539 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
			
		
		
	
	
			539 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
| 
 | |
| .. _paramexamples:
 | |
| 
 | |
| Parametrizing tests
 | |
| =================================================
 | |
| 
 | |
| .. currentmodule:: _pytest.python
 | |
| 
 | |
| ``pytest`` allows to easily parametrize test functions.
 | |
| For basic docs, see :ref:`parametrize-basics`.
 | |
| 
 | |
| In the following we provide some examples using
 | |
| the builtin mechanisms.
 | |
| 
 | |
| Generating parameters combinations, depending on command line
 | |
| ----------------------------------------------------------------------------
 | |
| 
 | |
| .. regendoc:wipe
 | |
| 
 | |
| Let's say we want to execute a test with different computation
 | |
| parameters and the parameter range shall be determined by a command
 | |
| line argument.  Let's first write a simple (do-nothing) computation test::
 | |
| 
 | |
|     # content of test_compute.py
 | |
| 
 | |
|     def test_compute(param1):
 | |
|         assert param1 < 4
 | |
| 
 | |
| Now we add a test configuration like this::
 | |
| 
 | |
|     # content of conftest.py
 | |
| 
 | |
|     def pytest_addoption(parser):
 | |
|         parser.addoption("--all", action="store_true",
 | |
|             help="run all combinations")
 | |
| 
 | |
|     def pytest_generate_tests(metafunc):
 | |
|         if 'param1' in metafunc.fixturenames:
 | |
|             if metafunc.config.getoption('all'):
 | |
|                 end = 5
 | |
|             else:
 | |
|                 end = 2
 | |
|             metafunc.parametrize("param1", range(end))
 | |
| 
 | |
| This means that we only run 2 tests if we do not pass ``--all``::
 | |
| 
 | |
|     $ pytest -q test_compute.py
 | |
|     ..                                                                   [100%]
 | |
|     2 passed in 0.12 seconds
 | |
| 
 | |
| We run only two computations, so we see two dots.
 | |
| let's run the full monty::
 | |
| 
 | |
|     $ pytest -q --all
 | |
|     ....F                                                                [100%]
 | |
|     ================================= FAILURES =================================
 | |
|     _____________________________ test_compute[4] ______________________________
 | |
| 
 | |
|     param1 = 4
 | |
| 
 | |
|         def test_compute(param1):
 | |
|     >       assert param1 < 4
 | |
|     E       assert 4 < 4
 | |
| 
 | |
|     test_compute.py:3: AssertionError
 | |
|     1 failed, 4 passed in 0.12 seconds
 | |
| 
 | |
| As expected when running the full range of ``param1`` values
 | |
| we'll get an error on the last one.
 | |
| 
 | |
| 
 | |
| Different options for test IDs
 | |
| ------------------------------------
 | |
| 
 | |
| pytest will build a string that is the test ID for each set of values in a
 | |
| parametrized test. These IDs can be used with ``-k`` to select specific cases
 | |
| to run, and they will also identify the specific case when one is failing.
 | |
| Running pytest with ``--collect-only`` will show the generated IDs.
 | |
| 
 | |
| Numbers, strings, booleans and None will have their usual string representation
 | |
| used in the test ID. For other objects, pytest will make a string based on
 | |
| the argument name::
 | |
| 
 | |
|     # content of test_time.py
 | |
| 
 | |
|     import pytest
 | |
| 
 | |
|     from datetime import datetime, timedelta
 | |
| 
 | |
|     testdata = [
 | |
|         (datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1)),
 | |
|         (datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1)),
 | |
|     ]
 | |
| 
 | |
| 
 | |
|     @pytest.mark.parametrize("a,b,expected", testdata)
 | |
|     def test_timedistance_v0(a, b, expected):
 | |
|         diff = a - b
 | |
|         assert diff == expected
 | |
| 
 | |
| 
 | |
|     @pytest.mark.parametrize("a,b,expected", testdata, ids=["forward", "backward"])
 | |
|     def test_timedistance_v1(a, b, expected):
 | |
|         diff = a - b
 | |
|         assert diff == expected
 | |
| 
 | |
| 
 | |
|     def idfn(val):
 | |
|         if isinstance(val, (datetime,)):
 | |
|             # note this wouldn't show any hours/minutes/seconds
 | |
|             return val.strftime('%Y%m%d')
 | |
| 
 | |
| 
 | |
|     @pytest.mark.parametrize("a,b,expected", testdata, ids=idfn)
 | |
|     def test_timedistance_v2(a, b, expected):
 | |
|         diff = a - b
 | |
|         assert diff == expected
 | |
| 
 | |
|     @pytest.mark.parametrize("a,b,expected", [
 | |
|         pytest.param(datetime(2001, 12, 12), datetime(2001, 12, 11),
 | |
|                      timedelta(1), id='forward'),
 | |
|         pytest.param(datetime(2001, 12, 11), datetime(2001, 12, 12),
 | |
|                      timedelta(-1), id='backward'),
 | |
|     ])
 | |
|     def test_timedistance_v3(a, b, expected):
 | |
|         diff = a - b
 | |
|         assert diff == expected
 | |
| 
 | |
| In ``test_timedistance_v0``, we let pytest generate the test IDs.
 | |
| 
 | |
| In ``test_timedistance_v1``, we specified ``ids`` as a list of strings which were
 | |
| used as the test IDs. These are succinct, but can be a pain to maintain.
 | |
| 
 | |
| In ``test_timedistance_v2``, we specified ``ids`` as a function that can generate a
 | |
| string representation to make part of the test ID. So our ``datetime`` values use the
 | |
| label generated by ``idfn``, but because we didn't generate a label for ``timedelta``
 | |
| objects, they are still using the default pytest representation::
 | |
| 
 | |
| 
 | |
|     $ pytest test_time.py --collect-only
 | |
|     =========================== test session starts ============================
 | |
|     platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
 | |
|     rootdir: $REGENDOC_TMPDIR, inifile:
 | |
|     collected 8 items
 | |
|     <Module 'test_time.py'>
 | |
|       <Function 'test_timedistance_v0[a0-b0-expected0]'>
 | |
|       <Function 'test_timedistance_v0[a1-b1-expected1]'>
 | |
|       <Function 'test_timedistance_v1[forward]'>
 | |
|       <Function 'test_timedistance_v1[backward]'>
 | |
|       <Function 'test_timedistance_v2[20011212-20011211-expected0]'>
 | |
|       <Function 'test_timedistance_v2[20011211-20011212-expected1]'>
 | |
|       <Function 'test_timedistance_v3[forward]'>
 | |
|       <Function 'test_timedistance_v3[backward]'>
 | |
| 
 | |
|     ======================= no tests ran in 0.12 seconds =======================
 | |
| 
 | |
| In ``test_timedistance_v3``, we used ``pytest.param`` to specify the test IDs
 | |
| together with the actual data, instead of listing them separately.
 | |
| 
 | |
| A quick port of "testscenarios"
 | |
| ------------------------------------
 | |
| 
 | |
| .. _`test scenarios`: https://pypi.org/project/testscenarios/
 | |
| 
 | |
| Here is a quick port to run tests configured with `test scenarios`_,
 | |
| an add-on from Robert Collins for the standard unittest framework. We
 | |
| only have to work a bit to construct the correct arguments for pytest's
 | |
| :py:func:`Metafunc.parametrize`::
 | |
| 
 | |
|     # content of test_scenarios.py
 | |
| 
 | |
|     def pytest_generate_tests(metafunc):
 | |
|         idlist = []
 | |
|         argvalues = []
 | |
|         for scenario in metafunc.cls.scenarios:
 | |
|             idlist.append(scenario[0])
 | |
|             items = scenario[1].items()
 | |
|             argnames = [x[0] for x in items]
 | |
|             argvalues.append(([x[1] for x in items]))
 | |
|         metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class")
 | |
| 
 | |
|     scenario1 = ('basic', {'attribute': 'value'})
 | |
|     scenario2 = ('advanced', {'attribute': 'value2'})
 | |
| 
 | |
|     class TestSampleWithScenarios(object):
 | |
|         scenarios = [scenario1, scenario2]
 | |
| 
 | |
|         def test_demo1(self, attribute):
 | |
|             assert isinstance(attribute, str)
 | |
| 
 | |
|         def test_demo2(self, attribute):
 | |
|             assert isinstance(attribute, str)
 | |
| 
 | |
| this is a fully self-contained example which you can run with::
 | |
| 
 | |
|     $ pytest test_scenarios.py
 | |
|     =========================== test session starts ============================
 | |
|     platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
 | |
|     rootdir: $REGENDOC_TMPDIR, inifile:
 | |
|     collected 4 items
 | |
| 
 | |
|     test_scenarios.py ....                                               [100%]
 | |
| 
 | |
|     ========================= 4 passed in 0.12 seconds =========================
 | |
| 
 | |
| If you just collect tests you'll also nicely see 'advanced' and 'basic' as variants for the test function::
 | |
| 
 | |
| 
 | |
|     $ pytest --collect-only test_scenarios.py
 | |
|     =========================== test session starts ============================
 | |
|     platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
 | |
|     rootdir: $REGENDOC_TMPDIR, inifile:
 | |
|     collected 4 items
 | |
|     <Module 'test_scenarios.py'>
 | |
|       <Class 'TestSampleWithScenarios'>
 | |
|         <Instance '()'>
 | |
|           <Function 'test_demo1[basic]'>
 | |
|           <Function 'test_demo2[basic]'>
 | |
|           <Function 'test_demo1[advanced]'>
 | |
|           <Function 'test_demo2[advanced]'>
 | |
| 
 | |
|     ======================= no tests ran in 0.12 seconds =======================
 | |
| 
 | |
| Note that we told ``metafunc.parametrize()`` that your scenario values
 | |
| should be considered class-scoped.  With pytest-2.3 this leads to a
 | |
| resource-based ordering.
 | |
| 
 | |
| Deferring the setup of parametrized resources
 | |
| ---------------------------------------------------
 | |
| 
 | |
| .. regendoc:wipe
 | |
| 
 | |
| The parametrization of test functions happens at collection
 | |
| time.  It is a good idea to setup expensive resources like DB
 | |
| connections or subprocess only when the actual test is run.
 | |
| Here is a simple example how you can achieve that, first
 | |
| the actual test requiring a ``db`` object::
 | |
| 
 | |
|     # content of test_backends.py
 | |
| 
 | |
|     import pytest
 | |
|     def test_db_initialized(db):
 | |
|         # a dummy test
 | |
|         if db.__class__.__name__ == "DB2":
 | |
|             pytest.fail("deliberately failing for demo purposes")
 | |
| 
 | |
| We can now add a test configuration that generates two invocations of
 | |
| the ``test_db_initialized`` function and also implements a factory that
 | |
| creates a database object for the actual test invocations::
 | |
| 
 | |
|     # content of conftest.py
 | |
|     import pytest
 | |
| 
 | |
|     def pytest_generate_tests(metafunc):
 | |
|         if 'db' in metafunc.fixturenames:
 | |
|             metafunc.parametrize("db", ['d1', 'd2'], indirect=True)
 | |
| 
 | |
|     class DB1(object):
 | |
|         "one database object"
 | |
|     class DB2(object):
 | |
|         "alternative database object"
 | |
| 
 | |
|     @pytest.fixture
 | |
|     def db(request):
 | |
|         if request.param == "d1":
 | |
|             return DB1()
 | |
|         elif request.param == "d2":
 | |
|             return DB2()
 | |
|         else:
 | |
|             raise ValueError("invalid internal test config")
 | |
| 
 | |
| Let's first see how it looks like at collection time::
 | |
| 
 | |
|     $ pytest test_backends.py --collect-only
 | |
|     =========================== test session starts ============================
 | |
|     platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
 | |
|     rootdir: $REGENDOC_TMPDIR, inifile:
 | |
|     collected 2 items
 | |
|     <Module 'test_backends.py'>
 | |
|       <Function 'test_db_initialized[d1]'>
 | |
|       <Function 'test_db_initialized[d2]'>
 | |
| 
 | |
|     ======================= no tests ran in 0.12 seconds =======================
 | |
| 
 | |
| And then when we run the test::
 | |
| 
 | |
|     $ pytest -q test_backends.py
 | |
|     .F                                                                   [100%]
 | |
|     ================================= FAILURES =================================
 | |
|     _________________________ test_db_initialized[d2] __________________________
 | |
| 
 | |
|     db = <conftest.DB2 object at 0xdeadbeef>
 | |
| 
 | |
|         def test_db_initialized(db):
 | |
|             # a dummy test
 | |
|             if db.__class__.__name__ == "DB2":
 | |
|     >           pytest.fail("deliberately failing for demo purposes")
 | |
|     E           Failed: deliberately failing for demo purposes
 | |
| 
 | |
|     test_backends.py:6: Failed
 | |
|     1 failed, 1 passed in 0.12 seconds
 | |
| 
 | |
| The first invocation with ``db == "DB1"`` passed while the second with ``db == "DB2"`` failed.  Our ``db`` fixture function has instantiated each of the DB values during the setup phase while the ``pytest_generate_tests`` generated two according calls to the ``test_db_initialized`` during the collection phase.
 | |
| 
 | |
| .. regendoc:wipe
 | |
| 
 | |
| Apply indirect on particular arguments
 | |
| ---------------------------------------------------
 | |
| 
 | |
| Very often parametrization uses more than one argument name. There is opportunity to apply ``indirect``
 | |
| parameter on particular arguments. It can be done by passing list or tuple of
 | |
| arguments' names to ``indirect``. In the example below there is a function ``test_indirect`` which uses
 | |
| two fixtures: ``x`` and ``y``. Here we give to indirect the list, which contains the name of the
 | |
| fixture ``x``. The indirect parameter will be applied to this argument only, and the value ``a``
 | |
| will be passed to respective fixture function::
 | |
| 
 | |
|     # content of test_indirect_list.py
 | |
| 
 | |
|     import pytest
 | |
|     @pytest.fixture(scope='function')
 | |
|     def x(request):
 | |
|         return request.param * 3
 | |
| 
 | |
|     @pytest.fixture(scope='function')
 | |
|     def y(request):
 | |
|         return request.param * 2
 | |
| 
 | |
|     @pytest.mark.parametrize('x, y', [('a', 'b')], indirect=['x'])
 | |
|     def test_indirect(x,y):
 | |
|         assert x == 'aaa'
 | |
|         assert y == 'b'
 | |
| 
 | |
| The result of this test will be successful::
 | |
| 
 | |
|     $ pytest test_indirect_list.py --collect-only
 | |
|     =========================== test session starts ============================
 | |
|     platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
 | |
|     rootdir: $REGENDOC_TMPDIR, inifile:
 | |
|     collected 1 item
 | |
|     <Module 'test_indirect_list.py'>
 | |
|       <Function 'test_indirect[a-b]'>
 | |
| 
 | |
|     ======================= no tests ran in 0.12 seconds =======================
 | |
| 
 | |
| .. regendoc:wipe
 | |
| 
 | |
| Parametrizing test methods through per-class configuration
 | |
| --------------------------------------------------------------
 | |
| 
 | |
| .. _`unittest parametrizer`: https://github.com/testing-cabal/unittest-ext/blob/master/params.py
 | |
| 
 | |
| 
 | |
| Here is an example ``pytest_generate_tests`` function implementing a
 | |
| parametrization scheme similar to Michael Foord's `unittest
 | |
| parametrizer`_ but in a lot less code::
 | |
| 
 | |
|     # content of ./test_parametrize.py
 | |
|     import pytest
 | |
| 
 | |
|     def pytest_generate_tests(metafunc):
 | |
|         # called once per each test function
 | |
|         funcarglist = metafunc.cls.params[metafunc.function.__name__]
 | |
|         argnames = sorted(funcarglist[0])
 | |
|         metafunc.parametrize(argnames, [[funcargs[name] for name in argnames]
 | |
|                 for funcargs in funcarglist])
 | |
| 
 | |
|     class TestClass(object):
 | |
|         # a map specifying multiple argument sets for a test method
 | |
|         params = {
 | |
|             'test_equals': [dict(a=1, b=2), dict(a=3, b=3), ],
 | |
|             'test_zerodivision': [dict(a=1, b=0), ],
 | |
|         }
 | |
| 
 | |
|         def test_equals(self, a, b):
 | |
|             assert a == b
 | |
| 
 | |
|         def test_zerodivision(self, a, b):
 | |
|             pytest.raises(ZeroDivisionError, "a/b")
 | |
| 
 | |
| Our test generator looks up a class-level definition which specifies which
 | |
| argument sets to use for each test function.  Let's run it::
 | |
| 
 | |
|     $ pytest -q
 | |
|     F..                                                                  [100%]
 | |
|     ================================= FAILURES =================================
 | |
|     ________________________ TestClass.test_equals[1-2] ________________________
 | |
| 
 | |
|     self = <test_parametrize.TestClass object at 0xdeadbeef>, a = 1, b = 2
 | |
| 
 | |
|         def test_equals(self, a, b):
 | |
|     >       assert a == b
 | |
|     E       assert 1 == 2
 | |
| 
 | |
|     test_parametrize.py:18: AssertionError
 | |
|     1 failed, 2 passed in 0.12 seconds
 | |
| 
 | |
| Indirect parametrization with multiple fixtures
 | |
| --------------------------------------------------------------
 | |
| 
 | |
| Here is a stripped down real-life example of using parametrized
 | |
| testing for testing serialization of objects between different python
 | |
| interpreters.  We define a ``test_basic_objects`` function which
 | |
| is to be run with different sets of arguments for its three arguments:
 | |
| 
 | |
| * ``python1``: first python interpreter, run to pickle-dump an object to a file
 | |
| * ``python2``: second interpreter, run to pickle-load an object from a file
 | |
| * ``obj``: object to be dumped/loaded
 | |
| 
 | |
| .. literalinclude:: multipython.py
 | |
| 
 | |
| Running it results in some skips if we don't have all the python interpreters installed and otherwise runs all combinations (5 interpreters times 5 interpreters times 3 objects to serialize/deserialize)::
 | |
| 
 | |
|    . $ pytest -rs -q multipython.py
 | |
|    ...sss...sssssssss...sss...                                          [100%]
 | |
|    ========================= short test summary info ==========================
 | |
|    SKIP [15] $REGENDOC_TMPDIR/CWD/multipython.py:30: 'python3.4' not found
 | |
|    12 passed, 15 skipped in 0.12 seconds
 | |
| 
 | |
| Indirect parametrization of optional implementations/imports
 | |
| --------------------------------------------------------------------
 | |
| 
 | |
| If you want to compare the outcomes of several implementations of a given
 | |
| API, you can write test functions that receive the already imported implementations
 | |
| and get skipped in case the implementation is not importable/available.  Let's
 | |
| say we have a "base" implementation and the other (possibly optimized ones)
 | |
| need to provide similar results::
 | |
| 
 | |
|     # content of conftest.py
 | |
| 
 | |
|     import pytest
 | |
| 
 | |
|     @pytest.fixture(scope="session")
 | |
|     def basemod(request):
 | |
|         return pytest.importorskip("base")
 | |
| 
 | |
|     @pytest.fixture(scope="session", params=["opt1", "opt2"])
 | |
|     def optmod(request):
 | |
|         return pytest.importorskip(request.param)
 | |
| 
 | |
| And then a base implementation of a simple function::
 | |
| 
 | |
|     # content of base.py
 | |
|     def func1():
 | |
|         return 1
 | |
| 
 | |
| And an optimized version::
 | |
| 
 | |
|     # content of opt1.py
 | |
|     def func1():
 | |
|         return 1.0001
 | |
| 
 | |
| And finally a little test module::
 | |
| 
 | |
|     # content of test_module.py
 | |
| 
 | |
|     def test_func1(basemod, optmod):
 | |
|         assert round(basemod.func1(), 3) == round(optmod.func1(), 3)
 | |
| 
 | |
| 
 | |
| If you run this with reporting for skips enabled::
 | |
| 
 | |
|     $ pytest -rs test_module.py
 | |
|     =========================== test session starts ============================
 | |
|     platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
 | |
|     rootdir: $REGENDOC_TMPDIR, inifile:
 | |
|     collected 2 items
 | |
| 
 | |
|     test_module.py .s                                                    [100%]
 | |
|     ========================= short test summary info ==========================
 | |
|     SKIP [1] $REGENDOC_TMPDIR/conftest.py:11: could not import 'opt2'
 | |
| 
 | |
|     =================== 1 passed, 1 skipped in 0.12 seconds ====================
 | |
| 
 | |
| You'll see that we don't have an ``opt2`` module and thus the second test run
 | |
| of our ``test_func1`` was skipped.  A few notes:
 | |
| 
 | |
| - the fixture functions in the ``conftest.py`` file are "session-scoped" because we
 | |
|   don't need to import more than once
 | |
| 
 | |
| - if you have multiple test functions and a skipped import, you will see
 | |
|   the ``[1]`` count increasing in the report
 | |
| 
 | |
| - you can put :ref:`@pytest.mark.parametrize <@pytest.mark.parametrize>` style
 | |
|   parametrization on the test functions to parametrize input/output
 | |
|   values as well.
 | |
| 
 | |
| 
 | |
| Set marks or test ID for individual parametrized test
 | |
| --------------------------------------------------------------------
 | |
| 
 | |
| Use ``pytest.param`` to apply marks or set test ID to individual parametrized test.
 | |
| For example::
 | |
| 
 | |
|     # content of test_pytest_param_example.py
 | |
|     import pytest
 | |
|     @pytest.mark.parametrize('test_input,expected', [
 | |
|         ('3+5', 8),
 | |
|         pytest.param('1+7', 8,
 | |
|                      marks=pytest.mark.basic),
 | |
|         pytest.param('2+4', 6,
 | |
|                      marks=pytest.mark.basic,
 | |
|                      id='basic_2+4'),
 | |
|         pytest.param('6*9', 42,
 | |
|                      marks=[pytest.mark.basic, pytest.mark.xfail],
 | |
|                      id='basic_6*9'),
 | |
|     ])
 | |
|     def test_eval(test_input, expected):
 | |
|         assert eval(test_input) == expected
 | |
| 
 | |
| In this example, we have 4 parametrized tests. Except for the first test,
 | |
| we mark the rest three parametrized tests with the custom marker ``basic``,
 | |
| and for the fourth test we also use the built-in mark ``xfail`` to indicate this
 | |
| test is expected to fail. For explicitness, we set test ids for some tests.
 | |
| 
 | |
| Then run ``pytest`` with verbose mode and with only the ``basic`` marker::
 | |
| 
 | |
|     pytest -v -m basic
 | |
|     ============================================ test session starts =============================================
 | |
|     platform linux -- Python 3.x.y, pytest-3.x.y, py-1.x.y, pluggy-0.x.y
 | |
|     rootdir: $REGENDOC_TMPDIR, inifile:
 | |
|     collected 4 items
 | |
| 
 | |
|     test_pytest_param_example.py::test_eval[1+7-8] PASSED
 | |
|     test_pytest_param_example.py::test_eval[basic_2+4] PASSED
 | |
|     test_pytest_param_example.py::test_eval[basic_6*9] xfail
 | |
|     ========================================== short test summary info ===========================================
 | |
|     XFAIL test_pytest_param_example.py::test_eval[basic_6*9]
 | |
| 
 | |
|     ============================================= 1 tests deselected =============================================
 | |
| 
 | |
| As the result:
 | |
| 
 | |
| - Four tests were collected
 | |
| - One test was deselected because it doesn't have the ``basic`` mark.
 | |
| - Three tests with the ``basic`` mark was selected.
 | |
| - The test ``test_eval[1+7-8]`` passed, but the name is autogenerated and confusing.
 | |
| - The test ``test_eval[basic_2+4]`` passed.
 | |
| - The test ``test_eval[basic_6*9]`` was expected to fail and did fail.
 |