712 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
			
		
		
	
	
			712 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			ReStructuredText
		
	
	
	
 | 
						|
.. _paramexamples:
 | 
						|
 | 
						|
Parametrizing tests
 | 
						|
=================================================
 | 
						|
 | 
						|
.. currentmodule:: _pytest.python
 | 
						|
 | 
						|
``pytest`` allows to easily parametrize test functions.
 | 
						|
For basic docs, see :ref:`parametrize-basics`.
 | 
						|
 | 
						|
In the following we provide some examples using
 | 
						|
the builtin mechanisms.
 | 
						|
 | 
						|
Generating parameters combinations, depending on command line
 | 
						|
----------------------------------------------------------------------------
 | 
						|
 | 
						|
.. regendoc:wipe
 | 
						|
 | 
						|
Let's say we want to execute a test with different computation
 | 
						|
parameters and the parameter range shall be determined by a command
 | 
						|
line argument.  Let's first write a simple (do-nothing) computation test:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of test_compute.py
 | 
						|
 | 
						|
 | 
						|
    def test_compute(param1):
 | 
						|
        assert param1 < 4
 | 
						|
 | 
						|
Now we add a test configuration like this:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of conftest.py
 | 
						|
 | 
						|
 | 
						|
    def pytest_addoption(parser):
 | 
						|
        parser.addoption("--all", action="store_true", help="run all combinations")
 | 
						|
 | 
						|
 | 
						|
    def pytest_generate_tests(metafunc):
 | 
						|
        if "param1" in metafunc.fixturenames:
 | 
						|
            if metafunc.config.getoption("all"):
 | 
						|
                end = 5
 | 
						|
            else:
 | 
						|
                end = 2
 | 
						|
            metafunc.parametrize("param1", range(end))
 | 
						|
 | 
						|
This means that we only run 2 tests if we do not pass ``--all``:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest -q test_compute.py
 | 
						|
    ..                                                                   [100%]
 | 
						|
    2 passed in 0.12s
 | 
						|
 | 
						|
We run only two computations, so we see two dots.
 | 
						|
let's run the full monty:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest -q --all
 | 
						|
    ....F                                                                [100%]
 | 
						|
    ================================= FAILURES =================================
 | 
						|
    _____________________________ test_compute[4] ______________________________
 | 
						|
 | 
						|
    param1 = 4
 | 
						|
 | 
						|
        def test_compute(param1):
 | 
						|
    >       assert param1 < 4
 | 
						|
    E       assert 4 < 4
 | 
						|
 | 
						|
    test_compute.py:4: AssertionError
 | 
						|
    ========================= short test summary info ==========================
 | 
						|
    FAILED test_compute.py::test_compute[4] - assert 4 < 4
 | 
						|
    1 failed, 4 passed in 0.12s
 | 
						|
 | 
						|
As expected when running the full range of ``param1`` values
 | 
						|
we'll get an error on the last one.
 | 
						|
 | 
						|
 | 
						|
Different options for test IDs
 | 
						|
------------------------------------
 | 
						|
 | 
						|
pytest will build a string that is the test ID for each set of values in a
 | 
						|
parametrized test. These IDs can be used with ``-k`` to select specific cases
 | 
						|
to run, and they will also identify the specific case when one is failing.
 | 
						|
Running pytest with ``--collect-only`` will show the generated IDs.
 | 
						|
 | 
						|
Numbers, strings, booleans and None will have their usual string representation
 | 
						|
used in the test ID. For other objects, pytest will make a string based on
 | 
						|
the argument name:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of test_time.py
 | 
						|
 | 
						|
    import pytest
 | 
						|
 | 
						|
    from datetime import datetime, timedelta
 | 
						|
 | 
						|
    testdata = [
 | 
						|
        (datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1)),
 | 
						|
        (datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1)),
 | 
						|
    ]
 | 
						|
 | 
						|
 | 
						|
    @pytest.mark.parametrize("a,b,expected", testdata)
 | 
						|
    def test_timedistance_v0(a, b, expected):
 | 
						|
        diff = a - b
 | 
						|
        assert diff == expected
 | 
						|
 | 
						|
 | 
						|
    @pytest.mark.parametrize("a,b,expected", testdata, ids=["forward", "backward"])
 | 
						|
    def test_timedistance_v1(a, b, expected):
 | 
						|
        diff = a - b
 | 
						|
        assert diff == expected
 | 
						|
 | 
						|
 | 
						|
    def idfn(val):
 | 
						|
        if isinstance(val, (datetime,)):
 | 
						|
            # note this wouldn't show any hours/minutes/seconds
 | 
						|
            return val.strftime("%Y%m%d")
 | 
						|
 | 
						|
 | 
						|
    @pytest.mark.parametrize("a,b,expected", testdata, ids=idfn)
 | 
						|
    def test_timedistance_v2(a, b, expected):
 | 
						|
        diff = a - b
 | 
						|
        assert diff == expected
 | 
						|
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "a,b,expected",
 | 
						|
        [
 | 
						|
            pytest.param(
 | 
						|
                datetime(2001, 12, 12), datetime(2001, 12, 11), timedelta(1), id="forward"
 | 
						|
            ),
 | 
						|
            pytest.param(
 | 
						|
                datetime(2001, 12, 11), datetime(2001, 12, 12), timedelta(-1), id="backward"
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_timedistance_v3(a, b, expected):
 | 
						|
        diff = a - b
 | 
						|
        assert diff == expected
 | 
						|
 | 
						|
In ``test_timedistance_v0``, we let pytest generate the test IDs.
 | 
						|
 | 
						|
In ``test_timedistance_v1``, we specified ``ids`` as a list of strings which were
 | 
						|
used as the test IDs. These are succinct, but can be a pain to maintain.
 | 
						|
 | 
						|
In ``test_timedistance_v2``, we specified ``ids`` as a function that can generate a
 | 
						|
string representation to make part of the test ID. So our ``datetime`` values use the
 | 
						|
label generated by ``idfn``, but because we didn't generate a label for ``timedelta``
 | 
						|
objects, they are still using the default pytest representation:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest test_time.py --collect-only
 | 
						|
    =========================== test session starts ============================
 | 
						|
    platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y
 | 
						|
    cachedir: $PYTHON_PREFIX/.pytest_cache
 | 
						|
    rootdir: $REGENDOC_TMPDIR
 | 
						|
    collected 8 items
 | 
						|
    <Module test_time.py>
 | 
						|
      <Function test_timedistance_v0[a0-b0-expected0]>
 | 
						|
      <Function test_timedistance_v0[a1-b1-expected1]>
 | 
						|
      <Function test_timedistance_v1[forward]>
 | 
						|
      <Function test_timedistance_v1[backward]>
 | 
						|
      <Function test_timedistance_v2[20011212-20011211-expected0]>
 | 
						|
      <Function test_timedistance_v2[20011211-20011212-expected1]>
 | 
						|
      <Function test_timedistance_v3[forward]>
 | 
						|
      <Function test_timedistance_v3[backward]>
 | 
						|
 | 
						|
    ========================== no tests ran in 0.12s ===========================
 | 
						|
 | 
						|
In ``test_timedistance_v3``, we used ``pytest.param`` to specify the test IDs
 | 
						|
together with the actual data, instead of listing them separately.
 | 
						|
 | 
						|
A quick port of "testscenarios"
 | 
						|
------------------------------------
 | 
						|
 | 
						|
.. _`test scenarios`: https://pypi.org/project/testscenarios/
 | 
						|
 | 
						|
Here is a quick port to run tests configured with `test scenarios`_,
 | 
						|
an add-on from Robert Collins for the standard unittest framework. We
 | 
						|
only have to work a bit to construct the correct arguments for pytest's
 | 
						|
:py:func:`Metafunc.parametrize`:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of test_scenarios.py
 | 
						|
 | 
						|
 | 
						|
    def pytest_generate_tests(metafunc):
 | 
						|
        idlist = []
 | 
						|
        argvalues = []
 | 
						|
        for scenario in metafunc.cls.scenarios:
 | 
						|
            idlist.append(scenario[0])
 | 
						|
            items = scenario[1].items()
 | 
						|
            argnames = [x[0] for x in items]
 | 
						|
            argvalues.append([x[1] for x in items])
 | 
						|
        metafunc.parametrize(argnames, argvalues, ids=idlist, scope="class")
 | 
						|
 | 
						|
 | 
						|
    scenario1 = ("basic", {"attribute": "value"})
 | 
						|
    scenario2 = ("advanced", {"attribute": "value2"})
 | 
						|
 | 
						|
 | 
						|
    class TestSampleWithScenarios:
 | 
						|
        scenarios = [scenario1, scenario2]
 | 
						|
 | 
						|
        def test_demo1(self, attribute):
 | 
						|
            assert isinstance(attribute, str)
 | 
						|
 | 
						|
        def test_demo2(self, attribute):
 | 
						|
            assert isinstance(attribute, str)
 | 
						|
 | 
						|
this is a fully self-contained example which you can run with:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest test_scenarios.py
 | 
						|
    =========================== test session starts ============================
 | 
						|
    platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y
 | 
						|
    cachedir: $PYTHON_PREFIX/.pytest_cache
 | 
						|
    rootdir: $REGENDOC_TMPDIR
 | 
						|
    collected 4 items
 | 
						|
 | 
						|
    test_scenarios.py ....                                               [100%]
 | 
						|
 | 
						|
    ============================ 4 passed in 0.12s =============================
 | 
						|
 | 
						|
If you just collect tests you'll also nicely see 'advanced' and 'basic' as variants for the test function:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest --collect-only test_scenarios.py
 | 
						|
    =========================== test session starts ============================
 | 
						|
    platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y
 | 
						|
    cachedir: $PYTHON_PREFIX/.pytest_cache
 | 
						|
    rootdir: $REGENDOC_TMPDIR
 | 
						|
    collected 4 items
 | 
						|
    <Module test_scenarios.py>
 | 
						|
      <Class TestSampleWithScenarios>
 | 
						|
          <Function test_demo1[basic]>
 | 
						|
          <Function test_demo2[basic]>
 | 
						|
          <Function test_demo1[advanced]>
 | 
						|
          <Function test_demo2[advanced]>
 | 
						|
 | 
						|
    ========================== no tests ran in 0.12s ===========================
 | 
						|
 | 
						|
Note that we told ``metafunc.parametrize()`` that your scenario values
 | 
						|
should be considered class-scoped.  With pytest-2.3 this leads to a
 | 
						|
resource-based ordering.
 | 
						|
 | 
						|
Deferring the setup of parametrized resources
 | 
						|
---------------------------------------------------
 | 
						|
 | 
						|
.. regendoc:wipe
 | 
						|
 | 
						|
The parametrization of test functions happens at collection
 | 
						|
time.  It is a good idea to setup expensive resources like DB
 | 
						|
connections or subprocess only when the actual test is run.
 | 
						|
Here is a simple example how you can achieve that. This test
 | 
						|
requires a ``db`` object fixture:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of test_backends.py
 | 
						|
 | 
						|
    import pytest
 | 
						|
 | 
						|
 | 
						|
    def test_db_initialized(db):
 | 
						|
        # a dummy test
 | 
						|
        if db.__class__.__name__ == "DB2":
 | 
						|
            pytest.fail("deliberately failing for demo purposes")
 | 
						|
 | 
						|
We can now add a test configuration that generates two invocations of
 | 
						|
the ``test_db_initialized`` function and also implements a factory that
 | 
						|
creates a database object for the actual test invocations:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of conftest.py
 | 
						|
    import pytest
 | 
						|
 | 
						|
 | 
						|
    def pytest_generate_tests(metafunc):
 | 
						|
        if "db" in metafunc.fixturenames:
 | 
						|
            metafunc.parametrize("db", ["d1", "d2"], indirect=True)
 | 
						|
 | 
						|
 | 
						|
    class DB1:
 | 
						|
        "one database object"
 | 
						|
 | 
						|
 | 
						|
    class DB2:
 | 
						|
        "alternative database object"
 | 
						|
 | 
						|
 | 
						|
    @pytest.fixture
 | 
						|
    def db(request):
 | 
						|
        if request.param == "d1":
 | 
						|
            return DB1()
 | 
						|
        elif request.param == "d2":
 | 
						|
            return DB2()
 | 
						|
        else:
 | 
						|
            raise ValueError("invalid internal test config")
 | 
						|
 | 
						|
Let's first see how it looks like at collection time:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest test_backends.py --collect-only
 | 
						|
    =========================== test session starts ============================
 | 
						|
    platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y
 | 
						|
    cachedir: $PYTHON_PREFIX/.pytest_cache
 | 
						|
    rootdir: $REGENDOC_TMPDIR
 | 
						|
    collected 2 items
 | 
						|
    <Module test_backends.py>
 | 
						|
      <Function test_db_initialized[d1]>
 | 
						|
      <Function test_db_initialized[d2]>
 | 
						|
 | 
						|
    ========================== no tests ran in 0.12s ===========================
 | 
						|
 | 
						|
And then when we run the test:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest -q test_backends.py
 | 
						|
    .F                                                                   [100%]
 | 
						|
    ================================= FAILURES =================================
 | 
						|
    _________________________ test_db_initialized[d2] __________________________
 | 
						|
 | 
						|
    db = <conftest.DB2 object at 0xdeadbeef>
 | 
						|
 | 
						|
        def test_db_initialized(db):
 | 
						|
            # a dummy test
 | 
						|
            if db.__class__.__name__ == "DB2":
 | 
						|
    >           pytest.fail("deliberately failing for demo purposes")
 | 
						|
    E           Failed: deliberately failing for demo purposes
 | 
						|
 | 
						|
    test_backends.py:8: Failed
 | 
						|
    ========================= short test summary info ==========================
 | 
						|
    FAILED test_backends.py::test_db_initialized[d2] - Failed: deliberately f...
 | 
						|
    1 failed, 1 passed in 0.12s
 | 
						|
 | 
						|
The first invocation with ``db == "DB1"`` passed while the second with ``db == "DB2"`` failed.  Our ``db`` fixture function has instantiated each of the DB values during the setup phase while the ``pytest_generate_tests`` generated two according calls to the ``test_db_initialized`` during the collection phase.
 | 
						|
 | 
						|
Indirect parametrization
 | 
						|
---------------------------------------------------
 | 
						|
 | 
						|
Using the ``indirect=True`` parameter when parametrizing a test allows to
 | 
						|
parametrize a test with a fixture receiving the values before passing them to a
 | 
						|
test:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    import pytest
 | 
						|
 | 
						|
 | 
						|
    @pytest.fixture
 | 
						|
    def fixt(request):
 | 
						|
        return request.param * 3
 | 
						|
 | 
						|
 | 
						|
    @pytest.mark.parametrize("fixt", ["a", "b"], indirect=True)
 | 
						|
    def test_indirect(fixt):
 | 
						|
        assert len(fixt) == 3
 | 
						|
 | 
						|
This can be used, for example, to do more expensive setup at test run time in
 | 
						|
the fixture, rather than having to run those setup steps at collection time.
 | 
						|
 | 
						|
.. regendoc:wipe
 | 
						|
 | 
						|
Apply indirect on particular arguments
 | 
						|
---------------------------------------------------
 | 
						|
 | 
						|
Very often parametrization uses more than one argument name. There is opportunity to apply ``indirect``
 | 
						|
parameter on particular arguments. It can be done by passing list or tuple of
 | 
						|
arguments' names to ``indirect``. In the example below there is a function ``test_indirect`` which uses
 | 
						|
two fixtures: ``x`` and ``y``. Here we give to indirect the list, which contains the name of the
 | 
						|
fixture ``x``. The indirect parameter will be applied to this argument only, and the value ``a``
 | 
						|
will be passed to respective fixture function:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of test_indirect_list.py
 | 
						|
 | 
						|
    import pytest
 | 
						|
 | 
						|
 | 
						|
    @pytest.fixture(scope="function")
 | 
						|
    def x(request):
 | 
						|
        return request.param * 3
 | 
						|
 | 
						|
 | 
						|
    @pytest.fixture(scope="function")
 | 
						|
    def y(request):
 | 
						|
        return request.param * 2
 | 
						|
 | 
						|
 | 
						|
    @pytest.mark.parametrize("x, y", [("a", "b")], indirect=["x"])
 | 
						|
    def test_indirect(x, y):
 | 
						|
        assert x == "aaa"
 | 
						|
        assert y == "b"
 | 
						|
 | 
						|
The result of this test will be successful:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest -v test_indirect_list.py
 | 
						|
    =========================== test session starts ============================
 | 
						|
    platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y
 | 
						|
    cachedir: $PYTHON_PREFIX/.pytest_cache
 | 
						|
    rootdir: $REGENDOC_TMPDIR
 | 
						|
    collected 1 item
 | 
						|
 | 
						|
    test_indirect_list.py::test_indirect[a-b] PASSED
 | 
						|
 | 
						|
    ========================== 1 passed in 0.01s ===============================
 | 
						|
 | 
						|
 | 
						|
.. regendoc:wipe
 | 
						|
 | 
						|
Parametrizing test methods through per-class configuration
 | 
						|
--------------------------------------------------------------
 | 
						|
 | 
						|
.. _`unittest parametrizer`: https://github.com/testing-cabal/unittest-ext/blob/master/params.py
 | 
						|
 | 
						|
 | 
						|
Here is an example ``pytest_generate_tests`` function implementing a
 | 
						|
parametrization scheme similar to Michael Foord's `unittest
 | 
						|
parametrizer`_ but in a lot less code:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of ./test_parametrize.py
 | 
						|
    import pytest
 | 
						|
 | 
						|
 | 
						|
    def pytest_generate_tests(metafunc):
 | 
						|
        # called once per each test function
 | 
						|
        funcarglist = metafunc.cls.params[metafunc.function.__name__]
 | 
						|
        argnames = sorted(funcarglist[0])
 | 
						|
        metafunc.parametrize(
 | 
						|
            argnames, [[funcargs[name] for name in argnames] for funcargs in funcarglist]
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
    class TestClass:
 | 
						|
        # a map specifying multiple argument sets for a test method
 | 
						|
        params = {
 | 
						|
            "test_equals": [dict(a=1, b=2), dict(a=3, b=3)],
 | 
						|
            "test_zerodivision": [dict(a=1, b=0)],
 | 
						|
        }
 | 
						|
 | 
						|
        def test_equals(self, a, b):
 | 
						|
            assert a == b
 | 
						|
 | 
						|
        def test_zerodivision(self, a, b):
 | 
						|
            with pytest.raises(ZeroDivisionError):
 | 
						|
                a / b
 | 
						|
 | 
						|
Our test generator looks up a class-level definition which specifies which
 | 
						|
argument sets to use for each test function.  Let's run it:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest -q
 | 
						|
    F..                                                                  [100%]
 | 
						|
    ================================= FAILURES =================================
 | 
						|
    ________________________ TestClass.test_equals[1-2] ________________________
 | 
						|
 | 
						|
    self = <test_parametrize.TestClass object at 0xdeadbeef>, a = 1, b = 2
 | 
						|
 | 
						|
        def test_equals(self, a, b):
 | 
						|
    >       assert a == b
 | 
						|
    E       assert 1 == 2
 | 
						|
 | 
						|
    test_parametrize.py:21: AssertionError
 | 
						|
    ========================= short test summary info ==========================
 | 
						|
    FAILED test_parametrize.py::TestClass::test_equals[1-2] - assert 1 == 2
 | 
						|
    1 failed, 2 passed in 0.12s
 | 
						|
 | 
						|
Indirect parametrization with multiple fixtures
 | 
						|
--------------------------------------------------------------
 | 
						|
 | 
						|
Here is a stripped down real-life example of using parametrized
 | 
						|
testing for testing serialization of objects between different python
 | 
						|
interpreters.  We define a ``test_basic_objects`` function which
 | 
						|
is to be run with different sets of arguments for its three arguments:
 | 
						|
 | 
						|
* ``python1``: first python interpreter, run to pickle-dump an object to a file
 | 
						|
* ``python2``: second interpreter, run to pickle-load an object from a file
 | 
						|
* ``obj``: object to be dumped/loaded
 | 
						|
 | 
						|
.. literalinclude:: multipython.py
 | 
						|
 | 
						|
Running it results in some skips if we don't have all the python interpreters installed and otherwise runs all combinations (3 interpreters times 3 interpreters times 3 objects to serialize/deserialize):
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
   . $ pytest -rs -q multipython.py
 | 
						|
   ssssssssssss......sss......                                          [100%]
 | 
						|
   ========================= short test summary info ==========================
 | 
						|
   SKIPPED [15] $REGENDOC_TMPDIR/CWD/multipython.py:29: 'python3.5' not found
 | 
						|
   12 passed, 15 skipped in 0.12s
 | 
						|
 | 
						|
Indirect parametrization of optional implementations/imports
 | 
						|
--------------------------------------------------------------------
 | 
						|
 | 
						|
If you want to compare the outcomes of several implementations of a given
 | 
						|
API, you can write test functions that receive the already imported implementations
 | 
						|
and get skipped in case the implementation is not importable/available.  Let's
 | 
						|
say we have a "base" implementation and the other (possibly optimized ones)
 | 
						|
need to provide similar results:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of conftest.py
 | 
						|
 | 
						|
    import pytest
 | 
						|
 | 
						|
 | 
						|
    @pytest.fixture(scope="session")
 | 
						|
    def basemod(request):
 | 
						|
        return pytest.importorskip("base")
 | 
						|
 | 
						|
 | 
						|
    @pytest.fixture(scope="session", params=["opt1", "opt2"])
 | 
						|
    def optmod(request):
 | 
						|
        return pytest.importorskip(request.param)
 | 
						|
 | 
						|
And then a base implementation of a simple function:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of base.py
 | 
						|
    def func1():
 | 
						|
        return 1
 | 
						|
 | 
						|
And an optimized version:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of opt1.py
 | 
						|
    def func1():
 | 
						|
        return 1.0001
 | 
						|
 | 
						|
And finally a little test module:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of test_module.py
 | 
						|
 | 
						|
 | 
						|
    def test_func1(basemod, optmod):
 | 
						|
        assert round(basemod.func1(), 3) == round(optmod.func1(), 3)
 | 
						|
 | 
						|
 | 
						|
If you run this with reporting for skips enabled:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest -rs test_module.py
 | 
						|
    =========================== test session starts ============================
 | 
						|
    platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y
 | 
						|
    cachedir: $PYTHON_PREFIX/.pytest_cache
 | 
						|
    rootdir: $REGENDOC_TMPDIR
 | 
						|
    collected 2 items
 | 
						|
 | 
						|
    test_module.py .s                                                    [100%]
 | 
						|
 | 
						|
    ========================= short test summary info ==========================
 | 
						|
    SKIPPED [1] $REGENDOC_TMPDIR/conftest.py:12: could not import 'opt2': No module named 'opt2'
 | 
						|
    ======================= 1 passed, 1 skipped in 0.12s =======================
 | 
						|
 | 
						|
You'll see that we don't have an ``opt2`` module and thus the second test run
 | 
						|
of our ``test_func1`` was skipped.  A few notes:
 | 
						|
 | 
						|
- the fixture functions in the ``conftest.py`` file are "session-scoped" because we
 | 
						|
  don't need to import more than once
 | 
						|
 | 
						|
- if you have multiple test functions and a skipped import, you will see
 | 
						|
  the ``[1]`` count increasing in the report
 | 
						|
 | 
						|
- you can put :ref:`@pytest.mark.parametrize <@pytest.mark.parametrize>` style
 | 
						|
  parametrization on the test functions to parametrize input/output
 | 
						|
  values as well.
 | 
						|
 | 
						|
 | 
						|
Set marks or test ID for individual parametrized test
 | 
						|
--------------------------------------------------------------------
 | 
						|
 | 
						|
Use ``pytest.param`` to apply marks or set test ID to individual parametrized test.
 | 
						|
For example:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    # content of test_pytest_param_example.py
 | 
						|
    import pytest
 | 
						|
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "test_input,expected",
 | 
						|
        [
 | 
						|
            ("3+5", 8),
 | 
						|
            pytest.param("1+7", 8, marks=pytest.mark.basic),
 | 
						|
            pytest.param("2+4", 6, marks=pytest.mark.basic, id="basic_2+4"),
 | 
						|
            pytest.param(
 | 
						|
                "6*9", 42, marks=[pytest.mark.basic, pytest.mark.xfail], id="basic_6*9"
 | 
						|
            ),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_eval(test_input, expected):
 | 
						|
        assert eval(test_input) == expected
 | 
						|
 | 
						|
In this example, we have 4 parametrized tests. Except for the first test,
 | 
						|
we mark the rest three parametrized tests with the custom marker ``basic``,
 | 
						|
and for the fourth test we also use the built-in mark ``xfail`` to indicate this
 | 
						|
test is expected to fail. For explicitness, we set test ids for some tests.
 | 
						|
 | 
						|
Then run ``pytest`` with verbose mode and with only the ``basic`` marker:
 | 
						|
 | 
						|
.. code-block:: pytest
 | 
						|
 | 
						|
    $ pytest -v -m basic
 | 
						|
    =========================== test session starts ============================
 | 
						|
    platform linux -- Python 3.x.y, pytest-5.x.y, py-1.x.y, pluggy-0.x.y -- $PYTHON_PREFIX/bin/python
 | 
						|
    cachedir: $PYTHON_PREFIX/.pytest_cache
 | 
						|
    rootdir: $REGENDOC_TMPDIR
 | 
						|
    collecting ... collected 14 items / 11 deselected / 3 selected
 | 
						|
 | 
						|
    test_pytest_param_example.py::test_eval[1+7-8] PASSED                [ 33%]
 | 
						|
    test_pytest_param_example.py::test_eval[basic_2+4] PASSED            [ 66%]
 | 
						|
    test_pytest_param_example.py::test_eval[basic_6*9] XFAIL             [100%]
 | 
						|
 | 
						|
    =============== 2 passed, 11 deselected, 1 xfailed in 0.12s ================
 | 
						|
 | 
						|
As the result:
 | 
						|
 | 
						|
- Four tests were collected
 | 
						|
- One test was deselected because it doesn't have the ``basic`` mark.
 | 
						|
- Three tests with the ``basic`` mark was selected.
 | 
						|
- The test ``test_eval[1+7-8]`` passed, but the name is autogenerated and confusing.
 | 
						|
- The test ``test_eval[basic_2+4]`` passed.
 | 
						|
- The test ``test_eval[basic_6*9]`` was expected to fail and did fail.
 | 
						|
 | 
						|
.. _`parametrizing_conditional_raising`:
 | 
						|
 | 
						|
Parametrizing conditional raising
 | 
						|
--------------------------------------------------------------------
 | 
						|
 | 
						|
Use :func:`pytest.raises` with the
 | 
						|
:ref:`pytest.mark.parametrize ref` decorator to write parametrized tests
 | 
						|
in which some tests raise exceptions and others do not.
 | 
						|
 | 
						|
It is helpful to define a no-op context manager ``does_not_raise`` to serve
 | 
						|
as a complement to ``raises``. For example:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    from contextlib import contextmanager
 | 
						|
    import pytest
 | 
						|
 | 
						|
 | 
						|
    @contextmanager
 | 
						|
    def does_not_raise():
 | 
						|
        yield
 | 
						|
 | 
						|
 | 
						|
    @pytest.mark.parametrize(
 | 
						|
        "example_input,expectation",
 | 
						|
        [
 | 
						|
            (3, does_not_raise()),
 | 
						|
            (2, does_not_raise()),
 | 
						|
            (1, does_not_raise()),
 | 
						|
            (0, pytest.raises(ZeroDivisionError)),
 | 
						|
        ],
 | 
						|
    )
 | 
						|
    def test_division(example_input, expectation):
 | 
						|
        """Test how much I know division."""
 | 
						|
        with expectation:
 | 
						|
            assert (6 / example_input) is not None
 | 
						|
 | 
						|
In the example above, the first three test cases should run unexceptionally,
 | 
						|
while the fourth should raise ``ZeroDivisionError``.
 | 
						|
 | 
						|
If you're only supporting Python 3.7+, you can simply use ``nullcontext``
 | 
						|
to define ``does_not_raise``:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    from contextlib import nullcontext as does_not_raise
 | 
						|
 | 
						|
Or, if you're supporting Python 3.3+ you can use:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    from contextlib import ExitStack as does_not_raise
 | 
						|
 | 
						|
Or, if desired, you can ``pip install contextlib2`` and use:
 | 
						|
 | 
						|
.. code-block:: python
 | 
						|
 | 
						|
    from contextlib2 import nullcontext as does_not_raise
 |