SpireCV/samples/SpireCVSeg.cpp

121 lines
3.7 KiB
C++

#include "yolov7/config.h"
#include "yolov7/cuda_utils.h"
#include "yolov7/logging.h"
#include "yolov7/utils.h"
#include "yolov7/preprocess.h"
#include "yolov7/postprocess.h"
#include "yolov7/model.h"
#include <iostream>
#include <chrono>
#include <cmath>
using namespace nvinfer1;
static Logger gLogger;
const static int kInputH = 640;
const static int kInputW = 640;
const static int kOutputSize1 = kMaxNumOutputBbox * sizeof(Detection) / sizeof(float) + 1;
const static int kOutputSize2 = 32 * (kInputH / 4) * (kInputW / 4);
bool parse_args(int argc, char** argv, std::string& wts, std::string& engine, float& gd, float& gw, std::string& img_dir, std::string& labels_filename, int& n_classes) {
if (argc < 4) return false;
if (std::string(argv[1]) == "-s" && (argc == 6 || argc == 8)) {
wts = std::string(argv[2]);
engine = std::string(argv[3]);
n_classes = atoi(argv[4]);
if (n_classes < 1)
return false;
auto net = std::string(argv[5]);
if (net[0] == 'n') {
gd = 0.33;
gw = 0.25;
} else if (net[0] == 's') {
gd = 0.33;
gw = 0.50;
} else if (net[0] == 'm') {
gd = 0.67;
gw = 0.75;
} else if (net[0] == 'l') {
gd = 1.0;
gw = 1.0;
} else if (net[0] == 'x') {
gd = 1.33;
gw = 1.25;
} else if (net[0] == 'c' && argc == 8) {
gd = atof(argv[6]);
gw = atof(argv[7]);
} else {
return false;
}
} else if (std::string(argv[1]) == "-d" && argc == 5) {
engine = std::string(argv[2]);
img_dir = std::string(argv[3]);
labels_filename = std::string(argv[4]);
} else {
return false;
}
return true;
}
void serialize_engine(unsigned int max_batchsize, float& gd, float& gw, std::string& wts_name, std::string& engine_name, int n_classes) {
// Create builder
IBuilder* builder = createInferBuilder(gLogger);
IBuilderConfig* config = builder->createBuilderConfig();
// Create model to populate the network, then set the outputs and create an engine
ICudaEngine *engine = nullptr;
engine = build_seg_engine(max_batchsize, builder, config, DataType::kFLOAT, gd, gw, wts_name, kInputH, kInputW, n_classes);
assert(engine != nullptr);
// Serialize the engine
IHostMemory* serialized_engine = engine->serialize();
assert(serialized_engine != nullptr);
// Save engine to file
std::ofstream p(engine_name, std::ios::binary);
if (!p) {
std::cerr << "Could not open plan output file" << std::endl;
assert(false);
}
p.write(reinterpret_cast<const char*>(serialized_engine->data()), serialized_engine->size());
// Close everything down
engine->destroy();
builder->destroy();
config->destroy();
serialized_engine->destroy();
}
int main(int argc, char** argv) {
cudaSetDevice(kGpuId);
std::string wts_name = "";
std::string engine_name = "";
std::string labels_filename = "";
float gd = 0.0f, gw = 0.0f;
int n_classes;
std::string img_dir;
if (!parse_args(argc, argv, wts_name, engine_name, gd, gw, img_dir, labels_filename, n_classes)) {
std::cerr << "arguments not right!" << std::endl;
std::cerr << "./SpireCVSeg -s [.wts] [.engine] n_classes [n/s/m/l/x or c gd gw] // serialize model to plan file" << std::endl;
// std::cerr << "./SpireCVSeg -d [.engine] ../images coco.txt // deserialize plan file, read the labels file and run inference" << std::endl;
return -1;
}
std::cout << "n_classes: " << n_classes << std::endl;
// Create a model using the API directly and serialize it to a file
if (!wts_name.empty()) {
serialize_engine(kBatchSize, gd, gw, wts_name, engine_name, n_classes);
return 0;
}
return 0;
}