pytest2/doc/en/example/parametrize.txt

416 lines
14 KiB
Plaintext

.. _paramexamples:
Parametrizing tests
=================================================
.. currentmodule:: _pytest.python
py.test allows to easily parametrize test functions.
In the following we provide some examples using
the builtin mechanisms.
.. _parametrizemark:
Simple "decorator" parametrization of a test function
----------------------------------------------------------------------------
.. versionadded:: 2.2
The builtin ``pytest.mark.parametrize`` decorator directly enables
parametrization of arguments for a test function. Here is an example
of a test function that wants to compare that processing some input
results in expected output::
# content of test_expectation.py
import pytest
@pytest.mark.parametrize(("input", "expected"), [
("3+5", 8),
("2+4", 6),
("6*9", 42),
])
def test_eval(input, expected):
assert eval(input) == expected
we parametrize two arguments of the test function so that the test
function is called three times. Let's run it::
$ py.test -q
collecting ... collected 3 items
..F
================================= FAILURES =================================
____________________________ test_eval[6*9-42] _____________________________
input = '6*9', expected = 42
@pytest.mark.parametrize(("input", "expected"), [
("3+5", 8),
("2+4", 6),
("6*9", 42),
])
def test_eval(input, expected):
> assert eval(input) == expected
E assert 54 == 42
E + where 54 = eval('6*9')
test_expectation.py:8: AssertionError
1 failed, 2 passed in 0.02 seconds
As expected only one pair of input/output values fails the simple test function.
Note that there are various ways how you can mark groups of functions,
see :ref:`mark`.
Generating parameters combinations, depending on command line
----------------------------------------------------------------------------
.. regendoc:wipe
Let's say we want to execute a test with different computation
parameters and the parameter range shall be determined by a command
line argument. Let's first write a simple (do-nothing) computation test::
# content of test_compute.py
def test_compute(param1):
assert param1 < 4
Now we add a test configuration like this::
# content of conftest.py
def pytest_addoption(parser):
parser.addoption("--all", action="store_true",
help="run all combinations")
def pytest_generate_tests(metafunc):
if 'param1' in metafunc.funcargnames:
if metafunc.config.option.all:
end = 5
else:
end = 2
metafunc.parametrize("param1", range(end))
This means that we only run 2 tests if we do not pass ``--all``::
$ py.test -q test_compute.py
collecting ... collected 2 items
..
2 passed in 0.02 seconds
We run only two computations, so we see two dots.
let's run the full monty::
$ py.test -q --all
collecting ... collected 5 items
....F
================================= FAILURES =================================
_____________________________ test_compute[4] ______________________________
param1 = 4
def test_compute(param1):
> assert param1 < 4
E assert 4 < 4
test_compute.py:3: AssertionError
1 failed, 4 passed in 0.02 seconds
As expected when running the full range of ``param1`` values
we'll get an error on the last one.
A quick port of "testscenarios"
------------------------------------
.. _`test scenarios`: http://pypi.python.org/pypi/testscenarios/
Here is a quick port to run tests configured with `test scenarios`_,
an add-on from Robert Collins for the standard unittest framework. We
only have to work a bit to construct the correct arguments for pytest's
:py:func:`Metafunc.parametrize`::
# content of test_scenarios.py
def pytest_generate_tests(metafunc):
idlist = []
argvalues = []
for scenario in metafunc.cls.scenarios:
idlist.append(scenario[0])
items = scenario[1].items()
argnames = [x[0] for x in items]
argvalues.append(([x[1] for x in items]))
metafunc.parametrize(argnames, argvalues, ids=idlist)
scenario1 = ('basic', {'attribute': 'value'})
scenario2 = ('advanced', {'attribute': 'value2'})
class TestSampleWithScenarios:
scenarios = [scenario1, scenario2]
def test_demo(self, attribute):
assert isinstance(attribute, str)
this is a fully self-contained example which you can run with::
$ py.test test_scenarios.py
=========================== test session starts ============================
platform linux2 -- Python 2.7.3 -- pytest-2.3.0.dev3
plugins: xdist, bugzilla, cache, oejskit, cli, pep8, cov
collecting ... collected 2 items
test_scenarios.py ..
========================= 2 passed in 0.02 seconds =========================
If you just collect tests you'll also nicely see 'advanced' and 'basic' as variants for the test function::
$ py.test --collectonly test_scenarios.py
=========================== test session starts ============================
platform linux2 -- Python 2.7.3 -- pytest-2.3.0.dev3
plugins: xdist, bugzilla, cache, oejskit, cli, pep8, cov
collecting ... collected 2 items
<Module 'test_scenarios.py'>
<Class 'TestSampleWithScenarios'>
<Instance '()'>
<Function 'test_demo[basic]'>
<Function 'test_demo[advanced]'>
============================= in 0.02 seconds =============================
Deferring the setup of parametrized resources
---------------------------------------------------
.. regendoc:wipe
The parametrization of test functions happens at collection
time. It is a good idea to setup expensive resources like DB
connections or subprocess only when the actual test is run.
Here is a simple example how you can achieve that, first
the actual test requiring a ``db`` object::
# content of test_backends.py
import pytest
def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":
pytest.fail("deliberately failing for demo purposes")
We can now add a test configuration that generates two invocations of
the ``test_db_initialized`` function and also implements a factory that
creates a database object for the actual test invocations::
# content of conftest.py
def pytest_generate_tests(metafunc):
if 'db' in metafunc.funcargnames:
metafunc.parametrize("db", ['d1', 'd2'], indirect=True)
class DB1:
"one database object"
class DB2:
"alternative database object"
def pytest_funcarg__db(request):
if request.param == "d1":
return DB1()
elif request.param == "d2":
return DB2()
else:
raise ValueError("invalid internal test config")
Let's first see how it looks like at collection time::
$ py.test test_backends.py --collectonly
=========================== test session starts ============================
platform linux2 -- Python 2.7.3 -- pytest-2.3.0.dev3
plugins: xdist, bugzilla, cache, oejskit, cli, pep8, cov
collecting ... collected 2 items
<Module 'test_backends.py'>
<Function 'test_db_initialized[d1]'>
<Function 'test_db_initialized[d2]'>
============================= in 0.02 seconds =============================
And then when we run the test::
$ py.test -q test_backends.py
collecting ... collected 2 items
.F
================================= FAILURES =================================
_________________________ test_db_initialized[d2] __________________________
db = <conftest.DB2 instance at 0x26bcea8>
def test_db_initialized(db):
# a dummy test
if db.__class__.__name__ == "DB2":
> pytest.fail("deliberately failing for demo purposes")
E Failed: deliberately failing for demo purposes
test_backends.py:6: Failed
1 failed, 1 passed in 0.02 seconds
The first invocation with ``db == "DB1"`` passed while the second with ``db == "DB2"`` failed. Our ``pytest_funcarg__db`` factory has instantiated each of the DB values during the setup phase while the ``pytest_generate_tests`` generated two according calls to the ``test_db_initialized`` during the collection phase.
.. regendoc:wipe
Parametrizing test methods through per-class configuration
--------------------------------------------------------------
.. _`unittest parameterizer`: http://code.google.com/p/unittest-ext/source/browse/trunk/params.py
Here is an example ``pytest_generate_function`` function implementing a
parametrization scheme similar to Michael Foord's `unittest
parameterizer`_ but in a lot less code::
# content of ./test_parametrize.py
import pytest
def pytest_generate_tests(metafunc):
# called once per each test function
funcarglist = metafunc.cls.params[metafunc.function.__name__]
argnames = list(funcarglist[0])
metafunc.parametrize(argnames, [[funcargs[name] for name in argnames]
for funcargs in funcarglist])
class TestClass:
# a map specifying multiple argument sets for a test method
params = {
'test_equals': [dict(a=1, b=2), dict(a=3, b=3), ],
'test_zerodivision': [dict(a=1, b=0), ],
}
def test_equals(self, a, b):
assert a == b
def test_zerodivision(self, a, b):
pytest.raises(ZeroDivisionError, "a/b")
Our test generator looks up a class-level definition which specifies which
argument sets to use for each test function. Let's run it::
$ py.test -q
collecting ... collected 3 items
F..
================================= FAILURES =================================
________________________ TestClass.test_equals[1-2] ________________________
self = <test_parametrize.TestClass instance at 0x2fa9050>, a = 1, b = 2
def test_equals(self, a, b):
> assert a == b
E assert 1 == 2
test_parametrize.py:18: AssertionError
1 failed, 2 passed in 0.02 seconds
Indirect parametrization with multiple resources
--------------------------------------------------------------
Here is a stripped down real-life example of using parametrized
testing for testing serialization, invoking different python interpreters.
We define a ``test_basic_objects`` function which is to be run
with different sets of arguments for its three arguments:
* ``python1``: first python interpreter, run to pickle-dump an object to a file
* ``python2``: second interpreter, run to pickle-load an object from a file
* ``obj``: object to be dumped/loaded
.. literalinclude:: multipython.py
Running it results in some skips if we don't have all the python interpreters installed and otherwise runs all combinations (5 interpreters times 5 interpreters times 3 objects to serialize/deserialize)::
. $ py.test -rs -q multipython.py
collecting ... collected 75 items
............sss............sss............sss............ssssssssssssssssss
========================= short test summary info ==========================
SKIP [27] /home/hpk/p/pytest/doc/en/example/multipython.py:36: 'python2.8' not found
48 passed, 27 skipped in 1.70 seconds
.. regendoc:wipe
Grouping test execution by parameter
-----------------------------------------
By default pytest will execute test functions by executing all its parametrized invocations. If you rather want to group execution by parameter, you can
use something like the following ``conftest.py`` example. It uses
a parametrized "resource" object::
# content of conftest.py
def pytest_collection_modifyitems(items):
def cmp(item1, item2):
param1 = item1.callspec.getparam("resource")
param2 = item2.callspec.getparam("resource")
if param1 < param2:
return -1
elif param1 > param2:
return 1
return 0
items.sort(cmp=cmp)
def pytest_generate_tests(metafunc):
if "resource" in metafunc.funcargnames:
metafunc.parametrize("resource", [1,2], indirect=True)
class Resource:
def __init__(self, num):
self.num = num
def finalize(self):
print "finalize", self
def pytest_funcarg__resource(request):
return request.cached_setup(lambda: Resource(request.param),
teardown=lambda res: res.finalize(),
extrakey=request.param)
If you have a test file like this::
# content of test_resource.py
def test_hello(resource):
pass
def test_world(resource):
pass
class TestClass:
def test_method1(self, resource):
pass
def test_method2(self, resource):
pass
then a subsequent execution will order the running of tests by
parameter value::
$ py.test -v -s
=========================== test session starts ============================
platform linux2 -- Python 2.7.3 -- pytest-2.3.0.dev3 -- /home/hpk/venv/1/bin/python
cachedir: /home/hpk/tmp/doc-exec-340/.cache
plugins: xdist, bugzilla, cache, oejskit, cli, pep8, cov
collecting ... collected 8 items
test_resource.py:1: test_hello[1] PASSED
test_resource.py:4: test_world[1] PASSED
test_resource.py:8: TestClass.test_method1[1] PASSED
test_resource.py:10: TestClass.test_method2[1] PASSED
test_resource.py:1: test_hello[2] PASSED
test_resource.py:4: test_world[2] PASSED
test_resource.py:8: TestClass.test_method1[2] PASSED
test_resource.py:10: TestClass.test_method2[2] PASSED
========================= 8 passed in 0.03 seconds =========================
finalize <conftest.Resource instance at 0x2e7f878>
finalize <conftest.Resource instance at 0x2e7ddd0>
.. note::
Despite the per-session ordering the finalize() of the session-scoped
resource executes at the end of the whole test session. The life
cycle of the two parametrized instantiated resources will thus overlap.
One possible workaround is to make the resource instantiations be
aware of each other and teardown the other one before returning a new
resource. There are plans for future releases of pytest to offer an
out-of-the-box way to support session-ordering.