodoc]] utils.DynamoBackend
[[autodoc]] utils.LoggerType
[[autodoc]] utils.PrecisionType
[[autodoc]] utils.RNGType
[[autodoc]] utils.SageMakerDistributedType
### Kwargs
These are configurable arguments for specific interactions throughout the PyTorch ecosystem that Accelerate handles under the hood.
[[autodoc]] utils.AutocastKwargs
[[autodoc]] utils.DistributedDataParallelKwargs
[[autodoc]] utils.FP8RecipeKwargs
[[autodoc]] utils.GradScalerKwargs
[[autodoc]] utils.InitProcessGroupKwargs
[[autodoc]] utils.KwargsHandler
## Plugins
These are plugins that can be passed to the [`Accelerator`] object. While they are defined elsewhere in the documentation,
for convenience all of them are available to see here:
[[autodoc]] utils.DeepSpeedPlugin
[[autodoc]] utils.FullyShardedDataParallelPlugin
[[autodoc]] utils.GradientAccumulationPlugin
[[autodoc]] utils.MegatronLMPlugin
[[autodoc]] utils.TorchDynamoPlugin
## Configurations
These are classes which can be configured and passed through to the appropriate integration
[[autodoc]] utils.BnbQuantizationConfig
[[autodoc]] utils.DataLoaderConfiguration
[[autodoc]] utils.ProjectConfiguration
## Environmental Variables
These are environmental variables that can be enabled for different use cases
* `ACCELERATE_DEBUG_MODE` (`str`): Whether to run accelerate in debug mode. More info available [here](../usage_guides/debug.md).
## Data Manipulation and Operations
These include data operations that mimic the same `torch` ops but can be used on distributed processes.
[[autodoc]] utils.broadcast
[[autodoc]] utils.broadcast_object_list
[[autodoc]] utils.concatenate
[[autodoc]] utils.convert_outputs_to_fp32
[[autodoc]] utils.convert_to_fp32
[[autodoc]] utils.gather
[[autodoc]] utils.gather_object
[[autodoc]] utils.get_grad_scaler
[[autodoc]] utils.get_mixed_precision_context_manager
[[autodoc]] utils.listify
[[autodoc]] utils.pad_across_processes
[[autodoc]] utils.recursively_apply
[[autodoc]] utils.reduce
[[autodoc]] utils.send_to_device
[[autodoc]] utils.slice_tensors
## Environment Checks
These functionalities check the state of the current working environment including information about the operating system itself, what it can support, and if particular dependencies are installed.
[[autodoc]] utils.is_bf16_available
[[autodoc]] utils.is_ipex_available
[[autodoc]] utils.is_mps_available
[[autodoc]] utils.is_npu_available
[[autodoc]] utils.is_torch_version
[[autodoc]] utils.is_torch_xla_available
[[autodoc]] utils.is_xpu_available
## Environment Manipulation
[[autodoc]] utils.patch_environment
[[autodoc]] utils.clear_environment
[[autodoc]] utils.write_basic_config
When setting up 🤗 Accelerate for the first time, rather than running `accelerate config` [~utils.write_basic_config] can be used as an alternative for quick configuration.
[[autodoc]] utils.set_numa_affinity
[[autodoc]] utils.environment.override_numa_affinity
[[autodoc]] utils.purge_accelerate_environment
## Memory
[[autodoc]] utils.find_executable_batch_size
## Modeling
These utilities relate to interacting with PyTorch models
[[autodoc]] utils.calculate_maximum_sizes
[[autodoc]] utils.compute_module_sizes
[[autodoc]] utils.extract_model_from_parallel
[[autodoc]] utils.get_balanced_memory
[[autodoc]] utils.get_max_layer_size
[[autodoc]] utils.infer_auto_device_map
[[autodoc]] utils.load_checkpoint_in_model
[[autodoc]] utils.load_offloaded_weights
[[autodoc]] utils.load_state_dict
[[autodoc]] utils.offload_state_dict
[[autodoc]] utils.retie_parameters
[[autodoc]] utils.set_module_tensor_to_device
[[autodoc]] utils.get_module_children_bottom_up
## Parallel
These include general utilities that should be used when working in parallel.
[[autodoc]] utils.extract_model_from_parallel
[[autodoc]] utils.save
[[autodoc]] utils.load
[[autodoc]] utils.wait_for_everyone
## Random
These utilities relate to setting and synchronizing of all the random states.
[[autodoc]] utils.set_seed
[[autodoc]] utils.synchronize_rng_state
[[autodoc]] utils.synchronize_rng_states
## PyTorch XLA
These include utilities that are useful while using PyTorch with XLA.
[[autodoc]] utils.install_xla
## Loading model weights
These include utilities that are useful to load checkpoints.
[[autodoc]] utils.load_checkpoint_in_model
## Quantization
These include utilities that are useful to quantize model.
[[autodoc]] utils.load_and_quantize_model

189
docs/source/quicktour.md Normal file
View File

@ -0,0 +1,189 @@
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Quicktour
There are many ways to launch and run your code depending on your training environment ([torchrun](https://pytorch.org/docs/stable/elastic/run.html), [DeepSpeed](https://www.deepspeed.ai/), etc.) and available hardware. Accelerate offers a unified interface for launching and training on different distributed setups, allowing you to focus on your PyTorch training code instead of the intricacies of adapting your code to these different setups. This allows you to easily scale your PyTorch code for training and inference on distributed setups with hardware like GPUs and TPUs. Accelerate also provides Big Model Inference to make loading and running inference with really large models that usually don't fit in memory more accessible.
This quicktour introduces the three main features of Accelerate:
* a unified command line launching interface for distributed training scripts
* a training library for adapting PyTorch training code to run on different distributed setups
* Big Model Inference
## Unified launch interface
Accelerate automatically selects the appropriate configuration values for any given distributed training framework (DeepSpeed, FSDP, etc.) through a unified configuration file generated from the [`accelerate config`](package_reference/cli#accelerate-config) command. You could also pass the configuration values explicitly to the command line which is helpful in certain situations like if you're using SLURM.
But in most cases, you should always run [`accelerate config`](package_reference/cli#accelerate-config) first to help Accelerate learn about your training setup.
```bash
accelerate config
```
The [`accelerate config`](package_reference/cli#accelerate-config) command creates and saves a default_config.yaml file in Accelerates cache folder. This file stores the configuration for your training environment, which helps Accelerate correctly launch your training script based on your machine.
After you've configured your environment, you can test your setup with [`accelerate test`](package_reference/cli#accelerate-test), which launches a short script to test the distributed environment.
```bash
accelerate test
```
> [!TIP]
> Add `--config_file` to the `accelerate test` or `accelerate launch` command to specify the location of the configuration file if it is saved in a non-default location like the cache.
Once your environment is setup, launch your training script with [`accelerate launch`](package_reference/cli#accelerate-launch)!
```bash
accelerate launch path_to_script.py --args_for_the_script
```
To learn more, check out the [Launch distributed code](basic_tutorials/launch) tutorial for more information about launching your scripts.
We also have a [configuration zoo](https://github.com/huggingface/accelerate/blob/main/examples/config_yaml_templates) which showcases a number of premade **minimal** example configurations for a variety of setups you can run.
## Adapt training code
The next main feature of Accelerate is the [`Accelerator`] class which adapts your PyTorch code to run on different distributed setups.
You only need to add a few lines of code to your training script to enable it to run on multiple GPUs or TPUs.
```diff
+ from accelerate import Accelerator
+ accelerator = Accelerator()
+ device = accelerator.device
+ model, optimizer, training_dataloader, scheduler = accelerator.prepare(
+ model, optimizer, training_dataloader, scheduler
+ )
for batch in training_dataloader:
optimizer.zero_grad()
inputs, targets = batch
- inputs = inputs.to(device)
- targets = targets.to(device)
outputs = model(inputs)
loss = loss_function(outputs, targets)
+ accelerator.backward(loss)
optimizer.step()
scheduler.step()
```
1. Import and instantiate the [`Accelerator`] class at the beginning of your training script. The [`Accelerator`] class initializes everything necessary for distributed training, and it automatically detects your training environment (a single machine with a GPU, a machine with several GPUs, several machines with multiple GPUs or a TPU, etc.) based on how the code was launched.
```python
from accelerate import Accelerator
accelerator = Accelerator()
```
2. Remove calls like `.cuda()` on your model and input data. The [`Accelerator`] class automatically places these objects on the appropriate device for you.
> [!WARNING]
> This step is *optional* but it is considered best practice to allow Accelerate to handle device placement. You could also deactivate automatic device placement by passing `device_placement=False` when initializing the [`Accelerator`]. If you want to explicitly place objects on a device with `.to(device)`, make sure you use `accelerator.device` instead. For example, if you create an optimizer before placing a model on `accelerator.device`, training fails on a TPU.
> [!WARNING]
> Accelerate does not use non-blocking transfers by default for its automatic device placement, which can result in potentially unwanted CUDA synchronizations. You can enable non-blocking transfers by passing a [`~utils.dataclasses.DataLoaderConfiguration`] with `non_blocking=True` set as the `dataloader_config` when initializing the [`Accelerator`]. As usual, non-blocking transfers will only work if the dataloader also has `pin_memory=True` set. Be wary that using non-blocking transfers from GPU to CPU may cause incorrect results if it results in CPU operations being performed on non-ready tensors.
```py
device = accelerator.device
```
3. Pass all relevant PyTorch objects for training (optimizer, model, dataloader(s), learning rate scheduler) to the [`~Accelerator.prepare`] method as soon as they're created. This method wraps the model in a container optimized for your distributed setup, uses Accelerates version of the optimizer and scheduler, and creates a sharded version of your dataloader for distribution across GPUs or TPUs.
```python
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
```
4. Replace `loss.backward()` with [`~Accelerator.backward`] to use the correct `backward()` method for your training setup.
```py
accelerator.backward(loss)
```
Read [Accelerates internal mechanisms](concept_guides/internal_mechanism) guide to learn more details about how Accelerate adapts your code.
### Distributed evaluation
To perform distributed evaluation, pass your validation dataloader to the [`~Accelerator.prepare`] method:
```python
validation_dataloader = accelerator.prepare(validation_dataloader)
```
Each device in your distributed setup only receives a part of the evaluation data, which means you should group your predictions together with the [`~Accelerator.gather_for_metrics`] method. This method requires all tensors to be the same size on each process, so if your tensors have different sizes on each process (for instance when dynamically padding to the maximum length in a batch), you should use the [`~Accelerator.pad_across_processes`] method to pad you tensor to the largest size across processes. Note that the tensors needs to be 1D and that we concatenate the tensors along the first dimension.
```python
for inputs, targets in validation_dataloader:
predictions = model(inputs)
# Gather all predictions and targets
all_predictions, all_targets = accelerator.gather_for_metrics((predictions, targets))
# Example of use with a *Datasets.Metric*
metric.add_batch(all_predictions, all_targets)
```
For more complex cases (e.g. 2D tensors, don't want to concatenate tensors, dict of 3D tensors), you can pass `use_gather_object=True` in `gather_for_metrics`. This will return the list of objects after gathering. Note that using it with GPU tensors is not well supported and inefficient.
> [!TIP]
> Data at the end of a dataset may be duplicated so the batch can be equally divided among all workers. The [`~Accelerator.gather_for_metrics`] method automatically removes the duplicated data to calculate a more accurate metric.
## Big Model Inference
Accelerate's Big Model Inference has two main features, [`~accelerate.init_empty_weights`] and [`~accelerate.load_checkpoint_and_dispatch`], to load large models for inference that typically don't fit into memory.
> [!TIP]
> Take a look at the [Handling big models for inference](concept_guides/big_model_inference) guide for a better understanding of how Big Model Inference works under the hood.
### Empty weights initialization
The [`~accelerate.init_empty_weights`] context manager initializes models of any size by creating a *model skeleton* and moving and placing parameters each time they're created to PyTorch's [**meta**](https://pytorch.org/docs/main/meta.html) device. This way, not all weights are immediately loaded and only a small part of the model is loaded into memory at a time.
For example, loading an empty [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model takes significantly less memory than fully loading the models and weights on the CPU.
```py
from accelerate import init_empty_weights
from transformers import AutoConfig, AutoModelForCausalLM
config = AutoConfig.from_pretrained("mistralai/Mixtral-8x7B-Instruct-v0.1")
with init_empty_weights():
model = AutoModelForCausalLM.from_config(config)
```
### Load and dispatch weights
The [`~accelerate.load_checkpoint_and_dispatch`] function loads full or sharded checkpoints into the empty model, and automatically distribute weights across all available devices.
The `device_map` parameter determines where to place each model layer, and specifying `"auto"` places them on the GPU first, then the CPU, and finally the hard drive as memory-mapped tensors if there's still not enough memory. Use the `no_split_module_classes` parameter to indicate which modules shouldn't be split across devices (typically those with a residual connection).
```py
from accelerate import load_checkpoint_and_dispatch
model_checkpoint = "your-local-model-folder"
model = load_checkpoint_and_dispatch(
model, checkpoint=model_checkpoint, device_map="auto", no_split_module_classes=['Block']
)
```
## Next steps
Now that you've been introduced to the main Accelerate features, your next steps could include:
* Check out the [tutorials](basic_tutorials/overview) for a gentle walkthrough of Accelerate. This is especially useful if you're new to distributed training and the library.
* Dive into the [guides](usage_guides/explore) to see how to use Accelerate for specific use-cases.
* Deepen your conceptual understanding of how Accelerate works internally by reading the [concept guides](concept_guides/internal_mechanism).
* Look up classes and commands in the [API reference](package_reference/accelerator) to see what parameters and options are available.

Some files were not shown because too many files have changed in this diff Show More