From d5adcc80c34945c21751ab16b4912fb58124b50c Mon Sep 17 00:00:00 2001
From: floraachy <1622042529@qq.com>
Date: Sat, 19 Oct 2024 13:45:04 +0800
Subject: [PATCH] =?UTF-8?q?38=E5=B2=81=E8=80=81Mac222222=20closing=20#3,#4?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
---
AVX512.md | 287 ------------------------------------------------------
1 file changed, 287 deletions(-)
delete mode 100644 AVX512.md
diff --git a/AVX512.md b/AVX512.md
deleted file mode 100644
index dd1130a..0000000
--- a/AVX512.md
+++ /dev/null
@@ -1,287 +0,0 @@
-Go 1.11 release introduces [AVX-512](https://en.wikipedia.org/wiki/AVX-512) support.
-This page describes how to use new features as well as some important encoder details.
-
-### Terminology
-
-Most terminology comes from [Intel Software Developer's manual](https://software.intel.com/en-us/articles/intel-sdm).
-Suffixes originate from Go assembler syntax, which is close to AT&T, which also uses size suffixes.
-
-Some terms are listed to avoid ambiguity (for example, opcode can have different meanings).
-
-
-
- Term |
- Description |
-
-
- Operand |
-
- Same as "instruction argument".
- |
-
-
- Opcode |
-
- Name that refers to instruction group. For example, VADDPD is an opcode.
- It refers to both VEX and EVEX encoded forms and all operand combinations.
- Most Go assembler opcodes for AVX-512 match Intel manual entries, with exceptions for cases
- where additional size suffix is used (e.g. VCVTTPD2DQY is VCVTTPD2DQ ).
- |
-
-
- Opcode suffix |
-
- Suffix that overrides some opcode properties. Listed after "." (dot).
- For example, VADDPD.Z has "Z" opcode suffix.
- There can be multiple dot-separated opcode suffixes.
- |
-
-
- Size suffix |
-
- Suffix that specifies instruction operand size if it can't be inferred from operands alone.
- For example, VCVTSS2USIL has "L" size suffix.
- |
-
-
- Opmask |
-
- Used for both {k1} notation and to describe instructions that have K registers operands.
- Related to masking support in EVEX prefix.
- |
-
-
- Register block |
-
- Multi-source operand that encodes register range.
- Intel manual uses +n notation for register blocks.
- For example, +3 is a register block of 4 registers.
- |
-
-
- FP |
- Floating-point |
-
-
-
-### New registers
-
-EVEX-enabled instructions can access additional 16 `X` (128-bit xmm) and `Y` (256-bit ymm) registers, plus 32 new `Z` (512-bit zmm) registers in 64-bit mode. 32-bit mode only gets `Z0-Z7`.
-
-New opmask registers are named `K0-K7`.
-They can be used for both masking and for special opmask instructions (like `KADDB`).
-
-### Masking support
-
-Instructions that support masking can omit `K` register operand.
-In this case, `K0` register is implied ("all ones") and merging-masking is performed.
-This is effectively "no masking".
-
-`K1-K7` registers can be used to override default opmask.
-`K` register should be placed right before destination operand.
-
-Zeroing-masking can be activated with `Z` opcode suffix. Zeroing-masking requires that a mask register other than K0 be specified.
-
-For example, `VADDPD.Z (AX), Z30, K3, Z10` uses zeroing-masking and explicit `K` register.
-- If `Z` opcode suffix is removed, it's merging-masking with `K3` mask.
-- If `K3` operand is removed, it generates an assembler error.
-- If both `Z` opcode suffix and `K3` operand are removed, it is merging-masking with `K0` mask.
-
-It's compile-time error to use `K0` register for `{k1}` operands (consult [manuals](https://software.intel.com/en-us/articles/intel-sdm) for details).
-
-### EVEX broadcast/rounding/SAE support
-
-Embedded broadcast, rounding and SAE activated through opcode suffixes.
-
-For reg-reg FP instructions with `{er}` enabled, rounding opcode suffix can be specified:
-
-* `RU_SAE` to round towards +Inf
-* `RD_SAE` to round towards -Inf
-* `RZ_SAE` to round towards zero
-* `RN_SAE` to round towards nearest
-
-> To read more about rounding modes, see [MXCSR.RC info](http://qcd.phys.cmu.edu/QCDcluster/intel/vtune/reference/vc148.htm).
-
-For reg-reg FP instructions with `{sae}` enabled, exception suppression can be specified with `SAE` opcode suffix.
-
-For reg-mem instrictons with `m32bcst/m64bcst` operand, broadcasting can be turned on with `BCST` opcode suffix.
-
-Zeroing opcode suffix can be combined with any of these.
-For example, `VMAXPD.SAE.Z Z3, Z2, Z1` uses both `Z` and `SAE` opcode suffixes.
-It is important to put zeroing opcode suffix last, otherwise it is a compilation error.
-
-### Register block (multi-source) operands
-
-Register blocks are specified using register range syntax.
-
-It would be enough to specify just first (low) register, but Go assembler requires
-explicit range with both ends for readability reasons.
-
-For example, instructions with `+3` range can be used like `VP4DPWSSD Z25, [Z0-Z3], (AX)`.
-Range `[Z0-Z3]` reads like "register block of Z0, Z1, Z2, Z3".
-Invalid ranges result in compilation error.
-
-### AVX1 and AVX2 instructions with EVEX prefix
-
-Previously existed opcodes that can be encoded using EVEX prefix now can access AVX-512 features like wider register file, zeroing/merging masking, etc. For example, `VADDPD` can now use 512-bit vector registers.
-
-See [encoder details](#encoder-details) for more info.
-
-### Supported extensions
-
-Best way to get up-to-date list of supported extensions is to do `ls -1` inside [test suite](https://github.com/golang/go/tree/master/src/cmd/asm/internal/asm/testdata/avx512enc) directory.
-
-Latest list includes:
-```
-aes_avx512f
-avx512_4fmaps
-avx512_4vnniw
-avx512_bitalg
-avx512_ifma
-avx512_vbmi
-avx512_vbmi2
-avx512_vnni
-avx512_vpopcntdq
-avx512bw
-avx512cd
-avx512dq
-avx512er
-avx512f
-avx512pf
-gfni_avx512f
-vpclmulqdq_avx512f
-```
-
-128-bit and 256-bit instructions additionally require `avx512vl`.
-That is, if `VADDPD` is available in `avx512f`, you can't use `X` and `Y` arguments
-without `avx512vl`.
-
-Filenames follow `GNU as` (gas) conventions.
-[avx512extmap.csv](https://gist.github.com/Quasilyte/92321dadcc3f86b05c1aeda2c13c851f) can make naming scheme more apparent.
-
-### Instructions with size suffix
-
-Some opcodes do not match Intel manual entries.
-This section is provided for search convenience.
-
-| Intel opcode | Go assembler opcodes |
-|--------------|----------------------|
-| `VCVTPD2DQ` | `VCVTPD2DQX`, `VCVTPD2DQY` |
-| `VCVTPD2PS` | `VCVTPD2PSX`, `VCVTPD2PSY` |
-| `VCVTTPD2DQ` | `VCVTTPD2DQX`, `VCVTTPD2DQY` |
-| `VCVTQQ2PS` | `VCVTQQ2PSX`, `VCVTQQ2PSY` |
-| `VCVTUQQ2PS` | `VCVTUQQ2PSX`, `VCVTUQQ2PSY` |
-| `VCVTPD2UDQ` | `VCVTPD2UDQX`, `VCVTPD2UDQY` |
-| `VCVTTPD2UDQ` | `VCVTTPD2UDQX`, `VCVTTPD2UDQY` |
-| `VFPCLASSPD` | `VFPCLASSPDX`, `VFPCLASSPDY`, `VFPCLASSPDZ` |
-| `VFPCLASSPS` | `VFPCLASSPSX`, `VFPCLASSPSY`, `VFPCLASSPSZ` |
-| `VCVTSD2SI` | `VCVTSD2SI`, `VCVTSD2SIQ` |
-| `VCVTTSD2SI` | `VCVTSD2SI`, `VCVTSD2SIQ` |
-| `VCVTTSS2SI` | `VCVTSD2SI`, `VCVTSD2SIQ` |
-| `VCVTSS2SI` | `VCVTSD2SI`, `VCVTSD2SIQ` |
-| `VCVTSD2USI` | `VCVTSD2USIL`, `VCVTSD2USIQ` |
-| `VCVTSS2USI` | `VCVTSS2USIL`, `VCVTSS2USIQ` |
-| `VCVTTSD2USI` | `VCVTTSD2USIL`, `VCVTTSD2USIQ` |
-| `VCVTTSS2USI` | `VCVTTSS2USIL`, `VCVTTSS2USIQ` |
-| `VCVTUSI2SD` | `VCVTUSI2SDL`, `VCVTUSI2SDQ` |
-| `VCVTUSI2SS` | `VCVTUSI2SSL`, `VCVTUSI2SSQ` |
-| `VCVTSI2SD` | `VCVTSI2SDL`, `VCVTSI2SDQ` |
-| `VCVTSI2SS` | `VCVTSI2SSL`, `VCVTSI2SSQ` |
-| `ANDN` | `ANDNL`, `ANDNQ` |
-| `BEXTR` | `BEXTRL`, `BEXTRQ` |
-| `BLSI` | `BLSIL`, `BLSIQ` |
-| `BLSMSK` | `BLSMSKL`, `BLSMSKQ` |
-| `BLSR` | `BLSRL`, `BLSRQ` |
-| `BZHI` | `BZHIL`, `BZHIQ` |
-| `MULX` | `MULXL`, `MULXQ` |
-| `PDEP` | `PDEPL`, `PDEPQ` |
-| `PEXT` | `PEXTL`, `PEXTQ` |
-| `RORX` | `RORXL`, `RORXQ` |
-| `SARX` | `SARXL`, `SARXQ` |
-| `SHLX` | `SHLXL`, `SHLXQ` |
-| `SHRX` | `SHRXL`, `SHRXQ` |
-
-### Encoder details
-
-Bitwise comparison with older encoder may fail for VEX-encoded instructions due to slightly different encoder tables order.
-
-This difference may arise for instructions with both `{reg, reg/mem}` and `{reg/mem, reg}` forms for reg-reg case. One of such instructions is `VMOVUPS`.
-
-This does not affect code behavior, nor makes it bigger/less efficient.
-New encoding selection scheme is borrowed from [Intel XED](https://github.com/intelxed/xed).
-
-EVEX encoding is used when any of the following is true:
-
-* Instruction uses new registers (High 16 `X`/`Y`, `Z` or `K` registers)
-* Instruction uses EVEX-related opcode suffixes like `BCST`
-* Instruction uses operands combination that is only available for AVX-512
-
-In all other cases VEX encoding is used.
-This means that VEX is used whenever possible, and EVEX whenever required.
-
-Compressed disp8 is applied whenever possible for EVEX-encoded instructions.
-This also covers broadcasting disp8 which sometimes has different N multiplier.
-
-Experienced readers can inspect [avx_optabs.go](https://github.com/golang/go/blob/master/src/cmd/internal/obj/x86/avx_optabs.go) to learn about N multipliers for any instruction.
-
-For example, `VADDPD` has these:
-* `N=64` for 512-bit form; `N=8` when broadcasting
-* `N=32` for 256-bit form; `N=8` when broadcasting
-* `N=16` for 128-bit form; `N=8` when broadcasting
-
-### Examples
-
-Exhaustive amount of examples can be found in Go assembler [test suite](https://github.com/golang/go/tree/master/src/cmd/asm/internal/asm/testdata/avx512enc).
-
-Each file provides several examples for every supported instruction form in particular AVX-512 extension.
-Every example also includes generated machine code.
-
-Here is adopted "Vectorized Histogram Update Using AVX-512CD" from
-[IntelĀ® Optimization Manual](https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf):
-
-```go
-for i := 0; i < 512; i++ {
- histo[key[i]] += 1
-}
-```
-
-```asm
-top:
- VMOVUPS 0x40(SP)(DX*4), Z4 //; vmovups zmm4, [rsp+rdx*4+0x40]
- VPXORD Z1, Z1, Z1 //; vpxord zmm1, zmm1, zmm1
- KMOVW K1, K2 //; kmovw k2, k1
- VPCONFLICTD Z4, Z2 //; vpconflictd zmm2, zmm4
- VPGATHERDD (AX)(Z4*4), K2, Z1 //; vpgatherdd zmm1{k2}, [rax+zmm4*4]
- VPTESTMD histo<>(SB), Z2, K0 //; vptestmd k0, zmm2, [rip+0x185c]
- KMOVW K0, CX //; kmovw ecx, k0
- VPADDD Z0, Z1, Z3 //; vpaddd zmm3, zmm1, zmm0
- TESTL CX, CX //; test ecx, ecx
- JZ noConflicts //; jz noConflicts
- VMOVUPS histo<>(SB), Z1 //; vmovups zmm1, [rip+0x1884]
- VPTESTMD histo<>(SB), Z2, K0 //; vptestmd k0, zmm2, [rip+0x18ba]
- VPLZCNTD Z2, Z5 //; vplzcntd zmm5, zmm2
- XORB BX, BX //; xor bl, bl
- KMOVW K0, CX //; kmovw ecx, k0
- VPSUBD Z5, Z1, Z1 //; vpsubd zmm1, zmm1, zmm5
- VPSUBD Z5, Z1, Z1 //; vpsubd zmm1, zmm1, zmm5
-
-resolveConflicts:
- VPBROADCASTD CX, Z5 //; vpbroadcastd zmm5, ecx
- KMOVW CX, K2 //; kmovw k2, ecx
- VPERMD Z3, Z1, K2, Z3 //; vpermd zmm3{k2}, zmm1, zmm3
- VPADDD Z0, Z3, K2, Z3 //; vpaddd zmm3{k2}, zmm3, zmm0
- VPTESTMD Z2, Z5, K2, K0 //; vptestmd k0{k2}, zmm5, zmm2
- KMOVW K0, SI //; kmovw esi, k0
- ANDL SI, CX //; and ecx, esi
- JZ noConflicts //; jz noConflicts
- ADDB $1, BX //; add bl, 0x1
- CMPB BX, $16 //; cmp bl, 0x10
- JB resolveConflicts //; jb resolveConflicts
-
-noConflicts:
- KMOVW K1, K2 //; kmovw k2, k1
- VPSCATTERDD Z3, K2, (AX)(Z4*4) //; vpscatterdd [rax+zmm4*4]{k2}, zmm3
- ADDL $16, DX //; add edx, 0x10
- CMPL DX, $1024 //; cmp edx, 0x400
- JB top //; jb top
-```
\ No newline at end of file