SpireCV/samples/test/eval_mAP_on_coco_val/pd2cocojson.py

55 lines
1.5 KiB
Python

import datetime
import json
import os
import cv2
# revert prediction results to coco_json
path = os.path.abspath(os.path.join(os.getcwd(), "../../.."))
# all files dir
images_path = path + '/val2017/val2017'
preds_path = path + '/val2017/preds'
coco_json_save ='pd_coco.json'
# config coco_json
coco_json = []
# load images dir
images = os.listdir(images_path)
for image in images:
# get image name
image_name, image_suffix = os.path.splitext(image)
# get image W and H
image_path = images_path + '/' + image
img = cv2.imread(image_path)
height, width, _ = img.shape
# read pred's txt
pred_path = preds_path + '/' + image_name + '.txt'
if not os.path.exists(pred_path):
continue
with open(pred_path, 'r') as f:
preds = f.readlines()
preds = [l.strip() for l in preds]
for j,pred in enumerate(preds):
pred = pred.split(' ')
category_id = int(pred[0])
x = float(pred[1]) * width
y = float(pred[2]) * height
w = float(pred[3]) * width
h = float(pred[4]) * height
xmin = x - w / 2
ymin = y - h / 2
coco_json.append({
'image_id': int(image_name),
'category_id': int(category_id),
'bbox': [xmin, ymin, w, h],
'score': float(pred[5])
})
# save json
with open(os.path.join(coco_json_save), 'w') as f:
json.dump(coco_json, f, indent=2)
print(len(coco_json), 'Done!')