SpireCV/gimbal_ctrl/IOs/serial/src/impl/unix.cc

1085 lines
26 KiB
C++

/* Copyright 2012 William Woodall and John Harrison
*
* Additional Contributors: Christopher Baker @bakercp
*/
#if !defined(_WIN32)
#include <stdio.h>
#include <string.h>
#include <sstream>
#include <unistd.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <sys/signal.h>
#include <errno.h>
#include <paths.h>
#include <sysexits.h>
#include <termios.h>
#include <sys/param.h>
#include <pthread.h>
#if defined(__linux__)
# include <linux/serial.h>
#endif
#include <sys/select.h>
#include <sys/time.h>
#include <time.h>
#ifdef __MACH__
#include <AvailabilityMacros.h>
#include <mach/clock.h>
#include <mach/mach.h>
#endif
#include "serial/impl/unix.h"
#ifndef TIOCINQ
#ifdef FIONREAD
#define TIOCINQ FIONREAD
#else
#define TIOCINQ 0x541B
#endif
#endif
#if defined(MAC_OS_X_VERSION_10_3) && (MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_3)
#include <IOKit/serial/ioss.h>
#endif
using std::string;
using std::stringstream;
using std::invalid_argument;
using serial::MillisecondTimer;
using serial::Serial;
using serial::SerialException;
using serial::PortNotOpenedException;
using serial::IOException;
MillisecondTimer::MillisecondTimer (const uint32_t millis)
: expiry(timespec_now())
{
int64_t tv_nsec = expiry.tv_nsec + (millis * 1e6);
if (tv_nsec >= 1e9) {
int64_t sec_diff = tv_nsec / static_cast<int> (1e9);
expiry.tv_nsec = tv_nsec % static_cast<int>(1e9);
expiry.tv_sec += sec_diff;
} else {
expiry.tv_nsec = tv_nsec;
}
}
int64_t
MillisecondTimer::remaining ()
{
timespec now(timespec_now());
int64_t millis = (expiry.tv_sec - now.tv_sec) * 1e3;
millis += (expiry.tv_nsec - now.tv_nsec) / 1e6;
return millis;
}
timespec
MillisecondTimer::timespec_now ()
{
timespec time;
# ifdef __MACH__ // OS X does not have clock_gettime, use clock_get_time
clock_serv_t cclock;
mach_timespec_t mts;
host_get_clock_service(mach_host_self(), SYSTEM_CLOCK, &cclock);
clock_get_time(cclock, &mts);
mach_port_deallocate(mach_task_self(), cclock);
time.tv_sec = mts.tv_sec;
time.tv_nsec = mts.tv_nsec;
# else
clock_gettime(CLOCK_MONOTONIC, &time);
# endif
return time;
}
timespec
timespec_from_ms (const uint32_t millis)
{
timespec time;
time.tv_sec = millis / 1e3;
time.tv_nsec = (millis - (time.tv_sec * 1e3)) * 1e6;
return time;
}
Serial::SerialImpl::SerialImpl (const string &port, unsigned long baudrate,
bytesize_t bytesize,
parity_t parity, stopbits_t stopbits,
flowcontrol_t flowcontrol)
: port_ (port), fd_ (-1), is_open_ (false), xonxoff_ (false), rtscts_ (false),
baudrate_ (baudrate), parity_ (parity),
bytesize_ (bytesize), stopbits_ (stopbits), flowcontrol_ (flowcontrol)
{
pthread_mutex_init(&this->read_mutex, NULL);
pthread_mutex_init(&this->write_mutex, NULL);
if (port_.empty () == false)
open ();
}
Serial::SerialImpl::~SerialImpl ()
{
close();
pthread_mutex_destroy(&this->read_mutex);
pthread_mutex_destroy(&this->write_mutex);
}
void
Serial::SerialImpl::open ()
{
if (port_.empty ()) {
throw invalid_argument ("Empty port is invalid.");
}
if (is_open_ == true) {
throw SerialException ("Serial port already open.");
}
fd_ = ::open (port_.c_str(), O_RDWR | O_NOCTTY | O_NONBLOCK);
if (fd_ == -1) {
switch (errno) {
case EINTR:
// Recurse because this is a recoverable error.
open ();
return;
case ENFILE:
case EMFILE:
THROW (IOException, "Too many file handles open.");
default:
THROW (IOException, errno);
}
}
reconfigurePort();
is_open_ = true;
}
void
Serial::SerialImpl::reconfigurePort ()
{
if (fd_ == -1) {
// Can only operate on a valid file descriptor
THROW (IOException, "Invalid file descriptor, is the serial port open?");
}
struct termios options; // The options for the file descriptor
if (tcgetattr(fd_, &options) == -1) {
THROW (IOException, "::tcgetattr");
}
// set up raw mode / no echo / binary
options.c_cflag |= (tcflag_t) (CLOCAL | CREAD);
options.c_lflag &= (tcflag_t) ~(ICANON | ECHO | ECHOE | ECHOK | ECHONL |
ISIG | IEXTEN); //|ECHOPRT
options.c_oflag &= (tcflag_t) ~(OPOST);
options.c_iflag &= (tcflag_t) ~(INLCR | IGNCR | ICRNL | IGNBRK);
#ifdef IUCLC
options.c_iflag &= (tcflag_t) ~IUCLC;
#endif
#ifdef PARMRK
options.c_iflag &= (tcflag_t) ~PARMRK;
#endif
// setup baud rate
bool custom_baud = false;
speed_t baud;
switch (baudrate_) {
#ifdef B0
case 0: baud = B0; break;
#endif
#ifdef B50
case 50: baud = B50; break;
#endif
#ifdef B75
case 75: baud = B75; break;
#endif
#ifdef B110
case 110: baud = B110; break;
#endif
#ifdef B134
case 134: baud = B134; break;
#endif
#ifdef B150
case 150: baud = B150; break;
#endif
#ifdef B200
case 200: baud = B200; break;
#endif
#ifdef B300
case 300: baud = B300; break;
#endif
#ifdef B600
case 600: baud = B600; break;
#endif
#ifdef B1200
case 1200: baud = B1200; break;
#endif
#ifdef B1800
case 1800: baud = B1800; break;
#endif
#ifdef B2400
case 2400: baud = B2400; break;
#endif
#ifdef B4800
case 4800: baud = B4800; break;
#endif
#ifdef B7200
case 7200: baud = B7200; break;
#endif
#ifdef B9600
case 9600: baud = B9600; break;
#endif
#ifdef B14400
case 14400: baud = B14400; break;
#endif
#ifdef B19200
case 19200: baud = B19200; break;
#endif
#ifdef B28800
case 28800: baud = B28800; break;
#endif
#ifdef B57600
case 57600: baud = B57600; break;
#endif
#ifdef B76800
case 76800: baud = B76800; break;
#endif
#ifdef B38400
case 38400: baud = B38400; break;
#endif
#ifdef B115200
case 115200: baud = B115200; break;
#endif
#ifdef B128000
case 128000: baud = B128000; break;
#endif
#ifdef B153600
case 153600: baud = B153600; break;
#endif
#ifdef B230400
case 230400: baud = B230400; break;
#endif
#ifdef B256000
case 256000: baud = B256000; break;
#endif
#ifdef B460800
case 460800: baud = B460800; break;
#endif
#ifdef B500000
case 500000: baud = B500000; break;
#endif
#ifdef B576000
case 576000: baud = B576000; break;
#endif
#ifdef B921600
case 921600: baud = B921600; break;
#endif
#ifdef B1000000
case 1000000: baud = B1000000; break;
#endif
#ifdef B1152000
case 1152000: baud = B1152000; break;
#endif
#ifdef B1500000
case 1500000: baud = B1500000; break;
#endif
#ifdef B2000000
case 2000000: baud = B2000000; break;
#endif
#ifdef B2500000
case 2500000: baud = B2500000; break;
#endif
#ifdef B3000000
case 3000000: baud = B3000000; break;
#endif
#ifdef B3500000
case 3500000: baud = B3500000; break;
#endif
#ifdef B4000000
case 4000000: baud = B4000000; break;
#endif
default:
custom_baud = true;
}
if (custom_baud == false) {
#ifdef _BSD_SOURCE
::cfsetspeed(&options, baud);
#else
::cfsetispeed(&options, baud);
::cfsetospeed(&options, baud);
#endif
}
// setup char len
options.c_cflag &= (tcflag_t) ~CSIZE;
if (bytesize_ == eightbits)
options.c_cflag |= CS8;
else if (bytesize_ == sevenbits)
options.c_cflag |= CS7;
else if (bytesize_ == sixbits)
options.c_cflag |= CS6;
else if (bytesize_ == fivebits)
options.c_cflag |= CS5;
else
throw invalid_argument ("invalid char len");
// setup stopbits
if (stopbits_ == stopbits_one)
options.c_cflag &= (tcflag_t) ~(CSTOPB);
else if (stopbits_ == stopbits_one_point_five)
// ONE POINT FIVE same as TWO.. there is no POSIX support for 1.5
options.c_cflag |= (CSTOPB);
else if (stopbits_ == stopbits_two)
options.c_cflag |= (CSTOPB);
else
throw invalid_argument ("invalid stop bit");
// setup parity
options.c_iflag &= (tcflag_t) ~(INPCK | ISTRIP);
if (parity_ == parity_none) {
options.c_cflag &= (tcflag_t) ~(PARENB | PARODD);
} else if (parity_ == parity_even) {
options.c_cflag &= (tcflag_t) ~(PARODD);
options.c_cflag |= (PARENB);
} else if (parity_ == parity_odd) {
options.c_cflag |= (PARENB | PARODD);
}
#ifdef CMSPAR
else if (parity_ == parity_mark) {
options.c_cflag |= (PARENB | CMSPAR | PARODD);
}
else if (parity_ == parity_space) {
options.c_cflag |= (PARENB | CMSPAR);
options.c_cflag &= (tcflag_t) ~(PARODD);
}
#else
// CMSPAR is not defined on OSX. So do not support mark or space parity.
else if (parity_ == parity_mark || parity_ == parity_space) {
throw invalid_argument ("OS does not support mark or space parity");
}
#endif // ifdef CMSPAR
else {
throw invalid_argument ("invalid parity");
}
// setup flow control
if (flowcontrol_ == flowcontrol_none) {
xonxoff_ = false;
rtscts_ = false;
}
if (flowcontrol_ == flowcontrol_software) {
xonxoff_ = true;
rtscts_ = false;
}
if (flowcontrol_ == flowcontrol_hardware) {
xonxoff_ = false;
rtscts_ = true;
}
// xonxoff
#ifdef IXANY
if (xonxoff_)
options.c_iflag |= (IXON | IXOFF); //|IXANY)
else
options.c_iflag &= (tcflag_t) ~(IXON | IXOFF | IXANY);
#else
if (xonxoff_)
options.c_iflag |= (IXON | IXOFF);
else
options.c_iflag &= (tcflag_t) ~(IXON | IXOFF);
#endif
// rtscts
#ifdef CRTSCTS
if (rtscts_)
options.c_cflag |= (CRTSCTS);
else
options.c_cflag &= (unsigned long) ~(CRTSCTS);
#elif defined CNEW_RTSCTS
if (rtscts_)
options.c_cflag |= (CNEW_RTSCTS);
else
options.c_cflag &= (unsigned long) ~(CNEW_RTSCTS);
#else
#error "OS Support seems wrong."
#endif
// http://www.unixwiz.net/techtips/termios-vmin-vtime.html
// this basically sets the read call up to be a polling read,
// but we are using select to ensure there is data available
// to read before each call, so we should never needlessly poll
options.c_cc[VMIN] = 0;
options.c_cc[VTIME] = 0;
// activate settings
::tcsetattr (fd_, TCSANOW, &options);
// apply custom baud rate, if any
if (custom_baud == true) {
// OS X support
#if defined(MAC_OS_X_VERSION_10_4) && (MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_4)
// Starting with Tiger, the IOSSIOSPEED ioctl can be used to set arbitrary baud rates
// other than those specified by POSIX. The driver for the underlying serial hardware
// ultimately determines which baud rates can be used. This ioctl sets both the input
// and output speed.
speed_t new_baud = static_cast<speed_t> (baudrate_);
// PySerial uses IOSSIOSPEED=0x80045402
if (-1 == ioctl (fd_, IOSSIOSPEED, &new_baud, 1)) {
THROW (IOException, errno);
}
// Linux Support
#elif defined(__linux__) && defined (TIOCSSERIAL)
struct serial_struct ser;
if (-1 == ioctl (fd_, TIOCGSERIAL, &ser)) {
THROW (IOException, errno);
}
// set custom divisor
ser.custom_divisor = ser.baud_base / static_cast<int> (baudrate_);
// update flags
ser.flags &= ~ASYNC_SPD_MASK;
ser.flags |= ASYNC_SPD_CUST;
if (-1 == ioctl (fd_, TIOCSSERIAL, &ser)) {
THROW (IOException, errno);
}
#else
throw invalid_argument ("OS does not currently support custom bauds");
#endif
}
// Update byte_time_ based on the new settings.
uint32_t bit_time_ns = 1e9 / baudrate_;
byte_time_ns_ = bit_time_ns * (1 + bytesize_ + parity_ + stopbits_);
// Compensate for the stopbits_one_point_five enum being equal to int 3,
// and not 1.5.
if (stopbits_ == stopbits_one_point_five) {
byte_time_ns_ += ((1.5 - stopbits_one_point_five) * bit_time_ns);
}
}
void
Serial::SerialImpl::close ()
{
if (is_open_ == true) {
if (fd_ != -1) {
int ret;
ret = ::close (fd_);
if (ret == 0) {
fd_ = -1;
} else {
THROW (IOException, errno);
}
}
is_open_ = false;
}
}
bool
Serial::SerialImpl::isOpen () const
{
return is_open_;
}
size_t
Serial::SerialImpl::available ()
{
if (!is_open_) {
return 0;
}
int count = 0;
if (-1 == ioctl (fd_, TIOCINQ, &count)) {
THROW (IOException, errno);
} else {
return static_cast<size_t> (count);
}
}
bool
Serial::SerialImpl::waitReadable (uint32_t timeout)
{
// Setup a select call to block for serial data or a timeout
fd_set readfds;
FD_ZERO (&readfds);
FD_SET (fd_, &readfds);
timespec timeout_ts (timespec_from_ms (timeout));
int r = pselect (fd_ + 1, &readfds, NULL, NULL, &timeout_ts, NULL);
if (r < 0) {
// Select was interrupted
if (errno == EINTR) {
return false;
}
// Otherwise there was some error
THROW (IOException, errno);
}
// Timeout occurred
if (r == 0) {
return false;
}
// This shouldn't happen, if r > 0 our fd has to be in the list!
if (!FD_ISSET (fd_, &readfds)) {
THROW (IOException, "select reports ready to read, but our fd isn't"
" in the list, this shouldn't happen!");
}
// Data available to read.
return true;
}
void
Serial::SerialImpl::waitByteTimes (size_t count)
{
timespec wait_time = { 0, static_cast<long>(byte_time_ns_ * count)};
pselect (0, NULL, NULL, NULL, &wait_time, NULL);
}
size_t
Serial::SerialImpl::read (uint8_t *buf, size_t size)
{
// If the port is not open, throw
if (!is_open_) {
throw PortNotOpenedException ("Serial::read");
}
size_t bytes_read = 0;
// Calculate total timeout in milliseconds t_c + (t_m * N)
long total_timeout_ms = timeout_.read_timeout_constant;
total_timeout_ms += timeout_.read_timeout_multiplier * static_cast<long> (size);
MillisecondTimer total_timeout(total_timeout_ms);
// Pre-fill buffer with available bytes
{
ssize_t bytes_read_now = ::read (fd_, buf, size);
if (bytes_read_now > 0) {
bytes_read = bytes_read_now;
}
}
while (bytes_read < size) {
int64_t timeout_remaining_ms = total_timeout.remaining();
if (timeout_remaining_ms <= 0) {
// Timed out
break;
}
// Timeout for the next select is whichever is less of the remaining
// total read timeout and the inter-byte timeout.
uint32_t timeout = std::min(static_cast<uint32_t> (timeout_remaining_ms),
timeout_.inter_byte_timeout);
// Wait for the device to be readable, and then attempt to read.
if (waitReadable(timeout)) {
// If it's a fixed-length multi-byte read, insert a wait here so that
// we can attempt to grab the whole thing in a single IO call. Skip
// this wait if a non-max inter_byte_timeout is specified.
if (size > 1 && timeout_.inter_byte_timeout == Timeout::max()) {
size_t bytes_available = available();
if (bytes_available + bytes_read < size) {
waitByteTimes(size - (bytes_available + bytes_read));
}
}
// This should be non-blocking returning only what is available now
// Then returning so that select can block again.
ssize_t bytes_read_now =
::read (fd_, buf + bytes_read, size - bytes_read);
// read should always return some data as select reported it was
// ready to read when we get to this point.
if (bytes_read_now < 1) {
// Disconnected devices, at least on Linux, show the
// behavior that they are always ready to read immediately
// but reading returns nothing.
throw SerialException ("device reports readiness to read but "
"returned no data (device disconnected?)");
}
// Update bytes_read
bytes_read += static_cast<size_t> (bytes_read_now);
// If bytes_read == size then we have read everything we need
if (bytes_read == size) {
break;
}
// If bytes_read < size then we have more to read
if (bytes_read < size) {
continue;
}
// If bytes_read > size then we have over read, which shouldn't happen
if (bytes_read > size) {
throw SerialException ("read over read, too many bytes where "
"read, this shouldn't happen, might be "
"a logical error!");
}
}
}
return bytes_read;
}
size_t
Serial::SerialImpl::write (const uint8_t *data, size_t length)
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::write");
}
fd_set writefds;
size_t bytes_written = 0;
// Calculate total timeout in milliseconds t_c + (t_m * N)
long total_timeout_ms = timeout_.write_timeout_constant;
total_timeout_ms += timeout_.write_timeout_multiplier * static_cast<long> (length);
MillisecondTimer total_timeout(total_timeout_ms);
bool first_iteration = true;
while (bytes_written < length) {
int64_t timeout_remaining_ms = total_timeout.remaining();
// Only consider the timeout if it's not the first iteration of the loop
// otherwise a timeout of 0 won't be allowed through
if (!first_iteration && (timeout_remaining_ms <= 0)) {
// Timed out
break;
}
first_iteration = false;
timespec timeout(timespec_from_ms(timeout_remaining_ms));
FD_ZERO (&writefds);
FD_SET (fd_, &writefds);
// Do the select
int r = pselect (fd_ + 1, NULL, &writefds, NULL, &timeout, NULL);
// Figure out what happened by looking at select's response 'r'
/** Error **/
if (r < 0) {
// Select was interrupted, try again
if (errno == EINTR) {
continue;
}
// Otherwise there was some error
THROW (IOException, errno);
}
/** Timeout **/
if (r == 0) {
break;
}
/** Port ready to write **/
if (r > 0) {
// Make sure our file descriptor is in the ready to write list
if (FD_ISSET (fd_, &writefds)) {
// This will write some
ssize_t bytes_written_now =
::write (fd_, data + bytes_written, length - bytes_written);
// even though pselect returned readiness the call might still be
// interrupted. In that case simply retry.
if (bytes_written_now == -1 && errno == EINTR) {
continue;
}
// write should always return some data as select reported it was
// ready to write when we get to this point.
if (bytes_written_now < 1) {
// Disconnected devices, at least on Linux, show the
// behavior that they are always ready to write immediately
// but writing returns nothing.
std::stringstream strs;
strs << "device reports readiness to write but "
"returned no data (device disconnected?)";
strs << " errno=" << errno;
strs << " bytes_written_now= " << bytes_written_now;
strs << " bytes_written=" << bytes_written;
strs << " length=" << length;
throw SerialException(strs.str().c_str());
}
// Update bytes_written
bytes_written += static_cast<size_t> (bytes_written_now);
// If bytes_written == size then we have written everything we need to
if (bytes_written == length) {
break;
}
// If bytes_written < size then we have more to write
if (bytes_written < length) {
continue;
}
// If bytes_written > size then we have over written, which shouldn't happen
if (bytes_written > length) {
throw SerialException ("write over wrote, too many bytes where "
"written, this shouldn't happen, might be "
"a logical error!");
}
}
// This shouldn't happen, if r > 0 our fd has to be in the list!
THROW (IOException, "select reports ready to write, but our fd isn't"
" in the list, this shouldn't happen!");
}
}
return bytes_written;
}
void
Serial::SerialImpl::setPort (const string &port)
{
port_ = port;
}
string
Serial::SerialImpl::getPort () const
{
return port_;
}
void
Serial::SerialImpl::setTimeout (serial::Timeout &timeout)
{
timeout_ = timeout;
}
serial::Timeout
Serial::SerialImpl::getTimeout () const
{
return timeout_;
}
void
Serial::SerialImpl::setBaudrate (unsigned long baudrate)
{
baudrate_ = baudrate;
if (is_open_)
reconfigurePort ();
}
unsigned long
Serial::SerialImpl::getBaudrate () const
{
return baudrate_;
}
void
Serial::SerialImpl::setBytesize (serial::bytesize_t bytesize)
{
bytesize_ = bytesize;
if (is_open_)
reconfigurePort ();
}
serial::bytesize_t
Serial::SerialImpl::getBytesize () const
{
return bytesize_;
}
void
Serial::SerialImpl::setParity (serial::parity_t parity)
{
parity_ = parity;
if (is_open_)
reconfigurePort ();
}
serial::parity_t
Serial::SerialImpl::getParity () const
{
return parity_;
}
void
Serial::SerialImpl::setStopbits (serial::stopbits_t stopbits)
{
stopbits_ = stopbits;
if (is_open_)
reconfigurePort ();
}
serial::stopbits_t
Serial::SerialImpl::getStopbits () const
{
return stopbits_;
}
void
Serial::SerialImpl::setFlowcontrol (serial::flowcontrol_t flowcontrol)
{
flowcontrol_ = flowcontrol;
if (is_open_)
reconfigurePort ();
}
serial::flowcontrol_t
Serial::SerialImpl::getFlowcontrol () const
{
return flowcontrol_;
}
void
Serial::SerialImpl::flush ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::flush");
}
tcdrain (fd_);
}
void
Serial::SerialImpl::flushInput ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::flushInput");
}
tcflush (fd_, TCIFLUSH);
}
void
Serial::SerialImpl::flushOutput ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::flushOutput");
}
tcflush (fd_, TCOFLUSH);
}
void
Serial::SerialImpl::sendBreak (int duration)
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::sendBreak");
}
tcsendbreak (fd_, static_cast<int> (duration / 4));
}
void
Serial::SerialImpl::setBreak (bool level)
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::setBreak");
}
if (level) {
if (-1 == ioctl (fd_, TIOCSBRK))
{
stringstream ss;
ss << "setBreak failed on a call to ioctl(TIOCSBRK): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
} else {
if (-1 == ioctl (fd_, TIOCCBRK))
{
stringstream ss;
ss << "setBreak failed on a call to ioctl(TIOCCBRK): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
}
}
void
Serial::SerialImpl::setRTS (bool level)
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::setRTS");
}
int command = TIOCM_RTS;
if (level) {
if (-1 == ioctl (fd_, TIOCMBIS, &command))
{
stringstream ss;
ss << "setRTS failed on a call to ioctl(TIOCMBIS): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
} else {
if (-1 == ioctl (fd_, TIOCMBIC, &command))
{
stringstream ss;
ss << "setRTS failed on a call to ioctl(TIOCMBIC): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
}
}
void
Serial::SerialImpl::setDTR (bool level)
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::setDTR");
}
int command = TIOCM_DTR;
if (level) {
if (-1 == ioctl (fd_, TIOCMBIS, &command))
{
stringstream ss;
ss << "setDTR failed on a call to ioctl(TIOCMBIS): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
} else {
if (-1 == ioctl (fd_, TIOCMBIC, &command))
{
stringstream ss;
ss << "setDTR failed on a call to ioctl(TIOCMBIC): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
}
}
bool
Serial::SerialImpl::waitForChange ()
{
#ifndef TIOCMIWAIT
while (is_open_ == true) {
int status;
if (-1 == ioctl (fd_, TIOCMGET, &status))
{
stringstream ss;
ss << "waitForChange failed on a call to ioctl(TIOCMGET): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
else
{
if (0 != (status & TIOCM_CTS)
|| 0 != (status & TIOCM_DSR)
|| 0 != (status & TIOCM_RI)
|| 0 != (status & TIOCM_CD))
{
return true;
}
}
usleep(1000);
}
return false;
#else
int command = (TIOCM_CD|TIOCM_DSR|TIOCM_RI|TIOCM_CTS);
if (-1 == ioctl (fd_, TIOCMIWAIT, &command)) {
stringstream ss;
ss << "waitForDSR failed on a call to ioctl(TIOCMIWAIT): "
<< errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
return true;
#endif
}
bool
Serial::SerialImpl::getCTS ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::getCTS");
}
int status;
if (-1 == ioctl (fd_, TIOCMGET, &status))
{
stringstream ss;
ss << "getCTS failed on a call to ioctl(TIOCMGET): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
else
{
return 0 != (status & TIOCM_CTS);
}
}
bool
Serial::SerialImpl::getDSR ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::getDSR");
}
int status;
if (-1 == ioctl (fd_, TIOCMGET, &status))
{
stringstream ss;
ss << "getDSR failed on a call to ioctl(TIOCMGET): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
else
{
return 0 != (status & TIOCM_DSR);
}
}
bool
Serial::SerialImpl::getRI ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::getRI");
}
int status;
if (-1 == ioctl (fd_, TIOCMGET, &status))
{
stringstream ss;
ss << "getRI failed on a call to ioctl(TIOCMGET): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
else
{
return 0 != (status & TIOCM_RI);
}
}
bool
Serial::SerialImpl::getCD ()
{
if (is_open_ == false) {
throw PortNotOpenedException ("Serial::getCD");
}
int status;
if (-1 == ioctl (fd_, TIOCMGET, &status))
{
stringstream ss;
ss << "getCD failed on a call to ioctl(TIOCMGET): " << errno << " " << strerror(errno);
throw(SerialException(ss.str().c_str()));
}
else
{
return 0 != (status & TIOCM_CD);
}
}
void
Serial::SerialImpl::readLock ()
{
int result = pthread_mutex_lock(&this->read_mutex);
if (result) {
THROW (IOException, result);
}
}
void
Serial::SerialImpl::readUnlock ()
{
int result = pthread_mutex_unlock(&this->read_mutex);
if (result) {
THROW (IOException, result);
}
}
void
Serial::SerialImpl::writeLock ()
{
int result = pthread_mutex_lock(&this->write_mutex);
if (result) {
THROW (IOException, result);
}
}
void
Serial::SerialImpl::writeUnlock ()
{
int result = pthread_mutex_unlock(&this->write_mutex);
if (result) {
THROW (IOException, result);
}
}
#endif // !defined(_WIN32)