finish SORT

This commit is contained in:
CZC-123 2023-09-22 21:47:27 +08:00
parent c561a85a3c
commit b7782a061e
4 changed files with 321 additions and 124 deletions

View File

@ -1,6 +1,8 @@
#include "sv_mot.h"
#include <cmath>
#include <fstream>
#include <limits>
#include <vector>
#include "gason.h"
#include "sv_util.h"
@ -116,11 +118,11 @@ KalmanFilter::KalmanFilter()
this->_F = MatrixXd::Identity(8, 8);
for (int i=0; i<4; i++)
{
this->_F(i,i+4) = 1;
this->_F(i,i+4) = 1.; //1
}
this->_H = MatrixXd::Identity(4, 8);
this->_std_weight_position = 1. / 20;
this->_std_weight_vel = 1. / 160;
this->_std_weight_position = 1. / 20; //1./20
this->_std_weight_vel = 1. / 160; //1./160
}
KalmanFilter::~KalmanFilter()
@ -130,7 +132,9 @@ KalmanFilter::~KalmanFilter()
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > KalmanFilter::initiate(Vector4d &bbox)
{
Matrix<double,8,1> mean;
mean << bbox(0), bbox(1), bbox(2) / bbox(3), bbox(3), 0, 0, 0, 0;
Matrix<double,4,1> zero_vector;
zero_vector.setZero();
mean << bbox(0), bbox(1), (double)bbox(2) / (double)bbox(3), bbox(3), zero_vector;
VectorXd stds(8);
stds << 2 * this->_std_weight_position * mean(3), 2 * this->_std_weight_position * mean(3), 0.01, 2 * this->_std_weight_position * mean(3), \
10 * this->_std_weight_vel * mean(3), 10 * this->_std_weight_vel * mean(3), 1e-5, 10 * this->_std_weight_vel * mean(3);
@ -142,31 +146,43 @@ pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > KalmanFilter::initiate(Vector4
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > KalmanFilter::update(Matrix<double, 8, 1> mean, Matrix<double, 8, 8> covariances, sv::Box &box)
{
MatrixXd R;
Vector4d stds;
stds << this->_std_weight_position * mean(3), this->_std_weight_position * mean(3), 0.1, this->_std_weight_position * mean(3);
MatrixXd squared = stds.array().square();
R = squared.asDiagonal();
MatrixXd S = this->_H * covariances * this->_H.transpose() + R;
MatrixXd Kalman_gain = covariances * this->_H.transpose() * S.inverse();
VectorXd measurement(4);
measurement << box.x1, box.y1, (box.x2-box.x1) / (box.y2-box.y1), box.y2-box.y1;
Matrix<double, 8, 1> new_mean = mean + Kalman_gain * (measurement - this->_H * mean);
Matrix<double, 8, 8> new_covariances = (MatrixXd::Identity(8, 8) - Kalman_gain * this->_H) * covariances;
double a = (double)(box.x2-box.x1) / (double)(box.y2-box.y1);
measurement << box.x1+(box.x2-box.x1)/2, box.y1+(box.y2-box.y1)/2, a, box.y2-box.y1;
pair<Matrix<double, 4, 1>, Matrix<double, 4, 4> > projected = project(mean, covariances);
Matrix<double, 4, 1> projected_mean = projected.first;
Matrix<double, 4, 4> projected_cov = projected.second;
Eigen::LLT<Eigen::MatrixXd> chol_factor(projected_cov);
MatrixXd Kalman_gain = (chol_factor.solve((covariances * this->_H.transpose()).transpose())).transpose();
VectorXd innovation = measurement - projected_mean;
Matrix<double, 8, 1> new_mean = mean + Kalman_gain *innovation;
Matrix<double, 8, 8> new_covariances = covariances - Kalman_gain * projected_cov * Kalman_gain.transpose();
return make_pair(new_mean, new_covariances);
}
pair<Matrix<double, 4, 1>, Matrix<double, 4, 4> > KalmanFilter::project(Matrix<double, 8, 1> mean, Matrix<double, 8, 8> covariances)
{
VectorXd stds(4);
stds << this->_std_weight_position * mean(3), this->_std_weight_position * mean(3), 0.1, this->_std_weight_position * mean(3);
MatrixXd squared = stds.array().square();
MatrixXd R = squared.asDiagonal();
Matrix<double, 4, 1> pro_mean = this->_H * mean;
Matrix<double, 4, 4> pro_covariances = this->_H * covariances * this->_H.transpose() + R;
return make_pair(pro_mean, pro_covariances);
}
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > KalmanFilter::predict(Matrix<double, 8, 1> mean, Matrix<double, 8, 8> covariances)
{
VectorXd stds(8);
stds << this->_std_weight_position * mean(3), this->_std_weight_position * mean(3), 0.01, this->_std_weight_position * mean(3), \
this->_std_weight_vel * mean(3), this->_std_weight_vel * mean(3), 1e-5, this->_std_weight_vel * mean(3);
stds << this->_std_weight_position * mean(3), this->_std_weight_position * mean(3), 1e-2, this->_std_weight_position * mean(3), \
this->_std_weight_vel * mean(3), this->_std_weight_vel * mean(3), 1e-5, this->_std_weight_vel * mean(3); // a = 0.01
MatrixXd squared = stds.array().square();
MatrixXd Q = squared.asDiagonal();
Matrix<double, 8, 1> pre_mean = this->_F * mean;
Matrix<double, 8, 8> pre_cov = this->_F * covariances * this->_F.transpose() + Q;
Matrix<double, 8, 8> pre_cov = this->_F * covariances * this->_F.transpose()+Q;//+Q
return make_pair(pre_mean, pre_cov);
}
@ -178,7 +194,7 @@ SORT::~SORT()
void SORT::update(TargetsInFrame& tgts)
{
sv::KalmanFilter kf;
if (! this->_tracklets.size())
if (! this->_tracklets.size() || tgts.targets.size() == 0)
{
Vector4d bbox;
for (int i=0; i<tgts.targets.size(); i++)
@ -187,16 +203,18 @@ void SORT::update(TargetsInFrame& tgts)
tgts.targets[i].getBox(box);
Tracklet tracklet;
tracklet.id = ++ this->_next_tracklet_id;
// cout << tracklet.id << endl;
tgts.targets[i].tracked_id = this->_next_tracklet_id;
tgts.targets[i].has_tid = true;
tracklet.bbox << box.x1, box.y1, box.x2-box.x1, box.y2-box.y1; // x,y,w,h
tracklet.bbox << box.x1+(box.x2-box.x1)/2, box.y1+(box.y2-box.y1)/2, box.x2-box.x1, box.y2-box.y1; // x,y,w,h; center(x,y)
tracklet.age = 0;
tracklet.hits = 1;
tracklet.misses = 0;
tracklet.frame_id = tgts.frame_id;
tracklet.category_id = tgts.targets[i].category_id;
tracklet.tentative = true;
// initate the motion
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > motion = kf.initiate(tracklet.bbox);
tracklet.mean = motion.first;
@ -207,14 +225,14 @@ void SORT::update(TargetsInFrame& tgts)
}
else
{
cout<<"frame id:"<<tgts.frame_id<<endl;
for (int i=0; i<tgts.targets.size(); i++)
{
tgts.targets[i].tracked_id = 0;
tgts.targets[i].has_tid = true;
}
array<int, 100> match_det;
match_det.fill(-1);
vector<int> match_det(tgts.targets.size(), -1);
// predict the next state of each tracklet
for (auto& tracklet : this->_tracklets)
{
@ -226,8 +244,6 @@ void SORT::update(TargetsInFrame& tgts)
}
// Match the detections to the existing tracklets
// cout << "the num of targets: " << tgts.targets.size() << endl;
// cout << "the num of tracklets: " << this->_tracklets.size() << endl;
vector<vector<double> > iouMatrix(this->_tracklets.size(), vector<double> (tgts.targets.size(), 0));
for (int i=0; i<this->_tracklets.size(); i++)
{
@ -238,6 +254,7 @@ void SORT::update(TargetsInFrame& tgts)
iouMatrix[i][j] = this->_iou(this->_tracklets[i], box);
}
}
vector<pair<int, int> > matches = this->_hungarian(iouMatrix);
for (auto& match : matches)
{
@ -245,50 +262,58 @@ void SORT::update(TargetsInFrame& tgts)
int detectionIndex = match.second;
if (trackletIndex >= 0 && detectionIndex >= 0)
{
if (iouMatrix[match.first][match.second] >= _iou_threshold) // iou_thrshold
if (iouMatrix[match.first][match.second] <= 1-_iou_threshold) // iou_thrshold
{
sv::Box box;
tgts.targets[detectionIndex].getBox(box);
this->_tracklets[trackletIndex].age = 0;
this->_tracklets[trackletIndex].hits++;
this->_tracklets[trackletIndex].frame_id = tgts.frame_id;
this->_tracklets[trackletIndex].bbox << box.x1, box.y1, box.x2-box.x1, box.y2-box.y1;
auto[mean, covariance] = kf.update(this->_tracklets[trackletIndex].mean, this->_tracklets[trackletIndex].covariance, box);
this->_tracklets[trackletIndex].mean = mean;
this->_tracklets[trackletIndex].covariance = covariance;
this->_tracklets[trackletIndex].bbox << box.x1+(box.x2-box.x1)/2, box.y1+(box.y2-box.y1)/2, box.x2-box.x1, box.y2-box.y1;
tgts.targets[detectionIndex].tracked_id = this->_tracklets[trackletIndex].id;
match_det[detectionIndex] = detectionIndex;
match_det[detectionIndex] = trackletIndex;
}
}
}
// create new tracklets for unmatched detections
std::vector <vector<double>> ().swap(iouMatrix);
for (int i=0; i<tgts.targets.size(); i++)
{
//cout<<"match_det: index: "<<i<<" value: "<<match_det[i]<<endl;
if (match_det[i] == -1)
{
cout<<"create new tracklet."<<endl;
sv::Box box;
tgts.targets[i].getBox(box);
Tracklet tracklet;
tracklet.id = ++ this->_next_tracklet_id;
tracklet.bbox << box.x1, box.y1, box.x2-box.x1, box.y2-box.y1;
tracklet.bbox << box.x1+(box.x2-box.x1)/2, (double)(box.y1+(box.y2-box.y1)/2), box.x2-box.x1, box.y2-box.y1;
tracklet.age = 0;
tracklet.hits = 1;
tracklet.misses = 0;
tracklet.frame_id = tgts.frame_id;
tracklet.category_id = tgts.targets[i].category_id;
tracklet.tentative = true;
auto[new_mean, new_covariance] = kf.initiate(tracklet.bbox);
tracklet.mean = new_mean;
tracklet.covariance = new_covariance;
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > new_motion = kf.initiate(tracklet.bbox);
tracklet.mean = new_motion.first;
tracklet.covariance = new_motion.second;
tgts.targets[i].tracked_id = this->_next_tracklet_id;
tgts.targets[i].has_tid = true;
this->_tracklets.push_back(tracklet);
}
else
{
sv::Box box;
int track_id = match_det[i];
tgts.targets[i].getBox(box);
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > updated = kf.update(this->_tracklets[track_id].mean, this->_tracklets[track_id].covariance, box);
this->_tracklets[track_id].mean = updated.first;
this->_tracklets[track_id].covariance = updated.second;
}
}
//sift tracklets
for (auto& tracklet : this->_tracklets)
{
if (tracklet.hits >= _min_hits)
@ -312,15 +337,16 @@ vector<Tracklet> SORT::getTracklets() const
double SORT::_iou(Tracklet& tracklet, sv::Box& box)
{
double trackletX1 = tracklet.bbox(0);
double trackletY1 = tracklet.bbox(1);
double trackletX2 = tracklet.bbox(0) + tracklet.bbox(2);
double trackletY2 = tracklet.bbox(1) + tracklet.bbox(3);
double trackletX1 = tracklet.bbox(0)-tracklet.bbox(2)/2;
double trackletY1 = tracklet.bbox(1)-tracklet.bbox(3)/2;
double trackletX2 = tracklet.bbox(0) + tracklet.bbox(2)/2;
double trackletY2 = tracklet.bbox(1) + tracklet.bbox(3)/2;
double detectionX1 = box.x1;
double detectionY1 = box.y1;
double detectionX2 = box.x2;
double detectionY2 = box.y2;
double intersectionX1 = max(trackletX1, detectionX1);
double intersectionY1 = max(trackletY1, detectionY1);
double intersectionX2 = min(trackletX2, detectionX2);
@ -339,19 +365,55 @@ double SORT::_iou(Tracklet& tracklet, sv::Box& box)
return iou;
}
// Function to find the minimum element in a vector
double SORT::_findMin(const std::vector<double>& vec) {
double minVal = std::numeric_limits<double>::max();
for (double val : vec) {
if (val < minVal) {
minVal = val;
}
}
return minVal;
}
// Function to subtract the minimum value from each row of the cost matrix
void SORT::_subtractMinFromRows(std::vector<std::vector<double>>& costMatrix) {
for (auto& row : costMatrix) {
double minVal = _findMin(row);
for (double& val : row) {
val -= minVal;
}
}
}
// Function to subtract the minimum value from each column of the cost matrix
void SORT::_subtractMinFromCols(std::vector<std::vector<double>>& costMatrix) {
for (size_t col = 0; col < costMatrix[0].size(); ++col) {
double minVal = std::numeric_limits<double>::max();
for (size_t row = 0; row < costMatrix.size(); ++row) {
if (costMatrix[row][col] < minVal) {
minVal = costMatrix[row][col];
}
}
for (size_t row = 0; row < costMatrix.size(); ++row) {
costMatrix[row][col] -= minVal;
}
}
}
// Function to find a matching using the Hungarian algorithm
vector<pair<int, int> > SORT::_hungarian(vector<vector<double> > costMatrix)
{
int numRows = costMatrix.size();
int numCols = costMatrix[0].size();
size_t numRows = costMatrix.size();
size_t numCols = costMatrix[0].size();
//transpose the matrix if necessary
const bool transposed = numCols > numRows;
// transpose the matrix if necessary
if (transposed)
if (transposed) {
vector<vector<double>> transposedMatrix(numCols, vector<double>(numRows));
for (int i = 0; i < numRows; i++)
{
vector<vector<double> > transposedMatrix(numCols, vector<double>(numRows));
for (int i=0; i<numRows; i++)
{
for (int j=0; j<numCols; j++)
for (int j = 0; j < numCols; j++)
{
transposedMatrix[j][i] = costMatrix[i][j];
}
@ -359,76 +421,58 @@ vector<pair<int, int> > SORT::_hungarian(vector<vector<double> > costMatrix)
costMatrix = transposedMatrix;
swap(numRows, numCols);
}
vector<double>rowMin(numRows, numeric_limits<double>::infinity());
vector<double>colMin(numCols, numeric_limits<double>::infinity());
vector<int>rowMatch(numRows, -1);
vector<int>colMatch(numCols, -1);
vector<pair<int, int> > matches;
// step1: Subtract the row minimums from each row
for (int i=0; i<numRows; i++)
{
for (int j=0; j<numCols; j++)
{
rowMin[i] = min(rowMin[i], costMatrix[i][j]);
}
for (int j=0; j<numCols; j++)
{
costMatrix[i][j] -= rowMin[i];
// Determine the larger dimension for matching
size_t maxDim = std::max(numRows, numCols);
// Create a square cost matrix by padding with zeros if necessary
std::vector<std::vector<double>> squareMatrix(maxDim, std::vector<double>(maxDim, 0.0));
for (size_t row = 0; row < numRows; ++row) {
for (size_t col = 0; col < numCols; ++col) {
squareMatrix[row][col] = costMatrix[row][col];
}
}
// step2: substract the colcum minimums from each column
for (int j=0; j<numCols; j++)
{
for (int i=0; i<numRows; i++)
{
colMin[j] = min(colMin[j], costMatrix[i][j]);
}
for (int i=0; i<numRows; i++)
{
costMatrix[i][j] -= colMin[j];
// Subtract the minimum value from each row and column
_subtractMinFromRows(squareMatrix);
_subtractMinFromCols(squareMatrix);
// Initialize the assignment vectors with -1 values
std::vector<int> rowAssignment(maxDim, -1);
std::vector<int> colAssignment(maxDim, -1);
// Perform the matching
for (size_t row = 0; row < maxDim; ++row) {
std::vector<bool> visitedCols(maxDim, false);
for (size_t col = 0; col < maxDim; ++col) {
if (squareMatrix[row][col] == 0 && colAssignment[col] == -1) {
rowAssignment[row] = col;
colAssignment[col] = row;
break;
}
}
// step3: find a maximal matching
for (int i=0; i<numRows; i++)
{
vector<bool> visited(numCols, false);
this->_augment(costMatrix, i, rowMatch, colMatch, visited);
}
// step4: calculate the matches
matches.clear();
for (int j=0; j<numCols; j++)
{
matches.push_back(make_pair(colMatch[j], j));
// Convert the assignment vectors to pair<int, int> format
std::vector<std::pair<int, int>> assignmentPairs;
for (size_t row = 0; row < numRows; ++row) {
int col = rowAssignment[row];
//if (col != -1) {
// assignmentPairs.emplace_back(row, col);
// }
if (col != -1) {
if (col >= numCols) {
col = -1;
}
if (transposed)
{
for (auto& match : matches)
{
swap(match.first, match.second);
assignmentPairs.emplace_back(row, col);
}
}
return matches;
}
bool SORT::_augment(const vector<vector<double> >& costMatrix, int row, vector<int>& rowMatch, vector<int>& colMatch, vector<bool>& visited)
{
int numCols = costMatrix[0].size();
for (int j=0; j<numCols; j++)
{
if (costMatrix[row][j] == 0 && !visited[j])
{
visited[j] = true;
if (colMatch[j] == -1 || this->_augment(costMatrix, colMatch[j], rowMatch, colMatch, visited))
{
rowMatch[row] = j;
colMatch[j] = row;
return true;
}
}
}
return false;
}
if (transposed) {
for (auto& assignment : assignmentPairs)
{
swap(assignment.first, assignment.second);
}
}
return assignmentPairs;
}
}

View File

@ -56,6 +56,7 @@ public:
int hits;
int misses;
int frame_id = 0;
int category_id;
bool tentative;
std::vector<double> features;
Eigen::Matrix<double, 8, 1> mean;
@ -70,6 +71,7 @@ public:
std::pair<Eigen::Matrix<double, 8, 1>, Eigen::Matrix<double, 8, 8> > initiate(Eigen::Vector4d &bbox);
std::pair<Eigen::Matrix<double, 8, 1>, Eigen::Matrix<double, 8, 8> > update(Eigen::Matrix<double, 8, 1> mean, Eigen::Matrix<double, 8, 8> covariances, Box &box);
std::pair<Eigen::Matrix<double, 8, 1>, Eigen::Matrix<double, 8, 8> > predict(Eigen::Matrix<double, 8, 1> mean, Eigen::Matrix<double, 8, 8> covariances);
std::pair<Eigen::Matrix<double, 4, 1>, Eigen::Matrix<double, 4, 4> > project(Eigen::Matrix<double, 8, 1> mean, Eigen::Matrix<double, 8, 8> covariances);
private:
Eigen::Matrix<double, 8, 8> _F;
Eigen::Matrix<double, 4, 8> _H;
@ -88,7 +90,10 @@ public:
private:
double _iou(Tracklet &tracklet, Box &box);
std::vector<std::pair<int,int>> _hungarian(std::vector<std::vector<double>> costMatrix);
bool _augment(const std::vector<std::vector<double>>& costMatrix, int row, std::vector<int>& rowMatch, std::vector<int>& colMatch, std::vector<bool>& visited);
double _findMin(const std::vector<double>& vec);
void _subtractMinFromRows(std::vector<std::vector<double>>& costMatrix);
void _subtractMinFromCols(std::vector<std::vector<double>>& costMatrix);
//bool _augment(const std::vector<std::vector<double>>& costMatrix, int row, std::vector<int>& rowMatch, std::vector<int>& colMatch, std::vector<bool>& visited);
double _iou_threshold;
int _max_age;

41
models-converting.sh Executable file
View File

@ -0,0 +1,41 @@
#!/bin/bash -e
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
root_dir=${HOME}"/SpireCV/models"
coco_model1="COCO-yolov5s.wts"
coco_model2="COCO-yolov5s6.wts"
coco_model3="COCO-yolov5s-seg.wts"
coco_model1_fn=${root_dir}/${coco_model1}
coco_model2_fn=${root_dir}/${coco_model2}
coco_model3_fn=${root_dir}/${coco_model3}
drone_model1="Drone-yolov5s-ap935-v230302.wts"
drone_model2="Drone-yolov5s6-ap949-v230302.wts"
drone_model1_fn=${root_dir}/${drone_model1}
drone_model2_fn=${root_dir}/${drone_model2}
personcar_model1="PersonCar-yolov5s-ap606-v230306.wts"
personcar_model2="PersonCar-yolov5s6-ap702-v230306.wts"
personcar_model1_fn=${root_dir}/${personcar_model1}
personcar_model2_fn=${root_dir}/${personcar_model2}
landing_model1="LandingMarker-resnet34-v230228.onnx"
landing_model1_fn=${root_dir}/${landing_model1}
SpireCVDet -s ${coco_model1_fn} ${root_dir}/COCO.engine 80 s
SpireCVDet -s ${coco_model2_fn} ${root_dir}/COCO_HD.engine 80 s6
SpireCVSeg -s ${coco_model3_fn} ${root_dir}/COCO_SEG.engine 80 s
SpireCVDet -s ${drone_model1_fn} ${root_dir}/Drone.engine 1 s
SpireCVDet -s ${drone_model2_fn} ${root_dir}/Drone_HD.engine 1 s6
SpireCVDet -s ${personcar_model1_fn} ${root_dir}/PersonCar.engine 8 s
SpireCVDet -s ${personcar_model2_fn} ${root_dir}/PersonCar_HD.engine 8 s6
cd /usr/src/tensorrt/bin/
./trtexec --explicitBatch --onnx=${landing_model1_fn} --saveEngine=${root_dir}/LandingMarker.engine --fp16
echo "export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH" >> ~/.bashrc

107
models-downloading.sh Executable file
View File

@ -0,0 +1,107 @@
#!/bin/bash -e
root_dir=${HOME}"/SpireCV/models"
root_server="https://download.amovlab.com/model"
sv_params1=${HOME}"/SpireCV/sv_algorithm_params.json"
sv_params2=${HOME}"/SpireCV/sv_algorithm_params_coco_640.json"
sv_params3=${HOME}"/SpireCV/sv_algorithm_params_coco_1280.json"
camera_params1=${HOME}"/SpireCV/calib_webcam_640x480.yaml"
camera_params2=${HOME}"/SpireCV/calib_webcam_1280x720.yaml"
coco_model1="COCO-yolov5s.wts"
coco_model2="COCO-yolov5s6.wts"
coco_model3="COCO-yolov5s-seg.wts"
coco_model1_fn=${root_dir}/${coco_model1}
coco_model2_fn=${root_dir}/${coco_model2}
coco_model3_fn=${root_dir}/${coco_model3}
drone_model1="Drone-yolov5s-ap935-v230302.wts"
drone_model2="Drone-yolov5s6-ap949-v230302.wts"
drone_model1_fn=${root_dir}/${drone_model1}
drone_model2_fn=${root_dir}/${drone_model2}
personcar_model1="PersonCar-yolov5s-ap606-v230306.wts"
personcar_model2="PersonCar-yolov5s6-ap702-v230306.wts"
personcar_model1_fn=${root_dir}/${personcar_model1}
personcar_model2_fn=${root_dir}/${personcar_model2}
track_model1="dasiamrpn_model.onnx"
track_model2="dasiamrpn_kernel_cls1.onnx"
track_model3="dasiamrpn_kernel_r1.onnx"
track_model4="nanotrack_backbone_sim.onnx"
track_model5="nanotrack_head_sim.onnx"
track_model1_fn=${root_dir}/${track_model1}
track_model2_fn=${root_dir}/${track_model2}
track_model3_fn=${root_dir}/${track_model3}
track_model4_fn=${root_dir}/${track_model4}
track_model5_fn=${root_dir}/${track_model5}
landing_model1="LandingMarker-resnet34-v230228.onnx"
landing_model1_fn=${root_dir}/${landing_model1}
if [ ! -d ${root_dir} ]; then
echo -e "\033[32m[INFO]: ${root_dir} not exist, creating it ... \033[0m"
mkdir -p ${root_dir}
fi
if [ ! -f ${sv_params1} ]; then
echo -e "\033[32m[INFO]: ${sv_params1} not exist, downloading ... \033[0m"
wget -O ${sv_params1} ${root_server}/install/a-params/sv_algorithm_params.json
fi
if [ ! -f ${sv_params2} ]; then
echo -e "\033[32m[INFO]: ${sv_params2} not exist, downloading ... \033[0m"
wget -O ${sv_params2} ${root_server}/install/a-params/sv_algorithm_params_coco_640.json
fi
if [ ! -f ${sv_params3} ]; then
echo -e "\033[32m[INFO]: ${sv_params3} not exist, downloading ... \033[0m"
wget -O ${sv_params3} ${root_server}/install/a-params/sv_algorithm_params_coco_1280.json
fi
if [ ! -f ${camera_params1} ]; then
echo -e "\033[32m[INFO]: ${camera_params1} not exist, downloading ... \033[0m"
wget -O ${camera_params1} ${root_server}/install/c-params/calib_webcam_640x480.yaml
fi
if [ ! -f ${camera_params2} ]; then
echo -e "\033[32m[INFO]: ${camera_params2} not exist, downloading ... \033[0m"
wget -O ${camera_params2} ${root_server}/install/c-params/calib_webcam_1280x720.yaml
fi
if [ ! -f ${coco_model1_fn} ]; then
echo -e "\033[32m[INFO]: ${coco_model1_fn} not exist, downloading ... \033[0m"
wget -O ${coco_model1_fn} ${root_server}/install/${coco_model1}
wget -O ${coco_model2_fn} ${root_server}/install/${coco_model2}
wget -O ${coco_model3_fn} ${root_server}/install/${coco_model3}
fi
if [ ! -f ${drone_model1_fn} ]; then
echo -e "\033[32m[INFO]: ${drone_model1_fn} not exist, downloading ... \033[0m"
wget -O ${drone_model1_fn} ${root_server}/install/${drone_model1}
wget -O ${drone_model2_fn} ${root_server}/install/${drone_model2}
fi
if [ ! -f ${personcar_model1_fn} ]; then
echo -e "\033[32m[INFO]: ${personcar_model1_fn} not exist, downloading ... \033[0m"
wget -O ${personcar_model1_fn} ${root_server}/install/${personcar_model1}
wget -O ${personcar_model2_fn} ${root_server}/install/${personcar_model2}
fi
if [ ! -f ${track_model1_fn} ]; then
echo -e "\033[32m[INFO]: ${track_model1_fn} not exist, downloading ... \033[0m"
wget -O ${track_model1_fn} ${root_server}/${track_model1}
wget -O ${track_model2_fn} ${root_server}/${track_model2}
wget -O ${track_model3_fn} ${root_server}/${track_model3}
fi
if [ ! -f ${track_model4_fn} ]; then
echo -e "\033[32m[INFO]: ${track_model4_fn} not exist, downloading ... \033[0m"
wget -O ${track_model4_fn} ${root_server}/${track_model4}
wget -O ${track_model5_fn} ${root_server}/${track_model5}
fi
if [ ! -f ${landing_model1_fn} ]; then
echo -e "\033[32m[INFO]: ${landing_model1_fn} not exist, downloading ... \033[0m"
wget -O ${landing_model1_fn} ${root_server}/install/${landing_model1}
fi