Pre Merge pull request !14 from Daniel/lxm
This commit is contained in:
commit
3fb771cab2
|
@ -275,6 +275,9 @@ target_link_libraries(GimbalUdpDetectionInfoSender sv_world)
|
|||
add_executable(EvalFpsOnVideo samples/test/eval_fps_on_video.cpp)
|
||||
target_link_libraries(EvalFpsOnVideo sv_world)
|
||||
|
||||
add_executable(EvalModelOnCocoVal samples/test/eval_mAP_on_coco_val/eval_mAP_on_coco_val.cpp)
|
||||
target_link_libraries(EvalModelOnCocoVal sv_world)
|
||||
|
||||
include_directories(${CMAKE_CURRENT_SOURCE_DIR}/samples/calib)
|
||||
add_executable(CameraCalibrarion samples/calib/calibrate_camera_charuco.cpp)
|
||||
target_link_libraries(CameraCalibrarion ${OpenCV_LIBS})
|
||||
|
|
|
@ -0,0 +1,25 @@
|
|||
from pycocotools.coco import COCO
|
||||
from pycocotools.cocoeval import COCOeval
|
||||
import os
|
||||
|
||||
if __name__ == '__main__':
|
||||
path = os.path.abspath(os.path.join(os.getcwd(),"../../.."))
|
||||
pred_json = 'pd_coco.json'
|
||||
anno_json = path + '/val2017/instances_val2017.json'
|
||||
|
||||
# use COCO API to load forecast results and annotations
|
||||
cocoGt = COCO(anno_json)
|
||||
cocoDt = cocoGt.loadRes(pred_json)
|
||||
|
||||
# create COCO eval object
|
||||
cocoEval = COCOeval(cocoGt, cocoDt,'bbox')
|
||||
|
||||
# assessment
|
||||
cocoEval.evaluate()
|
||||
cocoEval.accumulate()
|
||||
cocoEval.summarize()
|
||||
|
||||
|
||||
# save results
|
||||
with open('coco_eval.txt', 'w') as f:
|
||||
f.write(str(cocoEval.stats))
|
|
@ -0,0 +1,100 @@
|
|||
#include <iostream>
|
||||
#include <string>
|
||||
// 包含SpireCV SDK头文件
|
||||
#include <sv_world.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
//extract name
|
||||
std::string GetImageFileName(const std::string& imagePath) {
|
||||
size_t lastSlash = imagePath.find_last_of("/\\");
|
||||
if (lastSlash == std::string::npos) {
|
||||
return imagePath;
|
||||
} else {
|
||||
std::string fileName = imagePath.substr(lastSlash + 1);
|
||||
size_t lastDot = fileName.find_last_of(".");
|
||||
if (lastDot != std::string::npos) {
|
||||
return fileName.substr(0, lastDot);
|
||||
}
|
||||
return fileName;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
// 实例化 通用目标 检测器类
|
||||
sv::CommonObjectDetector cod;
|
||||
// 手动导入相机参数,如果使用Amov的G1等吊舱或相机,则可以忽略该步骤,将自动下载相机参数文件
|
||||
cod.loadCameraParams(sv::get_home() + "/SpireCV/calib_webcam_640x480.yaml");
|
||||
|
||||
//load data
|
||||
string val_path = sv::get_home() + "/SpireCV/val2017/val2017";
|
||||
vector<string> val_image;
|
||||
glob(val_path, val_image, false);
|
||||
if (val_image.size() == 0)
|
||||
{
|
||||
printf("val_image error!!!\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
//preds folder
|
||||
|
||||
std::string folder = sv::get_home() + "/SpireCV/val2017/preds";
|
||||
int checkStatus = std::system(("if [ -d \"" + folder + "\" ]; then echo; fi").c_str());
|
||||
if(checkStatus == 0)
|
||||
{
|
||||
int removeStatus = std::system(("rm -rf \"" + folder + "\"").c_str());
|
||||
if(removeStatus != 0)
|
||||
{
|
||||
printf("remove older preds folder error!!!\n");
|
||||
exit(1);
|
||||
}
|
||||
}
|
||||
|
||||
int status = std::system(("mkdir \""+folder+"\"").c_str());
|
||||
if(status != 0)
|
||||
{
|
||||
printf("create preds folder error!!!\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
for (int i = 0; i < val_image.size(); i++) {
|
||||
|
||||
//create pred file
|
||||
std::string val_image_name = GetImageFileName(val_image[i]);
|
||||
std::string filename = folder+"/"+ val_image_name + ".txt";
|
||||
std::ofstream file(filename);
|
||||
file.is_open();
|
||||
file<<std::fixed<<std::setprecision(6);
|
||||
|
||||
// 实例化SpireCV的 单帧检测结果 接口类 TargetsInFrame
|
||||
sv::TargetsInFrame tgts(i);
|
||||
cv::Mat img = imread(val_image[i]);
|
||||
|
||||
int rows = img.rows;
|
||||
int cols = img.cols;
|
||||
|
||||
// 执行通用目标检测
|
||||
cod.detect(img, tgts);
|
||||
// 可视化检测结果,叠加到img上
|
||||
sv::drawTargetsInFrame(img, tgts);
|
||||
|
||||
// reslusts
|
||||
for (int j = 0; j < tgts.targets.size(); j++)
|
||||
{
|
||||
sv::Box b;
|
||||
tgts.targets[j].getBox(b);
|
||||
file<<tgts.targets[j].category_id<<" "<<(float)(b.x1+b.x2)/(2*cols)<<" "<<(float)(b.y1+b.y2)/(2*rows)<<" "<<(float)(b.x2-b.x1)/cols<<" "<<(float)(b.y2-b.y1)/rows<<" "<<(float)tgts.targets[j].score<<"\n";
|
||||
}
|
||||
file.close();
|
||||
|
||||
cv::imshow("image", img);
|
||||
cv::waitKey(500);
|
||||
img.release();
|
||||
cv::destroyAllWindows();
|
||||
}
|
||||
return 0;
|
||||
}
|
|
@ -0,0 +1,62 @@
|
|||
import datetime
|
||||
import json
|
||||
import os
|
||||
import cv2
|
||||
|
||||
# revert prediction results to coco_json
|
||||
path = os.path.abspath(os.path.join(os.getcwd(),"../../.."))
|
||||
# all files dir
|
||||
images_path = path + '/val2017/val2017'
|
||||
preds_path = path + '/val2017/preds'
|
||||
|
||||
coco_json_save = 'pd_coco.json'
|
||||
|
||||
# config coco_json
|
||||
coco_json = []
|
||||
|
||||
# remap the id of the coco dataset
|
||||
id_map = {1: 0, 2: 1, 3: 2, 4: 3, 5: 4, 6: 5, 7: 6, 8: 7, 9: 8, 10: 9, 11: 10, 13: 11, 14: 12, 15: 13, 16: 14, 17: 15, 18: 16, 19: 17, 20: 18, 21: 19, 22: 20, 23: 21, 24: 22, 25: 23, 27: 24, 28: 25, 31: 26, 32: 27, 33: 28, 34: 29, 35: 30, 36: 31, 37: 32, 38: 33, 39: 34, 40: 35, 41: 36, 42: 37, 43: 38, 44: 39, 46: 40, 47: 41, 48: 42, 49: 43, 50: 44, 51: 45, 52: 46, 53: 47, 54: 48, 55: 49, 56: 50, 57: 51, 58: 52, 59: 53, 60: 54, 61: 55, 62: 56, 63: 57, 64: 58, 65: 59, 67: 60, 70: 61, 72: 62, 73: 63, 74: 64, 75: 65, 76: 66, 77: 67, 78: 68, 79: 69, 80: 70, 81: 71, 82: 72, 84: 73, 85: 74, 86: 75, 87: 76, 88: 77, 89: 78, 90: 79}
|
||||
reid_mp = {value: key for key, value in id_map.items()}
|
||||
|
||||
# load images dir
|
||||
images = os.listdir(images_path)
|
||||
for image in images:
|
||||
print(image)
|
||||
# get image name
|
||||
image_name, image_suffix = os.path.splitext(image)
|
||||
# get image W and H
|
||||
image_path = images_path + '/' + image
|
||||
img = cv2.imread(image_path)
|
||||
height, width, _ = img.shape
|
||||
|
||||
# read pred's txt
|
||||
pred_path = preds_path + '/' + image_name + '.txt'
|
||||
if not os.path.exists(pred_path):
|
||||
continue
|
||||
with open(pred_path, 'r') as f:
|
||||
preds = f.readlines()
|
||||
preds = [l.strip() for l in preds]
|
||||
for j, pred in enumerate(preds):
|
||||
pred = pred.split(' ')
|
||||
category_id = int(pred[0])
|
||||
x = float(pred[1]) * width
|
||||
y = float(pred[2]) * height
|
||||
w = float(pred[3]) * width
|
||||
h = float(pred[4]) * height
|
||||
xmin = x - w / 2
|
||||
ymin = y - h / 2
|
||||
xmax = x + w / 2
|
||||
ymax = y + h / 2
|
||||
|
||||
coco_json.append({
|
||||
'image_id': int(image_name),
|
||||
'category_id': int(reid_mp[category_id]),
|
||||
'bbox': [xmin, ymin, w, h],
|
||||
'score': float(pred[5]),
|
||||
'area': w * h})
|
||||
|
||||
# save json
|
||||
with open(os.path.join(coco_json_save), 'w') as f:
|
||||
json.dump(coco_json, f, indent=2)
|
||||
|
||||
print(len(coco_json), 'Done!')
|
Loading…
Reference in New Issue