forked from floratest1/SpireCV
add a new mot Bytetrack.
This commit is contained in:
parent
091d50e66b
commit
a58496dbbd
|
@ -83,6 +83,8 @@ include_directories(
|
|||
${CMAKE_CURRENT_SOURCE_DIR}/algorithm/common_det/cuda
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/algorithm/landing_det/cuda
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/algorithm/sot/ocv470
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/algorithm/mot/sort
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/algorithm/mot/bytetrack
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/algorithm/color_line
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/video_io
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/algorithm/veri/cuda
|
||||
|
@ -182,6 +184,10 @@ file(GLOB ALG_SRC_FILES ${CMAKE_CURRENT_SOURCE_DIR}/video_io/*.cpp)
|
|||
list(APPEND spirecv_SRCS ${ALG_SRC_FILES})
|
||||
file(GLOB ALG_SRC_FILES ${CMAKE_CURRENT_SOURCE_DIR}/utils/*.cpp)
|
||||
list(APPEND spirecv_SRCS ${ALG_SRC_FILES})
|
||||
file(GLOB ALG_SRC_FILES ${CMAKE_CURRENT_SOURCE_DIR}/algorithm/mot/sort/*.cpp)
|
||||
list(APPEND spirecv_SRCS ${ALG_SRC_FILES})
|
||||
file(GLOB ALG_SRC_FILES ${CMAKE_CURRENT_SOURCE_DIR}/algorithm/mot/bytetrack/*.cpp)
|
||||
list(APPEND spirecv_SRCS ${ALG_SRC_FILES})
|
||||
|
||||
if(USE_CUDA)
|
||||
list(APPEND spirecv_SRCS algorithm/common_det/cuda/yolov7/preprocess.cu)
|
||||
|
|
|
@ -0,0 +1,262 @@
|
|||
|
||||
#include "BYTETracker.h"
|
||||
#include <fstream>
|
||||
|
||||
namespace sv
|
||||
{
|
||||
|
||||
BYTETracker::BYTETracker(int frame_rate, int track_buffer)
|
||||
{
|
||||
track_thresh = 0.5;
|
||||
high_thresh = 0.6;
|
||||
match_thresh = 0.8;
|
||||
|
||||
frame_id = 0;
|
||||
max_time_lost = int(frame_rate / 30.0 * track_buffer);
|
||||
}
|
||||
|
||||
BYTETracker::~BYTETracker()
|
||||
{
|
||||
}
|
||||
|
||||
void BYTETracker::update(TargetsInFrame &tgts)
|
||||
{
|
||||
////////////////// Step 1: Get detections //////////////////
|
||||
this->frame_id++;
|
||||
std::vector<STrack> activated_stracks;
|
||||
std::vector<STrack> refind_stracks;
|
||||
std::vector<STrack> removed_stracks;
|
||||
std::vector<STrack> lost_stracks;
|
||||
std::vector<STrack> detections;
|
||||
std::vector<STrack> detections_low;
|
||||
|
||||
std::vector<STrack> detections_cp;
|
||||
std::vector<STrack> tracked_stracks_swap;
|
||||
std::vector<STrack> resa, resb;
|
||||
std::vector<STrack> output_stracks;
|
||||
|
||||
std::vector<STrack *> unconfirmed;
|
||||
std::vector<STrack *> tracked_stracks;
|
||||
std::vector<STrack *> strack_pool;
|
||||
std::vector<STrack *> r_tracked_stracks;
|
||||
|
||||
if (tgts.targets.size() > 0)
|
||||
{
|
||||
for (int i = 0; i < tgts.targets.size(); i++)
|
||||
{
|
||||
|
||||
tgts.targets[i].tracked_id = 0;
|
||||
tgts.targets[i].has_tid = true;
|
||||
|
||||
std::vector<float> tlbr_;
|
||||
tlbr_.resize(4);
|
||||
tlbr_[0] = tgts.targets[i].cx * tgts.width - tgts.targets[i].w * tgts.width / 2;
|
||||
tlbr_[1] = tgts.targets[i].cy * tgts.height - tgts.targets[i].h * tgts.height / 2;
|
||||
tlbr_[2] = tgts.targets[i].cx * tgts.width + tgts.targets[i].w * tgts.width / 2;
|
||||
tlbr_[3] = tgts.targets[i].cy * tgts.height + tgts.targets[i].h * tgts.height / 2;
|
||||
|
||||
float score = tgts.targets[i].score;
|
||||
|
||||
STrack strack(STrack::tlbr_to_tlwh(tlbr_), score);
|
||||
if (score >= track_thresh)
|
||||
{
|
||||
detections.push_back(strack);
|
||||
}
|
||||
else
|
||||
{
|
||||
detections_low.push_back(strack);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add newly detected tracklets to tracked_stracks
|
||||
for (int i = 0; i < this->tracked_stracks.size(); i++)
|
||||
{
|
||||
if (!this->tracked_stracks[i].is_activated)
|
||||
unconfirmed.push_back(&this->tracked_stracks[i]);
|
||||
else
|
||||
tracked_stracks.push_back(&this->tracked_stracks[i]);
|
||||
}
|
||||
|
||||
////////////////// Step 2: First association, with IoU //////////////////
|
||||
strack_pool = joint_stracks(tracked_stracks, this->lost_stracks);
|
||||
STrack::multi_predict(strack_pool, this->kalman_filter);
|
||||
|
||||
std::vector<std::vector<float>> dists;
|
||||
int dist_size = 0, dist_size_size = 0;
|
||||
dists = iou_distance(strack_pool, detections, dist_size, dist_size_size);
|
||||
|
||||
std::vector<std::vector<int>> matches;
|
||||
std::vector<int> u_track, u_detection;
|
||||
linear_assignment(dists, dist_size, dist_size_size, match_thresh, matches, u_track, u_detection);
|
||||
|
||||
for (int i = 0; i < matches.size(); i++)
|
||||
{
|
||||
STrack *track = strack_pool[matches[i][0]];
|
||||
STrack *det = &detections[matches[i][1]];
|
||||
if (track->state == TrackState::Tracked)
|
||||
{
|
||||
track->update(*det, this->frame_id);
|
||||
activated_stracks.push_back(*track);
|
||||
}
|
||||
else
|
||||
{
|
||||
track->re_activate(*det, this->frame_id, false);
|
||||
refind_stracks.push_back(*track);
|
||||
}
|
||||
}
|
||||
|
||||
////////////////// Step 3: Second association, using low score dets //////////////////
|
||||
for (int i = 0; i < u_detection.size(); i++)
|
||||
{
|
||||
detections_cp.push_back(detections[u_detection[i]]);
|
||||
}
|
||||
detections.clear();
|
||||
detections.assign(detections_low.begin(), detections_low.end());
|
||||
|
||||
for (int i = 0; i < u_track.size(); i++)
|
||||
{
|
||||
if (strack_pool[u_track[i]]->state == TrackState::Tracked)
|
||||
{
|
||||
r_tracked_stracks.push_back(strack_pool[u_track[i]]);
|
||||
}
|
||||
}
|
||||
|
||||
dists.clear();
|
||||
dists = iou_distance(r_tracked_stracks, detections, dist_size, dist_size_size);
|
||||
|
||||
matches.clear();
|
||||
u_track.clear();
|
||||
u_detection.clear();
|
||||
linear_assignment(dists, dist_size, dist_size_size, 0.5, matches, u_track, u_detection);
|
||||
|
||||
for (int i = 0; i < matches.size(); i++)
|
||||
{
|
||||
STrack *track = r_tracked_stracks[matches[i][0]];
|
||||
STrack *det = &detections[matches[i][1]];
|
||||
if (track->state == TrackState::Tracked)
|
||||
{
|
||||
track->update(*det, this->frame_id);
|
||||
activated_stracks.push_back(*track);
|
||||
}
|
||||
else
|
||||
{
|
||||
track->re_activate(*det, this->frame_id, false);
|
||||
refind_stracks.push_back(*track);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < u_track.size(); i++)
|
||||
{
|
||||
STrack *track = r_tracked_stracks[u_track[i]];
|
||||
if (track->state != TrackState::Lost)
|
||||
{
|
||||
track->mark_lost();
|
||||
lost_stracks.push_back(*track);
|
||||
}
|
||||
}
|
||||
|
||||
// Deal with unconfirmed tracks, usually tracks with only one beginning frame
|
||||
detections.clear();
|
||||
detections.assign(detections_cp.begin(), detections_cp.end());
|
||||
|
||||
dists.clear();
|
||||
dists = iou_distance(unconfirmed, detections, dist_size, dist_size_size);
|
||||
|
||||
matches.clear();
|
||||
std::vector<int> u_unconfirmed;
|
||||
u_detection.clear();
|
||||
linear_assignment(dists, dist_size, dist_size_size, 0.7, matches, u_unconfirmed, u_detection);
|
||||
|
||||
for (int i = 0; i < matches.size(); i++)
|
||||
{
|
||||
unconfirmed[matches[i][0]]->update(detections[matches[i][1]], this->frame_id);
|
||||
activated_stracks.push_back(*unconfirmed[matches[i][0]]);
|
||||
}
|
||||
|
||||
for (int i = 0; i < u_unconfirmed.size(); i++)
|
||||
{
|
||||
STrack *track = unconfirmed[u_unconfirmed[i]];
|
||||
track->mark_removed();
|
||||
removed_stracks.push_back(*track);
|
||||
}
|
||||
|
||||
////////////////// Step 4: Init new stracks //////////////////
|
||||
for (int i = 0; i < u_detection.size(); i++)
|
||||
{
|
||||
STrack *track = &detections[u_detection[i]];
|
||||
if (track->score < this->high_thresh)
|
||||
continue;
|
||||
track->activate(this->kalman_filter, this->frame_id);
|
||||
activated_stracks.push_back(*track);
|
||||
}
|
||||
|
||||
////////////////// Step 5: Update state //////////////////
|
||||
for (int i = 0; i < this->lost_stracks.size(); i++)
|
||||
{
|
||||
if (this->frame_id - this->lost_stracks[i].end_frame() > this->max_time_lost)
|
||||
{
|
||||
this->lost_stracks[i].mark_removed();
|
||||
removed_stracks.push_back(this->lost_stracks[i]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < this->tracked_stracks.size(); i++)
|
||||
{
|
||||
if (this->tracked_stracks[i].state == TrackState::Tracked)
|
||||
{
|
||||
tracked_stracks_swap.push_back(this->tracked_stracks[i]);
|
||||
}
|
||||
}
|
||||
this->tracked_stracks.clear();
|
||||
this->tracked_stracks.assign(tracked_stracks_swap.begin(), tracked_stracks_swap.end());
|
||||
|
||||
this->tracked_stracks = joint_stracks(this->tracked_stracks, activated_stracks);
|
||||
this->tracked_stracks = joint_stracks(this->tracked_stracks, refind_stracks);
|
||||
|
||||
// std::cout << activated_stracks.size() << std::endl;
|
||||
|
||||
this->lost_stracks = sub_stracks(this->lost_stracks, this->tracked_stracks);
|
||||
for (int i = 0; i < lost_stracks.size(); i++)
|
||||
{
|
||||
this->lost_stracks.push_back(lost_stracks[i]);
|
||||
}
|
||||
|
||||
this->lost_stracks = sub_stracks(this->lost_stracks, this->removed_stracks);
|
||||
for (int i = 0; i < removed_stracks.size(); i++)
|
||||
{
|
||||
this->removed_stracks.push_back(removed_stracks[i]);
|
||||
}
|
||||
|
||||
remove_duplicate_stracks(resa, resb, this->tracked_stracks, this->lost_stracks);
|
||||
|
||||
this->tracked_stracks.clear();
|
||||
this->tracked_stracks.assign(resa.begin(), resa.end());
|
||||
this->lost_stracks.clear();
|
||||
this->lost_stracks.assign(resb.begin(), resb.end());
|
||||
|
||||
for (int i = 0; i < this->tracked_stracks.size(); i++)
|
||||
{
|
||||
if (this->tracked_stracks[i].is_activated)
|
||||
{
|
||||
output_stracks.push_back(this->tracked_stracks[i]);
|
||||
}
|
||||
}
|
||||
|
||||
tgts.targets.clear();
|
||||
|
||||
for (unsigned long i = 0; i < output_stracks.size(); i++)
|
||||
{
|
||||
std::vector<float> tlwh = output_stracks[i].tlwh;
|
||||
bool vertical = tlwh[2] / tlwh[3] > 1.6;
|
||||
|
||||
if (tlwh[2] * tlwh[3] > 20 && !vertical)
|
||||
{
|
||||
Target tgt;
|
||||
tgt.setBox(tlwh[0], tlwh[1], tlwh[0] + tlwh[2], tlwh[1] + tlwh[3], tgts.width, tgts.height);
|
||||
tgt.setTrackID(output_stracks[i].track_id);
|
||||
tgts.targets.push_back(tgt);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
|
@ -0,0 +1,56 @@
|
|||
#ifndef __SV_BYTETrack__
|
||||
#define __SV_BYTETrack__
|
||||
|
||||
#include "sv_core.h"
|
||||
#include "STrack.h"
|
||||
|
||||
class detect_result
|
||||
{
|
||||
public:
|
||||
int classId;
|
||||
float confidence;
|
||||
cv::Rect_<float> box;
|
||||
};
|
||||
|
||||
namespace sv {
|
||||
|
||||
class BYTETracker
|
||||
{
|
||||
public:
|
||||
BYTETracker(int frame_rate = 30, int track_buffer = 30);
|
||||
~BYTETracker();
|
||||
|
||||
void update(TargetsInFrame &tgts);
|
||||
cv::Scalar get_color(int idx);
|
||||
|
||||
private:
|
||||
std::vector<STrack*> joint_stracks( std::vector<STrack*> &tlista, std::vector<STrack> &tlistb);
|
||||
std::vector<STrack> joint_stracks( std::vector<STrack> &tlista, std::vector<STrack> &tlistb);
|
||||
|
||||
std::vector<STrack> sub_stracks( std::vector<STrack> &tlista, std::vector<STrack> &tlistb);
|
||||
void remove_duplicate_stracks( std::vector<STrack> &resa, std::vector<STrack> &resb, std::vector<STrack> &stracksa, std::vector<STrack> &stracksb);
|
||||
|
||||
void linear_assignment( std::vector< std::vector<float> > &cost_matrix, int cost_matrix_size, int cost_matrix_size_size, float thresh,
|
||||
std::vector< std::vector<int> > &matches, std::vector<int> &unmatched_a, std::vector<int> &unmatched_b);
|
||||
std::vector< std::vector<float> > iou_distance( std::vector<STrack*> &atracks, std::vector<STrack> &btracks, int &dist_size, int &dist_size_size);
|
||||
std::vector< std::vector<float> > iou_distance( std::vector<STrack> &atracks, std::vector<STrack> &btracks);
|
||||
std::vector< std::vector<float> > ious( std::vector< std::vector<float> > &atlbrs, std::vector< std::vector<float> > &btlbrs);
|
||||
|
||||
double lapjv(const std::vector< std::vector<float> > &cost, std::vector<int> &rowsol, std::vector<int> &colsol,
|
||||
bool extend_cost = false, float cost_limit = LONG_MAX, bool return_cost = true);
|
||||
|
||||
private:
|
||||
|
||||
float track_thresh;
|
||||
float high_thresh;
|
||||
float match_thresh;
|
||||
int frame_id;
|
||||
int max_time_lost;
|
||||
|
||||
std::vector<STrack> tracked_stracks;
|
||||
std::vector<STrack> lost_stracks;
|
||||
std::vector<STrack> removed_stracks;
|
||||
byte_kalman::ByteKalmanFilter kalman_filter;
|
||||
};
|
||||
}
|
||||
#endif
|
|
@ -0,0 +1,152 @@
|
|||
#include "BytekalmanFilter.h"
|
||||
#include <Eigen/Cholesky>
|
||||
|
||||
namespace byte_kalman
|
||||
{
|
||||
const double ByteKalmanFilter::chi2inv95[10] = {
|
||||
0,
|
||||
3.8415,
|
||||
5.9915,
|
||||
7.8147,
|
||||
9.4877,
|
||||
11.070,
|
||||
12.592,
|
||||
14.067,
|
||||
15.507,
|
||||
16.919
|
||||
};
|
||||
ByteKalmanFilter::ByteKalmanFilter()
|
||||
{
|
||||
int ndim = 4;
|
||||
double dt = 1.;
|
||||
|
||||
_motion_mat = Eigen::MatrixXf::Identity(8, 8);
|
||||
for (int i = 0; i < ndim; i++) {
|
||||
_motion_mat(i, ndim + i) = dt;
|
||||
}
|
||||
_update_mat = Eigen::MatrixXf::Identity(4, 8);
|
||||
|
||||
this->_std_weight_position = 1. / 20;
|
||||
this->_std_weight_velocity = 1. / 160;
|
||||
}
|
||||
|
||||
KAL_DATA ByteKalmanFilter::initiate(const DETECTBOX &measurement)
|
||||
{
|
||||
DETECTBOX mean_pos = measurement;
|
||||
DETECTBOX mean_vel;
|
||||
for (int i = 0; i < 4; i++) mean_vel(i) = 0;
|
||||
|
||||
KAL_MEAN mean;
|
||||
for (int i = 0; i < 8; i++) {
|
||||
if (i < 4) mean(i) = mean_pos(i);
|
||||
else mean(i) = mean_vel(i - 4);
|
||||
}
|
||||
|
||||
KAL_MEAN std;
|
||||
std(0) = 2 * _std_weight_position * measurement[3];
|
||||
std(1) = 2 * _std_weight_position * measurement[3];
|
||||
std(2) = 1e-2;
|
||||
std(3) = 2 * _std_weight_position * measurement[3];
|
||||
std(4) = 10 * _std_weight_velocity * measurement[3];
|
||||
std(5) = 10 * _std_weight_velocity * measurement[3];
|
||||
std(6) = 1e-5;
|
||||
std(7) = 10 * _std_weight_velocity * measurement[3];
|
||||
|
||||
KAL_MEAN tmp = std.array().square();
|
||||
KAL_COVA var = tmp.asDiagonal();
|
||||
return std::make_pair(mean, var);
|
||||
}
|
||||
|
||||
void ByteKalmanFilter::predict(KAL_MEAN &mean, KAL_COVA &covariance)
|
||||
{
|
||||
//revise the data;
|
||||
DETECTBOX std_pos;
|
||||
std_pos << _std_weight_position * mean(3),
|
||||
_std_weight_position * mean(3),
|
||||
1e-2,
|
||||
_std_weight_position * mean(3);
|
||||
DETECTBOX std_vel;
|
||||
std_vel << _std_weight_velocity * mean(3),
|
||||
_std_weight_velocity * mean(3),
|
||||
1e-5,
|
||||
_std_weight_velocity * mean(3);
|
||||
KAL_MEAN tmp;
|
||||
tmp.block<1, 4>(0, 0) = std_pos;
|
||||
tmp.block<1, 4>(0, 4) = std_vel;
|
||||
tmp = tmp.array().square();
|
||||
KAL_COVA motion_cov = tmp.asDiagonal();
|
||||
KAL_MEAN mean1 = this->_motion_mat * mean.transpose();
|
||||
KAL_COVA covariance1 = this->_motion_mat * covariance *(_motion_mat.transpose());
|
||||
covariance1 += motion_cov;
|
||||
|
||||
mean = mean1;
|
||||
covariance = covariance1;
|
||||
}
|
||||
|
||||
KAL_HDATA ByteKalmanFilter::project(const KAL_MEAN &mean, const KAL_COVA &covariance)
|
||||
{
|
||||
DETECTBOX std;
|
||||
std << _std_weight_position * mean(3), _std_weight_position * mean(3),
|
||||
1e-1, _std_weight_position * mean(3);
|
||||
KAL_HMEAN mean1 = _update_mat * mean.transpose();
|
||||
KAL_HCOVA covariance1 = _update_mat * covariance * (_update_mat.transpose());
|
||||
Eigen::Matrix<float, 4, 4> diag = std.asDiagonal();
|
||||
diag = diag.array().square().matrix();
|
||||
covariance1 += diag;
|
||||
// covariance1.diagonal() << diag;
|
||||
return std::make_pair(mean1, covariance1);
|
||||
}
|
||||
|
||||
KAL_DATA
|
||||
ByteKalmanFilter::update(
|
||||
const KAL_MEAN &mean,
|
||||
const KAL_COVA &covariance,
|
||||
const DETECTBOX &measurement)
|
||||
{
|
||||
KAL_HDATA pa = project(mean, covariance);
|
||||
KAL_HMEAN projected_mean = pa.first;
|
||||
KAL_HCOVA projected_cov = pa.second;
|
||||
|
||||
//chol_factor, lower =
|
||||
//scipy.linalg.cho_factor(projected_cov, lower=True, check_finite=False)
|
||||
//kalmain_gain =
|
||||
//scipy.linalg.cho_solve((cho_factor, lower),
|
||||
//np.dot(covariance, self._upadte_mat.T).T,
|
||||
//check_finite=False).T
|
||||
Eigen::Matrix<float, 4, 8> B = (covariance * (_update_mat.transpose())).transpose();
|
||||
Eigen::Matrix<float, 8, 4> kalman_gain = (projected_cov.llt().solve(B)).transpose(); // eg.8x4
|
||||
Eigen::Matrix<float, 1, 4> innovation = measurement - projected_mean; //eg.1x4
|
||||
auto tmp = innovation * (kalman_gain.transpose());
|
||||
KAL_MEAN new_mean = (mean.array() + tmp.array()).matrix();
|
||||
KAL_COVA new_covariance = covariance - kalman_gain * projected_cov*(kalman_gain.transpose());
|
||||
return std::make_pair(new_mean, new_covariance);
|
||||
}
|
||||
|
||||
Eigen::Matrix<float, 1, -1>
|
||||
ByteKalmanFilter::gating_distance(
|
||||
const KAL_MEAN &mean,
|
||||
const KAL_COVA &covariance,
|
||||
const std::vector<DETECTBOX> &measurements,
|
||||
bool only_position)
|
||||
{
|
||||
KAL_HDATA pa = this->project(mean, covariance);
|
||||
if (only_position) {
|
||||
printf("not implement!");
|
||||
exit(0);
|
||||
}
|
||||
KAL_HMEAN mean1 = pa.first;
|
||||
KAL_HCOVA covariance1 = pa.second;
|
||||
|
||||
// Eigen::Matrix<float, -1, 4, Eigen::RowMajor> d(size, 4);
|
||||
DETECTBOXSS d(measurements.size(), 4);
|
||||
int pos = 0;
|
||||
for (DETECTBOX box : measurements) {
|
||||
d.row(pos++) = box - mean1;
|
||||
}
|
||||
Eigen::Matrix<float, -1, -1, Eigen::RowMajor> factor = covariance1.llt().matrixL();
|
||||
Eigen::Matrix<float, -1, -1> z = factor.triangularView<Eigen::Lower>().solve<Eigen::OnTheRight>(d).transpose();
|
||||
auto zz = ((z.array())*(z.array())).matrix();
|
||||
auto square_maha = zz.colwise().sum();
|
||||
return square_maha;
|
||||
}
|
||||
}
|
|
@ -0,0 +1,31 @@
|
|||
#pragma once
|
||||
|
||||
#include "dataType.h"
|
||||
|
||||
namespace byte_kalman
|
||||
{
|
||||
class ByteKalmanFilter
|
||||
{
|
||||
public:
|
||||
static const double chi2inv95[10];
|
||||
ByteKalmanFilter();
|
||||
KAL_DATA initiate(const DETECTBOX& measurement);
|
||||
void predict(KAL_MEAN& mean, KAL_COVA& covariance);
|
||||
KAL_HDATA project(const KAL_MEAN& mean, const KAL_COVA& covariance);
|
||||
KAL_DATA update(const KAL_MEAN& mean,
|
||||
const KAL_COVA& covariance,
|
||||
const DETECTBOX& measurement);
|
||||
|
||||
Eigen::Matrix<float, 1, -1> gating_distance(
|
||||
const KAL_MEAN& mean,
|
||||
const KAL_COVA& covariance,
|
||||
const std::vector<DETECTBOX>& measurements,
|
||||
bool only_position = false);
|
||||
|
||||
private:
|
||||
Eigen::Matrix<float, 8, 8, Eigen::RowMajor> _motion_mat;
|
||||
Eigen::Matrix<float, 4, 8, Eigen::RowMajor> _update_mat;
|
||||
float _std_weight_position;
|
||||
float _std_weight_velocity;
|
||||
};
|
||||
}
|
|
@ -0,0 +1,192 @@
|
|||
#include "STrack.h"
|
||||
|
||||
STrack::STrack( std::vector<float> tlwh_, float score)
|
||||
{
|
||||
_tlwh.resize(4);
|
||||
_tlwh.assign(tlwh_.begin(), tlwh_.end());
|
||||
|
||||
is_activated = false;
|
||||
track_id = 0;
|
||||
state = TrackState::New;
|
||||
|
||||
tlwh.resize(4);
|
||||
tlbr.resize(4);
|
||||
|
||||
static_tlwh();
|
||||
static_tlbr();
|
||||
frame_id = 0;
|
||||
tracklet_len = 0;
|
||||
this->score = score;
|
||||
start_frame = 0;
|
||||
}
|
||||
|
||||
STrack::~STrack()
|
||||
{
|
||||
}
|
||||
|
||||
void STrack::activate(byte_kalman::ByteKalmanFilter &kalman_filter, int frame_id)
|
||||
{
|
||||
this->kalman_filter = kalman_filter;
|
||||
this->track_id = this->next_id();
|
||||
|
||||
std::vector<float> _tlwh_tmp(4);
|
||||
_tlwh_tmp[0] = this->_tlwh[0];
|
||||
_tlwh_tmp[1] = this->_tlwh[1];
|
||||
_tlwh_tmp[2] = this->_tlwh[2];
|
||||
_tlwh_tmp[3] = this->_tlwh[3];
|
||||
std::vector<float> xyah = tlwh_to_xyah(_tlwh_tmp);
|
||||
DETECTBOX xyah_box;
|
||||
xyah_box[0] = xyah[0];
|
||||
xyah_box[1] = xyah[1];
|
||||
xyah_box[2] = xyah[2];
|
||||
xyah_box[3] = xyah[3];
|
||||
auto mc = this->kalman_filter.initiate(xyah_box);
|
||||
this->mean = mc.first;
|
||||
this->covariance = mc.second;
|
||||
|
||||
static_tlwh();
|
||||
static_tlbr();
|
||||
|
||||
this->tracklet_len = 0;
|
||||
this->state = TrackState::Tracked;
|
||||
if (frame_id == 1)
|
||||
{
|
||||
this->is_activated = true;
|
||||
}
|
||||
//this->is_activated = true;
|
||||
this->frame_id = frame_id;
|
||||
this->start_frame = frame_id;
|
||||
}
|
||||
|
||||
void STrack::re_activate(STrack &new_track, int frame_id, bool new_id)
|
||||
{
|
||||
std::vector<float> xyah = tlwh_to_xyah(new_track.tlwh);
|
||||
DETECTBOX xyah_box;
|
||||
xyah_box[0] = xyah[0];
|
||||
xyah_box[1] = xyah[1];
|
||||
xyah_box[2] = xyah[2];
|
||||
xyah_box[3] = xyah[3];
|
||||
auto mc = this->kalman_filter.update(this->mean, this->covariance, xyah_box);
|
||||
this->mean = mc.first;
|
||||
this->covariance = mc.second;
|
||||
|
||||
static_tlwh();
|
||||
static_tlbr();
|
||||
|
||||
this->tracklet_len = 0;
|
||||
this->state = TrackState::Tracked;
|
||||
this->is_activated = true;
|
||||
this->frame_id = frame_id;
|
||||
this->score = new_track.score;
|
||||
if (new_id)
|
||||
this->track_id = next_id();
|
||||
}
|
||||
|
||||
void STrack::update(STrack &new_track, int frame_id)
|
||||
{
|
||||
this->frame_id = frame_id;
|
||||
this->tracklet_len++;
|
||||
|
||||
std::vector<float> xyah = tlwh_to_xyah(new_track.tlwh);
|
||||
DETECTBOX xyah_box;
|
||||
xyah_box[0] = xyah[0];
|
||||
xyah_box[1] = xyah[1];
|
||||
xyah_box[2] = xyah[2];
|
||||
xyah_box[3] = xyah[3];
|
||||
|
||||
auto mc = this->kalman_filter.update(this->mean, this->covariance, xyah_box);
|
||||
this->mean = mc.first;
|
||||
this->covariance = mc.second;
|
||||
|
||||
static_tlwh();
|
||||
static_tlbr();
|
||||
|
||||
this->state = TrackState::Tracked;
|
||||
this->is_activated = true;
|
||||
|
||||
this->score = new_track.score;
|
||||
}
|
||||
|
||||
void STrack::static_tlwh()
|
||||
{
|
||||
if (this->state == TrackState::New)
|
||||
{
|
||||
tlwh[0] = _tlwh[0];
|
||||
tlwh[1] = _tlwh[1];
|
||||
tlwh[2] = _tlwh[2];
|
||||
tlwh[3] = _tlwh[3];
|
||||
return;
|
||||
}
|
||||
|
||||
tlwh[0] = mean[0];
|
||||
tlwh[1] = mean[1];
|
||||
tlwh[2] = mean[2];
|
||||
tlwh[3] = mean[3];
|
||||
|
||||
tlwh[2] *= tlwh[3];
|
||||
tlwh[0] -= tlwh[2] / 2;
|
||||
tlwh[1] -= tlwh[3] / 2;
|
||||
}
|
||||
|
||||
void STrack::static_tlbr()
|
||||
{
|
||||
tlbr.clear();
|
||||
tlbr.assign(tlwh.begin(), tlwh.end());
|
||||
tlbr[2] += tlbr[0];
|
||||
tlbr[3] += tlbr[1];
|
||||
}
|
||||
|
||||
std::vector<float> STrack::tlwh_to_xyah( std::vector<float> tlwh_tmp)
|
||||
{
|
||||
std::vector<float> tlwh_output = tlwh_tmp;
|
||||
tlwh_output[0] += tlwh_output[2] / 2;
|
||||
tlwh_output[1] += tlwh_output[3] / 2;
|
||||
tlwh_output[2] /= tlwh_output[3];
|
||||
return tlwh_output;
|
||||
}
|
||||
|
||||
std::vector<float> STrack::to_xyah()
|
||||
{
|
||||
return tlwh_to_xyah(tlwh);
|
||||
}
|
||||
|
||||
std::vector<float> STrack::tlbr_to_tlwh( std::vector<float> &tlbr)
|
||||
{
|
||||
tlbr[2] -= tlbr[0];
|
||||
tlbr[3] -= tlbr[1];
|
||||
return tlbr;
|
||||
}
|
||||
|
||||
void STrack::mark_lost()
|
||||
{
|
||||
state = TrackState::Lost;
|
||||
}
|
||||
|
||||
void STrack::mark_removed()
|
||||
{
|
||||
state = TrackState::Removed;
|
||||
}
|
||||
|
||||
int STrack::next_id()
|
||||
{
|
||||
static int _count = 0;
|
||||
_count++;
|
||||
return _count;
|
||||
}
|
||||
|
||||
int STrack::end_frame()
|
||||
{
|
||||
return this->frame_id;
|
||||
}
|
||||
|
||||
void STrack::multi_predict( std::vector<STrack*> &stracks, byte_kalman::ByteKalmanFilter &kalman_filter)
|
||||
{
|
||||
for (int i = 0; i < stracks.size(); i++)
|
||||
{
|
||||
if (stracks[i]->state != TrackState::Tracked)
|
||||
{
|
||||
stracks[i]->mean[7] = 0;
|
||||
}
|
||||
kalman_filter.predict(stracks[i]->mean, stracks[i]->covariance);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,47 @@
|
|||
#pragma once
|
||||
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include "BytekalmanFilter.h"
|
||||
|
||||
enum TrackState { New = 0, Tracked, Lost, Removed };
|
||||
|
||||
class STrack
|
||||
{
|
||||
public:
|
||||
STrack( std::vector<float> tlwh_, float score);
|
||||
~STrack();
|
||||
|
||||
std::vector<float> static tlbr_to_tlwh( std::vector<float> &tlbr);
|
||||
void static multi_predict( std::vector<STrack*> &stracks, byte_kalman::ByteKalmanFilter &kalman_filter);
|
||||
void static_tlwh();
|
||||
void static_tlbr();
|
||||
std::vector<float> tlwh_to_xyah( std::vector<float> tlwh_tmp);
|
||||
std::vector<float> to_xyah();
|
||||
void mark_lost();
|
||||
void mark_removed();
|
||||
int next_id();
|
||||
int end_frame();
|
||||
|
||||
void activate(byte_kalman::ByteKalmanFilter &kalman_filter, int frame_id);
|
||||
void re_activate(STrack &new_track, int frame_id, bool new_id = false);
|
||||
void update(STrack &new_track, int frame_id);
|
||||
|
||||
public:
|
||||
bool is_activated;
|
||||
int track_id;
|
||||
int state;
|
||||
|
||||
std::vector<float> _tlwh;
|
||||
std::vector<float> tlwh;
|
||||
std::vector<float> tlbr;
|
||||
int frame_id;
|
||||
int tracklet_len;
|
||||
int start_frame;
|
||||
|
||||
KAL_MEAN mean;
|
||||
KAL_COVA covariance;
|
||||
float score;
|
||||
|
||||
private:
|
||||
byte_kalman::ByteKalmanFilter kalman_filter;
|
||||
};
|
|
@ -0,0 +1,43 @@
|
|||
#pragma once
|
||||
|
||||
#include <cstddef>
|
||||
#include <vector>
|
||||
|
||||
#include <Eigen/Core>
|
||||
#include <Eigen/Dense>
|
||||
|
||||
|
||||
//const int k_feature_dim=512;//feature dim
|
||||
|
||||
typedef Eigen::Matrix<float, 1, 4, Eigen::RowMajor> DETECTBOX;
|
||||
typedef Eigen::Matrix<float, -1, 4, Eigen::RowMajor> DETECTBOXSS;
|
||||
//typedef Eigen::Matrix<float, 1, k_feature_dim, Eigen::RowMajor> FEATURE;
|
||||
//typedef Eigen::Matrix<float, Eigen::Dynamic, k_feature_dim, Eigen::RowMajor> FEATURESS;
|
||||
//typedef std::vector<FEATURE> FEATURESS;
|
||||
|
||||
//Kalmanfilter
|
||||
//typedef Eigen::Matrix<float, 8, 8, Eigen::RowMajor> KAL_FILTER;
|
||||
typedef Eigen::Matrix<float, 1, 8, Eigen::RowMajor> KAL_MEAN;
|
||||
typedef Eigen::Matrix<float, 8, 8, Eigen::RowMajor> KAL_COVA;
|
||||
typedef Eigen::Matrix<float, 1, 4, Eigen::RowMajor> KAL_HMEAN;
|
||||
typedef Eigen::Matrix<float, 4, 4, Eigen::RowMajor> KAL_HCOVA;
|
||||
using KAL_DATA = std::pair<KAL_MEAN, KAL_COVA>;
|
||||
using KAL_HDATA = std::pair<KAL_HMEAN, KAL_HCOVA>;
|
||||
|
||||
//main
|
||||
//using RESULT_DATA = std::pair<int, DETECTBOX>;
|
||||
|
||||
//tracker:
|
||||
//using TRACKER_DATA = std::pair<int, FEATURESS>;
|
||||
//using MATCH_DATA = std::pair<int, int>;
|
||||
// typedef struct t{
|
||||
// std::vector<MATCH_DATA> matches;
|
||||
// std::vector<int> unmatched_tracks;
|
||||
// std::vector<int> unmatched_detections;
|
||||
// }TRACHER_MATCHD;
|
||||
|
||||
//linear_assignment:
|
||||
//typedef Eigen::Matrix<float, -1, -1, Eigen::RowMajor> DYNAMICM;
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,343 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
|
||||
#include "lapjv.h"
|
||||
|
||||
/** Column-reduction and reduction transfer for a dense cost matrix.
|
||||
*/
|
||||
int_t _ccrrt_dense(const uint_t n, cost_t *cost[],
|
||||
int_t *free_rows, int_t *x, int_t *y, cost_t *v)
|
||||
{
|
||||
int_t n_free_rows;
|
||||
boolean *unique;
|
||||
|
||||
for (uint_t i = 0; i < n; i++) {
|
||||
x[i] = -1;
|
||||
v[i] = LARGE;
|
||||
y[i] = 0;
|
||||
}
|
||||
for (uint_t i = 0; i < n; i++) {
|
||||
for (uint_t j = 0; j < n; j++) {
|
||||
const cost_t c = cost[i][j];
|
||||
if (c < v[j]) {
|
||||
v[j] = c;
|
||||
y[j] = i;
|
||||
}
|
||||
PRINTF("i=%d, j=%d, c[i,j]=%f, v[j]=%f y[j]=%d\n", i, j, c, v[j], y[j]);
|
||||
}
|
||||
}
|
||||
PRINT_COST_ARRAY(v, n);
|
||||
PRINT_INDEX_ARRAY(y, n);
|
||||
NEW(unique, boolean, n);
|
||||
memset(unique, TRUE, n);
|
||||
{
|
||||
int_t j = n;
|
||||
do {
|
||||
j--;
|
||||
const int_t i = y[j];
|
||||
if (x[i] < 0) {
|
||||
x[i] = j;
|
||||
}
|
||||
else {
|
||||
unique[i] = FALSE;
|
||||
y[j] = -1;
|
||||
}
|
||||
} while (j > 0);
|
||||
}
|
||||
n_free_rows = 0;
|
||||
for (uint_t i = 0; i < n; i++) {
|
||||
if (x[i] < 0) {
|
||||
free_rows[n_free_rows++] = i;
|
||||
}
|
||||
else if (unique[i]) {
|
||||
const int_t j = x[i];
|
||||
cost_t min = LARGE;
|
||||
for (uint_t j2 = 0; j2 < n; j2++) {
|
||||
if (j2 == (uint_t)j) {
|
||||
continue;
|
||||
}
|
||||
const cost_t c = cost[i][j2] - v[j2];
|
||||
if (c < min) {
|
||||
min = c;
|
||||
}
|
||||
}
|
||||
PRINTF("v[%d] = %f - %f\n", j, v[j], min);
|
||||
v[j] -= min;
|
||||
}
|
||||
}
|
||||
FREE(unique);
|
||||
return n_free_rows;
|
||||
}
|
||||
|
||||
|
||||
/** Augmenting row reduction for a dense cost matrix.
|
||||
*/
|
||||
int_t _carr_dense(
|
||||
const uint_t n, cost_t *cost[],
|
||||
const uint_t n_free_rows,
|
||||
int_t *free_rows, int_t *x, int_t *y, cost_t *v)
|
||||
{
|
||||
uint_t current = 0;
|
||||
int_t new_free_rows = 0;
|
||||
uint_t rr_cnt = 0;
|
||||
PRINT_INDEX_ARRAY(x, n);
|
||||
PRINT_INDEX_ARRAY(y, n);
|
||||
PRINT_COST_ARRAY(v, n);
|
||||
PRINT_INDEX_ARRAY(free_rows, n_free_rows);
|
||||
while (current < n_free_rows) {
|
||||
int_t i0;
|
||||
int_t j1, j2;
|
||||
cost_t v1, v2, v1_new;
|
||||
boolean v1_lowers;
|
||||
|
||||
rr_cnt++;
|
||||
PRINTF("current = %d rr_cnt = %d\n", current, rr_cnt);
|
||||
const int_t free_i = free_rows[current++];
|
||||
j1 = 0;
|
||||
v1 = cost[free_i][0] - v[0];
|
||||
j2 = -1;
|
||||
v2 = LARGE;
|
||||
for (uint_t j = 1; j < n; j++) {
|
||||
PRINTF("%d = %f %d = %f\n", j1, v1, j2, v2);
|
||||
const cost_t c = cost[free_i][j] - v[j];
|
||||
if (c < v2) {
|
||||
if (c >= v1) {
|
||||
v2 = c;
|
||||
j2 = j;
|
||||
}
|
||||
else {
|
||||
v2 = v1;
|
||||
v1 = c;
|
||||
j2 = j1;
|
||||
j1 = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
i0 = y[j1];
|
||||
v1_new = v[j1] - (v2 - v1);
|
||||
v1_lowers = v1_new < v[j1];
|
||||
PRINTF("%d %d 1=%d,%f 2=%d,%f v1'=%f(%d,%g) \n", free_i, i0, j1, v1, j2, v2, v1_new, v1_lowers, v[j1] - v1_new);
|
||||
if (rr_cnt < current * n) {
|
||||
if (v1_lowers) {
|
||||
v[j1] = v1_new;
|
||||
}
|
||||
else if (i0 >= 0 && j2 >= 0) {
|
||||
j1 = j2;
|
||||
i0 = y[j2];
|
||||
}
|
||||
if (i0 >= 0) {
|
||||
if (v1_lowers) {
|
||||
free_rows[--current] = i0;
|
||||
}
|
||||
else {
|
||||
free_rows[new_free_rows++] = i0;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
PRINTF("rr_cnt=%d >= %d (current=%d * n=%d)\n", rr_cnt, current * n, current, n);
|
||||
if (i0 >= 0) {
|
||||
free_rows[new_free_rows++] = i0;
|
||||
}
|
||||
}
|
||||
x[free_i] = j1;
|
||||
y[j1] = free_i;
|
||||
}
|
||||
return new_free_rows;
|
||||
}
|
||||
|
||||
|
||||
/** Find columns with minimum d[j] and put them on the SCAN list.
|
||||
*/
|
||||
uint_t _find_dense(const uint_t n, uint_t lo, cost_t *d, int_t *cols, int_t *y)
|
||||
{
|
||||
uint_t hi = lo + 1;
|
||||
cost_t mind = d[cols[lo]];
|
||||
for (uint_t k = hi; k < n; k++) {
|
||||
int_t j = cols[k];
|
||||
if (d[j] <= mind) {
|
||||
if (d[j] < mind) {
|
||||
hi = lo;
|
||||
mind = d[j];
|
||||
}
|
||||
cols[k] = cols[hi];
|
||||
cols[hi++] = j;
|
||||
}
|
||||
}
|
||||
return hi;
|
||||
}
|
||||
|
||||
|
||||
// Scan all columns in TODO starting from arbitrary column in SCAN
|
||||
// and try to decrease d of the TODO columns using the SCAN column.
|
||||
int_t _scan_dense(const uint_t n, cost_t *cost[],
|
||||
uint_t *plo, uint_t*phi,
|
||||
cost_t *d, int_t *cols, int_t *pred,
|
||||
int_t *y, cost_t *v)
|
||||
{
|
||||
uint_t lo = *plo;
|
||||
uint_t hi = *phi;
|
||||
cost_t h, cred_ij;
|
||||
|
||||
while (lo != hi) {
|
||||
int_t j = cols[lo++];
|
||||
const int_t i = y[j];
|
||||
const cost_t mind = d[j];
|
||||
h = cost[i][j] - v[j] - mind;
|
||||
PRINTF("i=%d j=%d h=%f\n", i, j, h);
|
||||
// For all columns in TODO
|
||||
for (uint_t k = hi; k < n; k++) {
|
||||
j = cols[k];
|
||||
cred_ij = cost[i][j] - v[j] - h;
|
||||
if (cred_ij < d[j]) {
|
||||
d[j] = cred_ij;
|
||||
pred[j] = i;
|
||||
if (cred_ij == mind) {
|
||||
if (y[j] < 0) {
|
||||
return j;
|
||||
}
|
||||
cols[k] = cols[hi];
|
||||
cols[hi++] = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
*plo = lo;
|
||||
*phi = hi;
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
/** Single iteration of modified Dijkstra shortest path algorithm as explained in the JV paper.
|
||||
*
|
||||
* This is a dense matrix version.
|
||||
*
|
||||
* \return The closest free column index.
|
||||
*/
|
||||
int_t find_path_dense(
|
||||
const uint_t n, cost_t *cost[],
|
||||
const int_t start_i,
|
||||
int_t *y, cost_t *v,
|
||||
int_t *pred)
|
||||
{
|
||||
uint_t lo = 0, hi = 0;
|
||||
int_t final_j = -1;
|
||||
uint_t n_ready = 0;
|
||||
int_t *cols;
|
||||
cost_t *d;
|
||||
|
||||
NEW(cols, int_t, n);
|
||||
NEW(d, cost_t, n);
|
||||
|
||||
for (uint_t i = 0; i < n; i++) {
|
||||
cols[i] = i;
|
||||
pred[i] = start_i;
|
||||
d[i] = cost[start_i][i] - v[i];
|
||||
}
|
||||
PRINT_COST_ARRAY(d, n);
|
||||
while (final_j == -1) {
|
||||
// No columns left on the SCAN list.
|
||||
if (lo == hi) {
|
||||
PRINTF("%d..%d -> find\n", lo, hi);
|
||||
n_ready = lo;
|
||||
hi = _find_dense(n, lo, d, cols, y);
|
||||
PRINTF("check %d..%d\n", lo, hi);
|
||||
PRINT_INDEX_ARRAY(cols, n);
|
||||
for (uint_t k = lo; k < hi; k++) {
|
||||
const int_t j = cols[k];
|
||||
if (y[j] < 0) {
|
||||
final_j = j;
|
||||
}
|
||||
}
|
||||
}
|
||||
if (final_j == -1) {
|
||||
PRINTF("%d..%d -> scan\n", lo, hi);
|
||||
final_j = _scan_dense(
|
||||
n, cost, &lo, &hi, d, cols, pred, y, v);
|
||||
PRINT_COST_ARRAY(d, n);
|
||||
PRINT_INDEX_ARRAY(cols, n);
|
||||
PRINT_INDEX_ARRAY(pred, n);
|
||||
}
|
||||
}
|
||||
|
||||
PRINTF("found final_j=%d\n", final_j);
|
||||
PRINT_INDEX_ARRAY(cols, n);
|
||||
{
|
||||
const cost_t mind = d[cols[lo]];
|
||||
for (uint_t k = 0; k < n_ready; k++) {
|
||||
const int_t j = cols[k];
|
||||
v[j] += d[j] - mind;
|
||||
}
|
||||
}
|
||||
|
||||
FREE(cols);
|
||||
FREE(d);
|
||||
|
||||
return final_j;
|
||||
}
|
||||
|
||||
|
||||
/** Augment for a dense cost matrix.
|
||||
*/
|
||||
int_t _ca_dense(
|
||||
const uint_t n, cost_t *cost[],
|
||||
const uint_t n_free_rows,
|
||||
int_t *free_rows, int_t *x, int_t *y, cost_t *v)
|
||||
{
|
||||
int_t *pred;
|
||||
|
||||
NEW(pred, int_t, n);
|
||||
|
||||
for (int_t *pfree_i = free_rows; pfree_i < free_rows + n_free_rows; pfree_i++) {
|
||||
int_t i = -1, j;
|
||||
uint_t k = 0;
|
||||
|
||||
PRINTF("looking at free_i=%d\n", *pfree_i);
|
||||
j = find_path_dense(n, cost, *pfree_i, y, v, pred);
|
||||
ASSERT(j >= 0);
|
||||
ASSERT(j < n);
|
||||
while (i != *pfree_i) {
|
||||
PRINTF("augment %d\n", j);
|
||||
PRINT_INDEX_ARRAY(pred, n);
|
||||
i = pred[j];
|
||||
PRINTF("y[%d]=%d -> %d\n", j, y[j], i);
|
||||
y[j] = i;
|
||||
PRINT_INDEX_ARRAY(x, n);
|
||||
SWAP_INDICES(j, x[i]);
|
||||
k++;
|
||||
if (k >= n) {
|
||||
ASSERT(FALSE);
|
||||
}
|
||||
}
|
||||
}
|
||||
FREE(pred);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/** Solve dense sparse LAP.
|
||||
*/
|
||||
int lapjv_internal(
|
||||
const uint_t n, cost_t *cost[],
|
||||
int_t *x, int_t *y)
|
||||
{
|
||||
int ret;
|
||||
int_t *free_rows;
|
||||
cost_t *v;
|
||||
|
||||
NEW(free_rows, int_t, n);
|
||||
NEW(v, cost_t, n);
|
||||
ret = _ccrrt_dense(n, cost, free_rows, x, y, v);
|
||||
int i = 0;
|
||||
while (ret > 0 && i < 2) {
|
||||
ret = _carr_dense(n, cost, ret, free_rows, x, y, v);
|
||||
i++;
|
||||
}
|
||||
if (ret > 0) {
|
||||
ret = _ca_dense(n, cost, ret, free_rows, x, y, v);
|
||||
}
|
||||
FREE(v);
|
||||
FREE(free_rows);
|
||||
return ret;
|
||||
}
|
|
@ -0,0 +1,63 @@
|
|||
#ifndef LAPJV_H
|
||||
#define LAPJV_H
|
||||
|
||||
#define LARGE 1000000
|
||||
|
||||
#if !defined TRUE
|
||||
#define TRUE 1
|
||||
#endif
|
||||
#if !defined FALSE
|
||||
#define FALSE 0
|
||||
#endif
|
||||
|
||||
#define NEW(x, t, n) if ((x = (t *)malloc(sizeof(t) * (n))) == 0) { return -1; }
|
||||
#define FREE(x) if (x != 0) { free(x); x = 0; }
|
||||
#define SWAP_INDICES(a, b) { int_t _temp_index = a; a = b; b = _temp_index; }
|
||||
|
||||
#if 0
|
||||
#include <assert.h>
|
||||
#define ASSERT(cond) assert(cond)
|
||||
#define PRINTF(fmt, ...) printf(fmt, ##__VA_ARGS__)
|
||||
#define PRINT_COST_ARRAY(a, n) \
|
||||
while (1) { \
|
||||
printf(#a" = ["); \
|
||||
if ((n) > 0) { \
|
||||
printf("%f", (a)[0]); \
|
||||
for (uint_t j = 1; j < n; j++) { \
|
||||
printf(", %f", (a)[j]); \
|
||||
} \
|
||||
} \
|
||||
printf("]\n"); \
|
||||
break; \
|
||||
}
|
||||
#define PRINT_INDEX_ARRAY(a, n) \
|
||||
while (1) { \
|
||||
printf(#a" = ["); \
|
||||
if ((n) > 0) { \
|
||||
printf("%d", (a)[0]); \
|
||||
for (uint_t j = 1; j < n; j++) { \
|
||||
printf(", %d", (a)[j]); \
|
||||
} \
|
||||
} \
|
||||
printf("]\n"); \
|
||||
break; \
|
||||
}
|
||||
#else
|
||||
#define ASSERT(cond)
|
||||
#define PRINTF(fmt, ...)
|
||||
#define PRINT_COST_ARRAY(a, n)
|
||||
#define PRINT_INDEX_ARRAY(a, n)
|
||||
#endif
|
||||
|
||||
|
||||
typedef signed int int_t;
|
||||
typedef unsigned int uint_t;
|
||||
typedef double cost_t;
|
||||
typedef char boolean;
|
||||
typedef enum fp_t { FP_1 = 1, FP_2 = 2, FP_DYNAMIC = 3 } fp_t;
|
||||
|
||||
extern int_t lapjv_internal(
|
||||
const uint_t n, cost_t *cost[],
|
||||
int_t *x, int_t *y);
|
||||
|
||||
#endif // LAPJV_H
|
|
@ -0,0 +1,432 @@
|
|||
#include "BYTETracker.h"
|
||||
#include "lapjv.h"
|
||||
|
||||
namespace sv {
|
||||
|
||||
std::vector<STrack*> BYTETracker::joint_stracks( std::vector<STrack*> &tlista, std::vector<STrack> &tlistb)
|
||||
{
|
||||
std::map<int, int> exists;
|
||||
std::vector<STrack*> res;
|
||||
for (int i = 0; i < tlista.size(); i++)
|
||||
{
|
||||
exists.insert(std::pair<int, int>(tlista[i]->track_id, 1));
|
||||
res.push_back(tlista[i]);
|
||||
}
|
||||
for (int i = 0; i < tlistb.size(); i++)
|
||||
{
|
||||
int tid = tlistb[i].track_id;
|
||||
if (!exists[tid] || exists.count(tid) == 0)
|
||||
{
|
||||
exists[tid] = 1;
|
||||
res.push_back(&tlistb[i]);
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
std::vector<STrack> BYTETracker::joint_stracks( std::vector<STrack> &tlista, std::vector<STrack> &tlistb)
|
||||
{
|
||||
std::map<int, int> exists;
|
||||
std::vector<STrack> res;
|
||||
for (int i = 0; i < tlista.size(); i++)
|
||||
{
|
||||
exists.insert(std::pair<int, int>(tlista[i].track_id, 1));
|
||||
res.push_back(tlista[i]);
|
||||
}
|
||||
for (int i = 0; i < tlistb.size(); i++)
|
||||
{
|
||||
int tid = tlistb[i].track_id;
|
||||
if (!exists[tid] || exists.count(tid) == 0)
|
||||
{
|
||||
exists[tid] = 1;
|
||||
res.push_back(tlistb[i]);
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
std::vector<STrack> BYTETracker::sub_stracks( std::vector<STrack> &tlista, std::vector<STrack> &tlistb)
|
||||
{
|
||||
std::map<int, STrack> stracks;
|
||||
for (int i = 0; i < tlista.size(); i++)
|
||||
{
|
||||
stracks.insert(std::pair<int, STrack>(tlista[i].track_id, tlista[i]));
|
||||
}
|
||||
for (int i = 0; i < tlistb.size(); i++)
|
||||
{
|
||||
int tid = tlistb[i].track_id;
|
||||
if (stracks.count(tid) != 0)
|
||||
{
|
||||
stracks.erase(tid);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<STrack> res;
|
||||
std::map<int, STrack>::iterator it;
|
||||
for (it = stracks.begin(); it != stracks.end(); ++it)
|
||||
{
|
||||
res.push_back(it->second);
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
void BYTETracker::remove_duplicate_stracks( std::vector<STrack> &resa, std::vector<STrack> &resb, std::vector<STrack> &stracksa, std::vector<STrack> &stracksb)
|
||||
{
|
||||
std::vector< std::vector<float> > pdist = iou_distance(stracksa, stracksb);
|
||||
std::vector<std::pair<int, int> > pairs;
|
||||
for (int i = 0; i < pdist.size(); i++)
|
||||
{
|
||||
for (int j = 0; j < pdist[i].size(); j++)
|
||||
{
|
||||
if (pdist[i][j] < 0.15)
|
||||
{
|
||||
pairs.push_back(std::pair<int, int>(i, j));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<int> dupa, dupb;
|
||||
for (int i = 0; i < pairs.size(); i++)
|
||||
{
|
||||
int timep = stracksa[pairs[i].first].frame_id - stracksa[pairs[i].first].start_frame;
|
||||
int timeq = stracksb[pairs[i].second].frame_id - stracksb[pairs[i].second].start_frame;
|
||||
if (timep > timeq)
|
||||
dupb.push_back(pairs[i].second);
|
||||
else
|
||||
dupa.push_back(pairs[i].first);
|
||||
}
|
||||
|
||||
for (int i = 0; i < stracksa.size(); i++)
|
||||
{
|
||||
std::vector<int>::iterator iter = find(dupa.begin(), dupa.end(), i);
|
||||
if (iter == dupa.end())
|
||||
{
|
||||
resa.push_back(stracksa[i]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < stracksb.size(); i++)
|
||||
{
|
||||
std::vector<int>::iterator iter = find(dupb.begin(), dupb.end(), i);
|
||||
if (iter == dupb.end())
|
||||
{
|
||||
resb.push_back(stracksb[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void BYTETracker::linear_assignment( std::vector< std::vector<float> > &cost_matrix, int cost_matrix_size, int cost_matrix_size_size, float thresh,
|
||||
std::vector< std::vector<int> > &matches, std::vector<int> &unmatched_a, std::vector<int> &unmatched_b)
|
||||
{
|
||||
if (cost_matrix.size() == 0)
|
||||
{
|
||||
for (int i = 0; i < cost_matrix_size; i++)
|
||||
{
|
||||
unmatched_a.push_back(i);
|
||||
}
|
||||
for (int i = 0; i < cost_matrix_size_size; i++)
|
||||
{
|
||||
unmatched_b.push_back(i);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<int> rowsol; std::vector<int> colsol;
|
||||
float c = lapjv(cost_matrix, rowsol, colsol, true, thresh);
|
||||
for (int i = 0; i < rowsol.size(); i++)
|
||||
{
|
||||
if (rowsol[i] >= 0)
|
||||
{
|
||||
std::vector<int> match;
|
||||
match.push_back(i);
|
||||
match.push_back(rowsol[i]);
|
||||
matches.push_back(match);
|
||||
}
|
||||
else
|
||||
{
|
||||
unmatched_a.push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < colsol.size(); i++)
|
||||
{
|
||||
if (colsol[i] < 0)
|
||||
{
|
||||
unmatched_b.push_back(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector< std::vector<float> > BYTETracker::ious( std::vector< std::vector<float> > &atlbrs, std::vector< std::vector<float> > &btlbrs)
|
||||
{
|
||||
std::vector< std::vector<float> > ious;
|
||||
if (atlbrs.size()*btlbrs.size() == 0)
|
||||
return ious;
|
||||
|
||||
ious.resize(atlbrs.size());
|
||||
for (int i = 0; i < ious.size(); i++)
|
||||
{
|
||||
ious[i].resize(btlbrs.size());
|
||||
}
|
||||
|
||||
//bbox_ious
|
||||
for (int k = 0; k < btlbrs.size(); k++)
|
||||
{
|
||||
std::vector<float> ious_tmp;
|
||||
float box_area = (btlbrs[k][2] - btlbrs[k][0] + 1)*(btlbrs[k][3] - btlbrs[k][1] + 1);
|
||||
for (int n = 0; n < atlbrs.size(); n++)
|
||||
{
|
||||
float iw = cv::min(atlbrs[n][2], btlbrs[k][2]) - cv::max(atlbrs[n][0], btlbrs[k][0]) + 1;
|
||||
if (iw > 0)
|
||||
{
|
||||
float ih = cv::min(atlbrs[n][3], btlbrs[k][3]) - cv::max(atlbrs[n][1], btlbrs[k][1]) + 1;
|
||||
if(ih > 0)
|
||||
{
|
||||
float ua = (atlbrs[n][2] - atlbrs[n][0] + 1)*(atlbrs[n][3] - atlbrs[n][1] + 1) + box_area - iw * ih;
|
||||
ious[n][k] = iw * ih / ua;
|
||||
}
|
||||
else
|
||||
{
|
||||
ious[n][k] = 0.0;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
ious[n][k] = 0.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return ious;
|
||||
}
|
||||
|
||||
std::vector< std::vector<float> > BYTETracker::iou_distance( std::vector<STrack*> &atracks, std::vector<STrack> &btracks, int &dist_size, int &dist_size_size)
|
||||
{
|
||||
std::vector< std::vector<float> > cost_matrix;
|
||||
if (atracks.size() * btracks.size() == 0)
|
||||
{
|
||||
dist_size = atracks.size();
|
||||
dist_size_size = btracks.size();
|
||||
return cost_matrix;
|
||||
}
|
||||
std::vector< std::vector<float> > atlbrs, btlbrs;
|
||||
for (int i = 0; i < atracks.size(); i++)
|
||||
{
|
||||
atlbrs.push_back(atracks[i]->tlbr);
|
||||
}
|
||||
for (int i = 0; i < btracks.size(); i++)
|
||||
{
|
||||
btlbrs.push_back(btracks[i].tlbr);
|
||||
}
|
||||
|
||||
dist_size = atracks.size();
|
||||
dist_size_size = btracks.size();
|
||||
|
||||
std::vector< std::vector<float> > _ious = ious(atlbrs, btlbrs);
|
||||
|
||||
for (int i = 0; i < _ious.size();i++)
|
||||
{
|
||||
std::vector<float> _iou;
|
||||
for (int j = 0; j < _ious[i].size(); j++)
|
||||
{
|
||||
_iou.push_back(1 - _ious[i][j]);
|
||||
}
|
||||
cost_matrix.push_back(_iou);
|
||||
}
|
||||
|
||||
return cost_matrix;
|
||||
}
|
||||
|
||||
std::vector< std::vector<float> > BYTETracker::iou_distance( std::vector<STrack> &atracks, std::vector<STrack> &btracks)
|
||||
{
|
||||
std::vector< std::vector<float> > atlbrs, btlbrs;
|
||||
for (int i = 0; i < atracks.size(); i++)
|
||||
{
|
||||
atlbrs.push_back(atracks[i].tlbr);
|
||||
}
|
||||
for (int i = 0; i < btracks.size(); i++)
|
||||
{
|
||||
btlbrs.push_back(btracks[i].tlbr);
|
||||
}
|
||||
|
||||
std::vector< std::vector<float> > _ious = ious(atlbrs, btlbrs);
|
||||
std::vector< std::vector<float> > cost_matrix;
|
||||
for (int i = 0; i < _ious.size(); i++)
|
||||
{
|
||||
std::vector<float> _iou;
|
||||
for (int j = 0; j < _ious[i].size(); j++)
|
||||
{
|
||||
_iou.push_back(1 - _ious[i][j]);
|
||||
}
|
||||
cost_matrix.push_back(_iou);
|
||||
}
|
||||
|
||||
return cost_matrix;
|
||||
}
|
||||
|
||||
double BYTETracker::lapjv(const std::vector< std::vector<float> > &cost, std::vector<int> &rowsol, std::vector<int> &colsol,
|
||||
bool extend_cost, float cost_limit, bool return_cost)
|
||||
{
|
||||
std::vector< std::vector<float> > cost_c;
|
||||
cost_c.assign(cost.begin(), cost.end());
|
||||
|
||||
std::vector< std::vector<float> > cost_c_extended;
|
||||
|
||||
int n_rows = cost.size();
|
||||
int n_cols = cost[0].size();
|
||||
rowsol.resize(n_rows);
|
||||
colsol.resize(n_cols);
|
||||
|
||||
int n = 0;
|
||||
if (n_rows == n_cols)
|
||||
{
|
||||
n = n_rows;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (!extend_cost)
|
||||
{
|
||||
std::cout << "set extend_cost=True" << std::endl;
|
||||
system("pause");
|
||||
exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
if (extend_cost || cost_limit < LONG_MAX)
|
||||
{
|
||||
n = n_rows + n_cols;
|
||||
cost_c_extended.resize(n);
|
||||
for (int i = 0; i < cost_c_extended.size(); i++)
|
||||
cost_c_extended[i].resize(n);
|
||||
|
||||
if (cost_limit < LONG_MAX)
|
||||
{
|
||||
for (int i = 0; i < cost_c_extended.size(); i++)
|
||||
{
|
||||
for (int j = 0; j < cost_c_extended[i].size(); j++)
|
||||
{
|
||||
cost_c_extended[i][j] = cost_limit / 2.0;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
float cost_max = -1;
|
||||
for (int i = 0; i < cost_c.size(); i++)
|
||||
{
|
||||
for (int j = 0; j < cost_c[i].size(); j++)
|
||||
{
|
||||
if (cost_c[i][j] > cost_max)
|
||||
cost_max = cost_c[i][j];
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < cost_c_extended.size(); i++)
|
||||
{
|
||||
for (int j = 0; j < cost_c_extended[i].size(); j++)
|
||||
{
|
||||
cost_c_extended[i][j] = cost_max + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = n_rows; i < cost_c_extended.size(); i++)
|
||||
{
|
||||
for (int j = n_cols; j < cost_c_extended[i].size(); j++)
|
||||
{
|
||||
cost_c_extended[i][j] = 0;
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < n_rows; i++)
|
||||
{
|
||||
for (int j = 0; j < n_cols; j++)
|
||||
{
|
||||
cost_c_extended[i][j] = cost_c[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
cost_c.clear();
|
||||
cost_c.assign(cost_c_extended.begin(), cost_c_extended.end());
|
||||
}
|
||||
|
||||
double **cost_ptr;
|
||||
cost_ptr = new double *[sizeof(double *) * n];
|
||||
for (int i = 0; i < n; i++)
|
||||
cost_ptr[i] = new double[sizeof(double) * n];
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
for (int j = 0; j < n; j++)
|
||||
{
|
||||
cost_ptr[i][j] = cost_c[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
int* x_c = new int[sizeof(int) * n];
|
||||
int *y_c = new int[sizeof(int) * n];
|
||||
|
||||
int ret = lapjv_internal(n, cost_ptr, x_c, y_c);
|
||||
if (ret != 0)
|
||||
{
|
||||
std::cout << "Calculate Wrong!" << std::endl;
|
||||
system("pause");
|
||||
exit(0);
|
||||
}
|
||||
|
||||
double opt = 0.0;
|
||||
|
||||
if (n != n_rows)
|
||||
{
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
if (x_c[i] >= n_cols)
|
||||
x_c[i] = -1;
|
||||
if (y_c[i] >= n_rows)
|
||||
y_c[i] = -1;
|
||||
}
|
||||
for (int i = 0; i < n_rows; i++)
|
||||
{
|
||||
rowsol[i] = x_c[i];
|
||||
}
|
||||
for (int i = 0; i < n_cols; i++)
|
||||
{
|
||||
colsol[i] = y_c[i];
|
||||
}
|
||||
|
||||
if (return_cost)
|
||||
{
|
||||
for (int i = 0; i < rowsol.size(); i++)
|
||||
{
|
||||
if (rowsol[i] != -1)
|
||||
{
|
||||
//cout << i << "\t" << rowsol[i] << "\t" << cost_ptr[i][rowsol[i]] << endl;
|
||||
opt += cost_ptr[i][rowsol[i]];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (return_cost)
|
||||
{
|
||||
for (int i = 0; i < rowsol.size(); i++)
|
||||
{
|
||||
opt += cost_ptr[i][rowsol[i]];
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
delete[]cost_ptr[i];
|
||||
}
|
||||
delete[]cost_ptr;
|
||||
delete[]x_c;
|
||||
delete[]y_c;
|
||||
|
||||
return opt;
|
||||
}
|
||||
|
||||
cv::Scalar BYTETracker::get_color(int idx)
|
||||
{
|
||||
idx += 3;
|
||||
return cv::Scalar(37 * idx % 255, 17 * idx % 255, 29 * idx % 255);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,377 @@
|
|||
#include "sort.h"
|
||||
#include <cmath>
|
||||
#include <fstream>
|
||||
#include <limits>
|
||||
#include <vector>
|
||||
#include "gason.h"
|
||||
#include "sv_util.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
||||
namespace sv {
|
||||
|
||||
|
||||
KalmanFilter::KalmanFilter()
|
||||
{
|
||||
this->_chi2inv95 << 3.8415, 5.9915, 7.8147, 9.4877, 11.070, 12.592, 14.067, 15.507, 16.919;
|
||||
this->_F = MatrixXd::Identity(8, 8);
|
||||
for (int i=0; i<4; i++)
|
||||
{
|
||||
this->_F(i,i+4) = 1.; //1
|
||||
}
|
||||
this->_H = MatrixXd::Identity(4, 8);
|
||||
this->_std_weight_position = 1. / 20; //1./20
|
||||
this->_std_weight_vel = 1. / 160; //1./160
|
||||
}
|
||||
|
||||
KalmanFilter::~KalmanFilter()
|
||||
{
|
||||
}
|
||||
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > KalmanFilter::initiate(Vector4d &bbox)
|
||||
{
|
||||
Matrix<double,8,1> mean;
|
||||
Matrix<double,4,1> zero_vector;
|
||||
zero_vector.setZero();
|
||||
mean << bbox(0), bbox(1), (double)bbox(2) / (double)bbox(3), bbox(3), zero_vector;
|
||||
VectorXd stds(8);
|
||||
stds << 2 * this->_std_weight_position * mean(3), 2 * this->_std_weight_position * mean(3), 0.01, 2 * this->_std_weight_position * mean(3), \
|
||||
10 * this->_std_weight_vel * mean(3), 10 * this->_std_weight_vel * mean(3), 1e-5, 10 * this->_std_weight_vel * mean(3);
|
||||
MatrixXd squared = stds.array().square();
|
||||
Matrix<double, 8, 8> covariances;
|
||||
covariances = squared.asDiagonal();
|
||||
return make_pair(mean, covariances);
|
||||
}
|
||||
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > KalmanFilter::update(Matrix<double, 8, 1> mean, Matrix<double, 8, 8> covariances, sv::Box &box)
|
||||
{
|
||||
VectorXd measurement(4);
|
||||
double a = (double)(box.x2-box.x1) / (double)(box.y2-box.y1);
|
||||
measurement << box.x1+(box.x2-box.x1)/2, box.y1+(box.y2-box.y1)/2, a, box.y2-box.y1;
|
||||
pair<Matrix<double, 4, 1>, Matrix<double, 4, 4> > projected = project(mean, covariances);
|
||||
Matrix<double, 4, 1> projected_mean = projected.first;
|
||||
Matrix<double, 4, 4> projected_cov = projected.second;
|
||||
|
||||
Eigen::LLT<Eigen::MatrixXd> chol_factor(projected_cov);
|
||||
MatrixXd Kalman_gain = (chol_factor.solve((covariances * this->_H.transpose()).transpose())).transpose();
|
||||
|
||||
VectorXd innovation = measurement - projected_mean;
|
||||
Matrix<double, 8, 1> new_mean = mean + Kalman_gain *innovation;
|
||||
Matrix<double, 8, 8> new_covariances = covariances - Kalman_gain * projected_cov * Kalman_gain.transpose();
|
||||
|
||||
return make_pair(new_mean, new_covariances);
|
||||
}
|
||||
|
||||
pair<Matrix<double, 4, 1>, Matrix<double, 4, 4> > KalmanFilter::project(Matrix<double, 8, 1> mean, Matrix<double, 8, 8> covariances)
|
||||
{
|
||||
VectorXd stds(4);
|
||||
stds << this->_std_weight_position * mean(3), this->_std_weight_position * mean(3), 0.1, this->_std_weight_position * mean(3);
|
||||
MatrixXd squared = stds.array().square();
|
||||
MatrixXd R = squared.asDiagonal();
|
||||
|
||||
Matrix<double, 4, 1> pro_mean = this->_H * mean;
|
||||
Matrix<double, 4, 4> pro_covariances = this->_H * covariances * this->_H.transpose() + R;
|
||||
return make_pair(pro_mean, pro_covariances);
|
||||
}
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > KalmanFilter::predict(Matrix<double, 8, 1> mean, Matrix<double, 8, 8> covariances)
|
||||
{
|
||||
VectorXd stds(8);
|
||||
stds << this->_std_weight_position * mean(3), this->_std_weight_position * mean(3), 1e-2, this->_std_weight_position * mean(3), \
|
||||
this->_std_weight_vel * mean(3), this->_std_weight_vel * mean(3), 1e-5, this->_std_weight_vel * mean(3); // a = 0.01
|
||||
MatrixXd squared = stds.array().square();
|
||||
MatrixXd Q = squared.asDiagonal();
|
||||
Matrix<double, 8, 1> pre_mean = this->_F * mean;
|
||||
Matrix<double, 8, 8> pre_cov = this->_F * covariances * this->_F.transpose()+Q;//+Q
|
||||
return make_pair(pre_mean, pre_cov);
|
||||
}
|
||||
|
||||
|
||||
SORT::~SORT()
|
||||
{
|
||||
}
|
||||
|
||||
void SORT::update(TargetsInFrame& tgts)
|
||||
{
|
||||
KalmanFilter kf;
|
||||
if (! this->_tracklets.size() || tgts.targets.size() == 0)
|
||||
{
|
||||
Vector4d bbox;
|
||||
for (int i=0; i<tgts.targets.size(); i++)
|
||||
{
|
||||
sv::Box box;
|
||||
tgts.targets[i].getBox(box);
|
||||
Tracklet tracklet;
|
||||
tracklet.id = ++ this->_next_tracklet_id;
|
||||
tgts.targets[i].tracked_id = this->_next_tracklet_id;
|
||||
tgts.targets[i].has_tid = true;
|
||||
|
||||
tracklet.bbox << box.x1+(box.x2-box.x1)/2, box.y1+(box.y2-box.y1)/2, box.x2-box.x1, box.y2-box.y1; // x,y,w,h; center(x,y)
|
||||
|
||||
tracklet.age = 0;
|
||||
tracklet.hits = 1;
|
||||
//tracklet.misses = 0;
|
||||
tracklet.frame_id = tgts.frame_id;
|
||||
tracklet.category_id = tgts.targets[i].category_id;
|
||||
if (tgts.frame_id == 0)
|
||||
{
|
||||
tracklet.tentative = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
tracklet.tentative = true;
|
||||
}
|
||||
// initate the motion
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > motion = kf.initiate(tracklet.bbox);
|
||||
tracklet.mean = motion.first;
|
||||
tracklet.covariance = motion.second;
|
||||
|
||||
this->_tracklets.push_back(tracklet);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i=0; i<tgts.targets.size(); i++)
|
||||
{
|
||||
tgts.targets[i].tracked_id = 0;
|
||||
tgts.targets[i].has_tid = true;
|
||||
}
|
||||
|
||||
vector<int> match_det(tgts.targets.size(), -1);
|
||||
// predict the next state of each tracklet
|
||||
for (auto& tracklet : this->_tracklets)
|
||||
{
|
||||
tracklet.age++;
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > motion = kf.predict(tracklet.mean, tracklet.covariance);
|
||||
tracklet.bbox << motion.first(0), motion.first(1), motion.first(2) * motion.first(3), motion.first(3);
|
||||
tracklet.mean = motion.first;
|
||||
tracklet.covariance = motion.second;
|
||||
}
|
||||
|
||||
// Match the detections to the existing tracklets
|
||||
vector<vector<double> > iouMatrix(this->_tracklets.size(), vector<double> (tgts.targets.size(), 0));
|
||||
for (int i=0; i<this->_tracklets.size(); i++)
|
||||
{
|
||||
for (int j=0; j<tgts.targets.size(); j++)
|
||||
{
|
||||
sv::Box box;
|
||||
tgts.targets[j].getBox(box);
|
||||
iouMatrix[i][j] = this->_iou(this->_tracklets[i], box);
|
||||
}
|
||||
}
|
||||
|
||||
vector<pair<int, int> > matches = this->_hungarian(iouMatrix);
|
||||
for (auto& match : matches)
|
||||
{
|
||||
int trackletIndex = match.first;
|
||||
int detectionIndex = match.second;
|
||||
if (trackletIndex >= 0 && detectionIndex >= 0)
|
||||
{
|
||||
if (iouMatrix[match.first][match.second] <= 1-_iou_threshold) // iou_thrshold
|
||||
{
|
||||
sv::Box box;
|
||||
tgts.targets[detectionIndex].getBox(box);
|
||||
this->_tracklets[trackletIndex].age = 0;
|
||||
this->_tracklets[trackletIndex].hits++;
|
||||
this->_tracklets[trackletIndex].frame_id = tgts.frame_id;
|
||||
this->_tracklets[trackletIndex].bbox << box.x1+(box.x2-box.x1)/2, box.y1+(box.y2-box.y1)/2, box.x2-box.x1, box.y2-box.y1;
|
||||
tgts.targets[detectionIndex].tracked_id = this->_tracklets[trackletIndex].id;
|
||||
match_det[detectionIndex] = trackletIndex;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector <vector<double>> ().swap(iouMatrix);
|
||||
for (int i=0; i<tgts.targets.size(); i++)
|
||||
{
|
||||
if (match_det[i] == -1)
|
||||
{
|
||||
sv::Box box;
|
||||
tgts.targets[i].getBox(box);
|
||||
Tracklet tracklet;
|
||||
tracklet.id = ++ this->_next_tracklet_id;
|
||||
tracklet.bbox << box.x1+(box.x2-box.x1)/2, (double)(box.y1+(box.y2-box.y1)/2), box.x2-box.x1, box.y2-box.y1; // c_x, c_y, w, h
|
||||
tracklet.age = 0;
|
||||
tracklet.hits = 1;
|
||||
tracklet.frame_id = tgts.frame_id;
|
||||
tracklet.category_id = tgts.targets[i].category_id;
|
||||
tracklet.tentative = true;
|
||||
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > new_motion = kf.initiate(tracklet.bbox);
|
||||
tracklet.mean = new_motion.first;
|
||||
tracklet.covariance = new_motion.second;
|
||||
|
||||
tgts.targets[i].tracked_id = this->_next_tracklet_id;
|
||||
tgts.targets[i].has_tid = true;
|
||||
this->_tracklets.push_back(tracklet);
|
||||
}
|
||||
else
|
||||
{
|
||||
sv::Box box;
|
||||
int track_id = match_det[i];
|
||||
tgts.targets[i].getBox(box);
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > updated = kf.update(this->_tracklets[track_id].mean, this->_tracklets[track_id].covariance, box);
|
||||
this->_tracklets[track_id].mean = updated.first;
|
||||
this->_tracklets[track_id].covariance = updated.second;
|
||||
}
|
||||
}
|
||||
|
||||
//sift tracklets
|
||||
for (auto& tracklet : this->_tracklets)
|
||||
{
|
||||
if (tracklet.hits >= _min_hits)
|
||||
{
|
||||
tracklet.tentative = false;
|
||||
}
|
||||
if ((tgts.frame_id-tracklet.frame_id <= _max_age) && !(tracklet.tentative && tracklet.frame_id != tgts.frame_id))
|
||||
{
|
||||
_new_tracklets.push_back(tracklet);
|
||||
}
|
||||
}
|
||||
_tracklets = _new_tracklets;
|
||||
std::vector <Tracklet> ().swap(_new_tracklets);
|
||||
}
|
||||
}
|
||||
|
||||
vector<Tracklet> SORT::getTracklets() const
|
||||
{
|
||||
return this->_tracklets;
|
||||
}
|
||||
|
||||
double SORT::_iou(Tracklet& tracklet, sv::Box& box)
|
||||
{
|
||||
double trackletX1 = tracklet.bbox(0)-tracklet.bbox(2)/2;
|
||||
double trackletY1 = tracklet.bbox(1)-tracklet.bbox(3)/2;
|
||||
double trackletX2 = tracklet.bbox(0) + tracklet.bbox(2)/2;
|
||||
double trackletY2 = tracklet.bbox(1) + tracklet.bbox(3)/2;
|
||||
|
||||
double detectionX1 = box.x1;
|
||||
double detectionY1 = box.y1;
|
||||
double detectionX2 = box.x2;
|
||||
double detectionY2 = box.y2;
|
||||
|
||||
double intersectionX1 = max(trackletX1, detectionX1);
|
||||
double intersectionY1 = max(trackletY1, detectionY1);
|
||||
double intersectionX2 = min(trackletX2, detectionX2);
|
||||
double intersectionY2 = min(trackletY2, detectionY2);
|
||||
|
||||
double w = (intersectionX2-intersectionX1 > 0.0) ? (intersectionX2-intersectionX1) : 0.0;
|
||||
double h = (intersectionY2-intersectionY1 > 0.0) ? (intersectionY2-intersectionY1) : 0.0;
|
||||
double intersectionArea = w * h;
|
||||
|
||||
double trackletArea = tracklet.bbox(2) * tracklet.bbox(3);
|
||||
|
||||
double detectionArea = (box.x2-box.x1) * (box.y2-box.y1);
|
||||
double unionArea = trackletArea + detectionArea - intersectionArea;
|
||||
double iou = (1 - intersectionArea / unionArea * 1.0);
|
||||
|
||||
return iou;
|
||||
}
|
||||
|
||||
// Function to find the minimum element in a vector
|
||||
double SORT::_findMin(const std::vector<double>& vec) {
|
||||
double minVal = std::numeric_limits<double>::max();
|
||||
for (double val : vec) {
|
||||
if (val < minVal) {
|
||||
minVal = val;
|
||||
}
|
||||
}
|
||||
return minVal;
|
||||
}
|
||||
|
||||
// Function to subtract the minimum value from each row of the cost matrix
|
||||
void SORT::_subtractMinFromRows(std::vector<std::vector<double>>& costMatrix) {
|
||||
for (auto& row : costMatrix) {
|
||||
double minVal = _findMin(row);
|
||||
for (double& val : row) {
|
||||
val -= minVal;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Function to subtract the minimum value from each column of the cost matrix
|
||||
void SORT::_subtractMinFromCols(std::vector<std::vector<double>>& costMatrix) {
|
||||
for (size_t col = 0; col < costMatrix[0].size(); ++col) {
|
||||
double minVal = std::numeric_limits<double>::max();
|
||||
for (size_t row = 0; row < costMatrix.size(); ++row) {
|
||||
if (costMatrix[row][col] < minVal) {
|
||||
minVal = costMatrix[row][col];
|
||||
}
|
||||
}
|
||||
for (size_t row = 0; row < costMatrix.size(); ++row) {
|
||||
costMatrix[row][col] -= minVal;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Function to find a matching using the Hungarian algorithm
|
||||
vector<pair<int, int> > SORT::_hungarian(vector<vector<double> > costMatrix)
|
||||
{
|
||||
size_t numRows = costMatrix.size();
|
||||
size_t numCols = costMatrix[0].size();
|
||||
|
||||
//transpose the matrix if necessary
|
||||
const bool transposed = numCols > numRows;
|
||||
if (transposed) {
|
||||
vector<vector<double>> transposedMatrix(numCols, vector<double>(numRows));
|
||||
for (int i = 0; i < numRows; i++)
|
||||
{
|
||||
for (int j = 0; j < numCols; j++)
|
||||
{
|
||||
transposedMatrix[j][i] = costMatrix[i][j];
|
||||
}
|
||||
}
|
||||
costMatrix = transposedMatrix;
|
||||
swap(numRows, numCols);
|
||||
}
|
||||
// Determine the larger dimension for matching
|
||||
size_t maxDim = std::max(numRows, numCols);
|
||||
|
||||
// Create a square cost matrix by padding with zeros if necessary
|
||||
std::vector<std::vector<double>> squareMatrix(maxDim, std::vector<double>(maxDim, 0.0));
|
||||
for (size_t row = 0; row < numRows; ++row) {
|
||||
for (size_t col = 0; col < numCols; ++col) {
|
||||
squareMatrix[row][col] = costMatrix[row][col];
|
||||
}
|
||||
}
|
||||
|
||||
// Subtract the minimum value from each row and column
|
||||
_subtractMinFromRows(squareMatrix);
|
||||
_subtractMinFromCols(squareMatrix);
|
||||
|
||||
// Initialize the assignment vectors with -1 values
|
||||
std::vector<int> rowAssignment(maxDim, -1);
|
||||
std::vector<int> colAssignment(maxDim, -1);
|
||||
|
||||
// Perform the matching
|
||||
for (size_t row = 0; row < maxDim; ++row) {
|
||||
std::vector<bool> visitedCols(maxDim, false);
|
||||
for (size_t col = 0; col < maxDim; ++col) {
|
||||
if (squareMatrix[row][col] == 0 && colAssignment[col] == -1) {
|
||||
rowAssignment[row] = col;
|
||||
colAssignment[col] = row;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert the assignment vectors to pair<int, int> format
|
||||
std::vector<std::pair<int, int>> assignmentPairs;
|
||||
for (size_t row = 0; row < numRows; ++row) {
|
||||
int col = rowAssignment[row];
|
||||
if (col != -1) {
|
||||
if (col >= numCols) {
|
||||
col = -1;
|
||||
}
|
||||
assignmentPairs.emplace_back(row, col);
|
||||
}
|
||||
}
|
||||
if (transposed) {
|
||||
for (auto& assignment : assignmentPairs)
|
||||
{
|
||||
swap(assignment.first, assignment.second);
|
||||
}
|
||||
}
|
||||
return assignmentPairs;
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,77 @@
|
|||
#ifndef __SV_SORT__
|
||||
#define __SV_SORT__
|
||||
|
||||
#include "sv_core.h"
|
||||
#include <opencv2/opencv.hpp>
|
||||
#include <opencv2/aruco.hpp>
|
||||
#include <opencv2/tracking.hpp>
|
||||
#include <string>
|
||||
#include <chrono>
|
||||
#include <Eigen/Dense>
|
||||
|
||||
|
||||
namespace sv {
|
||||
|
||||
|
||||
|
||||
// define the tracklet struct to store the tracked objects.
|
||||
struct Tracklet
|
||||
{
|
||||
/* data */
|
||||
public:
|
||||
Eigen::Vector4d bbox; // double x, y, w, h;
|
||||
int id = 0;
|
||||
int age;
|
||||
int hits;
|
||||
int misses;
|
||||
int frame_id = 0;
|
||||
int category_id;
|
||||
bool tentative;
|
||||
std::vector<double> features;
|
||||
Eigen::Matrix<double, 8, 1> mean;
|
||||
Eigen::Matrix<double, 8, 8> covariance;
|
||||
};
|
||||
|
||||
|
||||
class KalmanFilter {
|
||||
public:
|
||||
KalmanFilter();
|
||||
~KalmanFilter();
|
||||
std::pair<Eigen::Matrix<double, 8, 1>, Eigen::Matrix<double, 8, 8> > initiate(Eigen::Vector4d &bbox);
|
||||
std::pair<Eigen::Matrix<double, 8, 1>, Eigen::Matrix<double, 8, 8> > update(Eigen::Matrix<double, 8, 1> mean, Eigen::Matrix<double, 8, 8> covariances, Box &box);
|
||||
std::pair<Eigen::Matrix<double, 8, 1>, Eigen::Matrix<double, 8, 8> > predict(Eigen::Matrix<double, 8, 1> mean, Eigen::Matrix<double, 8, 8> covariances);
|
||||
std::pair<Eigen::Matrix<double, 4, 1>, Eigen::Matrix<double, 4, 4> > project(Eigen::Matrix<double, 8, 1> mean, Eigen::Matrix<double, 8, 8> covariances);
|
||||
private:
|
||||
Eigen::Matrix<double, 8, 8> _F;
|
||||
Eigen::Matrix<double, 4, 8> _H;
|
||||
Eigen::Matrix<double, 9, 1> _chi2inv95;
|
||||
double _std_weight_position;
|
||||
double _std_weight_vel;
|
||||
};
|
||||
|
||||
|
||||
class SORT {
|
||||
public:
|
||||
SORT(double iou_threshold, int max_age, int min_hits): _iou_threshold(iou_threshold), _max_age(max_age), _min_hits(min_hits), _next_tracklet_id(0) {};
|
||||
~SORT();
|
||||
void update(TargetsInFrame &tgts);
|
||||
std::vector<Tracklet> getTracklets() const;
|
||||
private:
|
||||
double _iou(Tracklet &tracklet, Box &box);
|
||||
std::vector<std::pair<int,int>> _hungarian(std::vector<std::vector<double>> costMatrix);
|
||||
double _findMin(const std::vector<double>& vec);
|
||||
void _subtractMinFromRows(std::vector<std::vector<double>>& costMatrix);
|
||||
void _subtractMinFromCols(std::vector<std::vector<double>>& costMatrix);
|
||||
//bool _augment(const std::vector<std::vector<double>>& costMatrix, int row, std::vector<int>& rowMatch, std::vector<int>& colMatch, std::vector<bool>& visited);
|
||||
|
||||
double _iou_threshold;
|
||||
int _max_age;
|
||||
int _min_hits;
|
||||
int _next_tracklet_id;
|
||||
std::vector <Tracklet> _tracklets;
|
||||
std::vector <Tracklet> _new_tracklets;
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
#endif
|
|
@ -5,6 +5,8 @@
|
|||
#include <vector>
|
||||
#include "gason.h"
|
||||
#include "sv_util.h"
|
||||
#include "sort.h"
|
||||
#include "BYTETracker.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace Eigen;
|
||||
|
@ -16,16 +18,22 @@ MultipleObjectTracker::MultipleObjectTracker()
|
|||
{
|
||||
this->_params_loaded = false;
|
||||
this->_sort_impl = NULL;
|
||||
this->_bytetrack_impl = NULL;
|
||||
}
|
||||
MultipleObjectTracker::~MultipleObjectTracker()
|
||||
{
|
||||
if (this->_sort_impl)
|
||||
delete this->_sort_impl;
|
||||
else if (this->_bytetrack_impl)
|
||||
delete this->_bytetrack_impl;
|
||||
}
|
||||
|
||||
sv::TargetsInFrame MultipleObjectTracker::track(cv::Mat img_, TargetsInFrame& tgts_)
|
||||
{
|
||||
sv::TargetsInFrame person_tgts(tgts_.frame_id);
|
||||
person_tgts.width = img_.size().width;
|
||||
person_tgts.height = img_.size().height;
|
||||
|
||||
if (!this->_params_loaded)
|
||||
{
|
||||
this->_load();
|
||||
|
@ -43,6 +51,18 @@ sv::TargetsInFrame MultipleObjectTracker::track(cv::Mat img_, TargetsInFrame& tg
|
|||
}
|
||||
this->_sort_impl->update(person_tgts);
|
||||
}
|
||||
else if ("bytetrack" == this->_algorithm && this->_bytetrack_impl)
|
||||
{
|
||||
this->_detector->detect(img_, tgts_);
|
||||
for (auto target : tgts_.targets)
|
||||
{
|
||||
if (target.category_id == 0)
|
||||
{
|
||||
person_tgts.targets.push_back(target);
|
||||
}
|
||||
}
|
||||
this->_bytetrack_impl->update(person_tgts);
|
||||
}
|
||||
return person_tgts;
|
||||
}
|
||||
|
||||
|
@ -57,6 +77,10 @@ void MultipleObjectTracker::init(CommonObjectDetector* detector_)
|
|||
{
|
||||
this->_sort_impl = new SORT(this->_iou_thres, this->_max_age, this->_min_hits);
|
||||
}
|
||||
else if("bytetrack" == this->_algorithm)
|
||||
{
|
||||
this->_bytetrack_impl = new BYTETracker(this->_frame_rate, this->_track_buffer);
|
||||
}
|
||||
this->_detector = detector_;
|
||||
}
|
||||
|
||||
|
@ -80,7 +104,7 @@ void MultipleObjectTracker::_load()
|
|||
else
|
||||
this->_with_reid = false;
|
||||
|
||||
std::cout << "with_reid: " << this->_with_reid << std::endl;
|
||||
//std::cout << "with_reid: " << this->_with_reid << std::endl;
|
||||
}
|
||||
else if ("reid_input_size" == std::string(i->key) && i->value.getTag() == JSON_ARRAY) {
|
||||
int jcnt = 0;
|
||||
|
@ -93,394 +117,39 @@ void MultipleObjectTracker::_load()
|
|||
}
|
||||
jcnt += 1;
|
||||
}
|
||||
std::cout << "reid_input_w: " << this->_reid_input_w << std::endl;
|
||||
std::cout << "reid_input_h: " << this->_reid_input_h << std::endl;
|
||||
//std::cout << "reid_input_w: " << this->_reid_input_w << std::endl;
|
||||
//std::cout << "reid_input_h: " << this->_reid_input_h << std::endl;
|
||||
}
|
||||
else if ("reid_num_samples" == std::string(i->key)) {
|
||||
this->_reid_num_samples = i->value.toNumber();
|
||||
std::cout << "reid_num_samples: " << this->_reid_num_samples << std::endl;
|
||||
//std::cout << "reid_num_samples: " << this->_reid_num_samples << std::endl;
|
||||
}
|
||||
else if ("reid_match_thres" == std::string(i->key)) {
|
||||
this->_reid_match_thres = i->value.toNumber();
|
||||
std::cout << "reid_match_thres: " << this->_reid_match_thres << std::endl;
|
||||
//std::cout << "reid_match_thres: " << this->_reid_match_thres << std::endl;
|
||||
}
|
||||
else if ("iou_thres" == std::string(i->key)) {
|
||||
this->_iou_thres = i->value.toNumber();
|
||||
std::cout << "iou_thres: " << this->_iou_thres << std::endl;
|
||||
//std::cout << "iou_thres: " << this->_iou_thres << std::endl;
|
||||
}
|
||||
else if ("max_age" == std::string(i->key)) {
|
||||
this->_max_age = i->value.toNumber();
|
||||
std::cout << "max_age: " << this->_max_age << std::endl;
|
||||
//std::cout << "max_age: " << this->_max_age << std::endl;
|
||||
}
|
||||
else if ("min_hits" == std::string(i->key)) {
|
||||
this->_min_hits = i->value.toNumber();
|
||||
std::cout << "min_hits: " << this->_min_hits << std::endl;
|
||||
//std::cout << "min_hits: " << this->_min_hits << std::endl;
|
||||
}
|
||||
else if ("frame_rate" == std::string(i->key)) {
|
||||
this->_frame_rate = i->value.toNumber();
|
||||
//std::cout << "max_age: " << this->_max_age << std::endl;
|
||||
}
|
||||
else if ("track_buffer" == std::string(i->key)) {
|
||||
this->_track_buffer = i->value.toNumber();
|
||||
//std::cout << "min_hits: " << this->_min_hits << std::endl;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
KalmanFilter::KalmanFilter()
|
||||
{
|
||||
this->_chi2inv95 << 3.8415, 5.9915, 7.8147, 9.4877, 11.070, 12.592, 14.067, 15.507, 16.919;
|
||||
this->_F = MatrixXd::Identity(8, 8);
|
||||
for (int i=0; i<4; i++)
|
||||
{
|
||||
this->_F(i,i+4) = 1.; //1
|
||||
}
|
||||
this->_H = MatrixXd::Identity(4, 8);
|
||||
this->_std_weight_position = 1. / 20; //1./20
|
||||
this->_std_weight_vel = 1. / 160; //1./160
|
||||
}
|
||||
|
||||
KalmanFilter::~KalmanFilter()
|
||||
{
|
||||
}
|
||||
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > KalmanFilter::initiate(Vector4d &bbox)
|
||||
{
|
||||
Matrix<double,8,1> mean;
|
||||
Matrix<double,4,1> zero_vector;
|
||||
zero_vector.setZero();
|
||||
mean << bbox(0), bbox(1), (double)bbox(2) / (double)bbox(3), bbox(3), zero_vector;
|
||||
VectorXd stds(8);
|
||||
stds << 2 * this->_std_weight_position * mean(3), 2 * this->_std_weight_position * mean(3), 0.01, 2 * this->_std_weight_position * mean(3), \
|
||||
10 * this->_std_weight_vel * mean(3), 10 * this->_std_weight_vel * mean(3), 1e-5, 10 * this->_std_weight_vel * mean(3);
|
||||
MatrixXd squared = stds.array().square();
|
||||
Matrix<double, 8, 8> covariances;
|
||||
covariances = squared.asDiagonal();
|
||||
return make_pair(mean, covariances);
|
||||
}
|
||||
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > KalmanFilter::update(Matrix<double, 8, 1> mean, Matrix<double, 8, 8> covariances, sv::Box &box)
|
||||
{
|
||||
VectorXd measurement(4);
|
||||
double a = (double)(box.x2-box.x1) / (double)(box.y2-box.y1);
|
||||
measurement << box.x1+(box.x2-box.x1)/2, box.y1+(box.y2-box.y1)/2, a, box.y2-box.y1;
|
||||
pair<Matrix<double, 4, 1>, Matrix<double, 4, 4> > projected = project(mean, covariances);
|
||||
Matrix<double, 4, 1> projected_mean = projected.first;
|
||||
Matrix<double, 4, 4> projected_cov = projected.second;
|
||||
|
||||
Eigen::LLT<Eigen::MatrixXd> chol_factor(projected_cov);
|
||||
MatrixXd Kalman_gain = (chol_factor.solve((covariances * this->_H.transpose()).transpose())).transpose();
|
||||
|
||||
VectorXd innovation = measurement - projected_mean;
|
||||
Matrix<double, 8, 1> new_mean = mean + Kalman_gain *innovation;
|
||||
Matrix<double, 8, 8> new_covariances = covariances - Kalman_gain * projected_cov * Kalman_gain.transpose();
|
||||
|
||||
return make_pair(new_mean, new_covariances);
|
||||
}
|
||||
|
||||
pair<Matrix<double, 4, 1>, Matrix<double, 4, 4> > KalmanFilter::project(Matrix<double, 8, 1> mean, Matrix<double, 8, 8> covariances)
|
||||
{
|
||||
VectorXd stds(4);
|
||||
stds << this->_std_weight_position * mean(3), this->_std_weight_position * mean(3), 0.1, this->_std_weight_position * mean(3);
|
||||
MatrixXd squared = stds.array().square();
|
||||
MatrixXd R = squared.asDiagonal();
|
||||
|
||||
Matrix<double, 4, 1> pro_mean = this->_H * mean;
|
||||
Matrix<double, 4, 4> pro_covariances = this->_H * covariances * this->_H.transpose() + R;
|
||||
return make_pair(pro_mean, pro_covariances);
|
||||
}
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > KalmanFilter::predict(Matrix<double, 8, 1> mean, Matrix<double, 8, 8> covariances)
|
||||
{
|
||||
VectorXd stds(8);
|
||||
stds << this->_std_weight_position * mean(3), this->_std_weight_position * mean(3), 1e-2, this->_std_weight_position * mean(3), \
|
||||
this->_std_weight_vel * mean(3), this->_std_weight_vel * mean(3), 1e-5, this->_std_weight_vel * mean(3); // a = 0.01
|
||||
MatrixXd squared = stds.array().square();
|
||||
MatrixXd Q = squared.asDiagonal();
|
||||
Matrix<double, 8, 1> pre_mean = this->_F * mean;
|
||||
Matrix<double, 8, 8> pre_cov = this->_F * covariances * this->_F.transpose()+Q;//+Q
|
||||
return make_pair(pre_mean, pre_cov);
|
||||
}
|
||||
|
||||
|
||||
SORT::~SORT()
|
||||
{
|
||||
}
|
||||
|
||||
void SORT::update(TargetsInFrame& tgts)
|
||||
{
|
||||
sv::KalmanFilter kf;
|
||||
if (! this->_tracklets.size() || tgts.targets.size() == 0)
|
||||
{
|
||||
Vector4d bbox;
|
||||
for (int i=0; i<tgts.targets.size(); i++)
|
||||
{
|
||||
sv::Box box;
|
||||
tgts.targets[i].getBox(box);
|
||||
Tracklet tracklet;
|
||||
tracklet.id = ++ this->_next_tracklet_id;
|
||||
tgts.targets[i].tracked_id = this->_next_tracklet_id;
|
||||
tgts.targets[i].has_tid = true;
|
||||
|
||||
tracklet.bbox << box.x1+(box.x2-box.x1)/2, box.y1+(box.y2-box.y1)/2, box.x2-box.x1, box.y2-box.y1; // x,y,w,h; center(x,y)
|
||||
|
||||
tracklet.age = 0;
|
||||
tracklet.hits = 1;
|
||||
//tracklet.misses = 0;
|
||||
tracklet.frame_id = tgts.frame_id;
|
||||
tracklet.category_id = tgts.targets[i].category_id;
|
||||
if (tgts.frame_id == 0)
|
||||
{
|
||||
tracklet.tentative = false;
|
||||
}
|
||||
else
|
||||
{
|
||||
tracklet.tentative = true;
|
||||
}
|
||||
// initate the motion
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > motion = kf.initiate(tracklet.bbox);
|
||||
tracklet.mean = motion.first;
|
||||
tracklet.covariance = motion.second;
|
||||
|
||||
this->_tracklets.push_back(tracklet);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i=0; i<tgts.targets.size(); i++)
|
||||
{
|
||||
tgts.targets[i].tracked_id = 0;
|
||||
tgts.targets[i].has_tid = true;
|
||||
}
|
||||
|
||||
vector<int> match_det(tgts.targets.size(), -1);
|
||||
// predict the next state of each tracklet
|
||||
for (auto& tracklet : this->_tracklets)
|
||||
{
|
||||
tracklet.age++;
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > motion = kf.predict(tracklet.mean, tracklet.covariance);
|
||||
tracklet.bbox << motion.first(0), motion.first(1), motion.first(2) * motion.first(3), motion.first(3);
|
||||
tracklet.mean = motion.first;
|
||||
tracklet.covariance = motion.second;
|
||||
}
|
||||
|
||||
// Match the detections to the existing tracklets
|
||||
vector<vector<double> > iouMatrix(this->_tracklets.size(), vector<double> (tgts.targets.size(), 0));
|
||||
for (int i=0; i<this->_tracklets.size(); i++)
|
||||
{
|
||||
for (int j=0; j<tgts.targets.size(); j++)
|
||||
{
|
||||
sv::Box box;
|
||||
tgts.targets[j].getBox(box);
|
||||
iouMatrix[i][j] = this->_iou(this->_tracklets[i], box);
|
||||
}
|
||||
}
|
||||
|
||||
vector<pair<int, int> > matches = this->_hungarian(iouMatrix);
|
||||
for (auto& match : matches)
|
||||
{
|
||||
int trackletIndex = match.first;
|
||||
int detectionIndex = match.second;
|
||||
if (trackletIndex >= 0 && detectionIndex >= 0)
|
||||
{
|
||||
if (iouMatrix[match.first][match.second] <= 1-_iou_threshold) // iou_thrshold
|
||||
{
|
||||
sv::Box box;
|
||||
tgts.targets[detectionIndex].getBox(box);
|
||||
this->_tracklets[trackletIndex].age = 0;
|
||||
this->_tracklets[trackletIndex].hits++;
|
||||
this->_tracklets[trackletIndex].frame_id = tgts.frame_id;
|
||||
this->_tracklets[trackletIndex].bbox << box.x1+(box.x2-box.x1)/2, box.y1+(box.y2-box.y1)/2, box.x2-box.x1, box.y2-box.y1;
|
||||
tgts.targets[detectionIndex].tracked_id = this->_tracklets[trackletIndex].id;
|
||||
match_det[detectionIndex] = trackletIndex;
|
||||
}
|
||||
}
|
||||
}
|
||||
std::vector <vector<double>> ().swap(iouMatrix);
|
||||
for (int i=0; i<tgts.targets.size(); i++)
|
||||
{
|
||||
if (match_det[i] == -1)
|
||||
{
|
||||
sv::Box box;
|
||||
tgts.targets[i].getBox(box);
|
||||
Tracklet tracklet;
|
||||
tracklet.id = ++ this->_next_tracklet_id;
|
||||
tracklet.bbox << box.x1+(box.x2-box.x1)/2, (double)(box.y1+(box.y2-box.y1)/2), box.x2-box.x1, box.y2-box.y1; // c_x, c_y, w, h
|
||||
tracklet.age = 0;
|
||||
tracklet.hits = 1;
|
||||
tracklet.frame_id = tgts.frame_id;
|
||||
tracklet.category_id = tgts.targets[i].category_id;
|
||||
tracklet.tentative = true;
|
||||
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > new_motion = kf.initiate(tracklet.bbox);
|
||||
tracklet.mean = new_motion.first;
|
||||
tracklet.covariance = new_motion.second;
|
||||
|
||||
tgts.targets[i].tracked_id = this->_next_tracklet_id;
|
||||
tgts.targets[i].has_tid = true;
|
||||
this->_tracklets.push_back(tracklet);
|
||||
}
|
||||
else
|
||||
{
|
||||
sv::Box box;
|
||||
int track_id = match_det[i];
|
||||
tgts.targets[i].getBox(box);
|
||||
pair<Matrix<double, 8, 1>, Matrix<double, 8, 8> > updated = kf.update(this->_tracklets[track_id].mean, this->_tracklets[track_id].covariance, box);
|
||||
this->_tracklets[track_id].mean = updated.first;
|
||||
this->_tracklets[track_id].covariance = updated.second;
|
||||
}
|
||||
}
|
||||
|
||||
//sift tracklets
|
||||
for (auto& tracklet : this->_tracklets)
|
||||
{
|
||||
if (tracklet.hits >= _min_hits)
|
||||
{
|
||||
tracklet.tentative = false;
|
||||
}
|
||||
if ((tgts.frame_id-tracklet.frame_id <= _max_age) && !(tracklet.tentative && tracklet.frame_id != tgts.frame_id))
|
||||
{
|
||||
_new_tracklets.push_back(tracklet);
|
||||
}
|
||||
}
|
||||
_tracklets = _new_tracklets;
|
||||
std::vector <Tracklet> ().swap(_new_tracklets);
|
||||
}
|
||||
}
|
||||
|
||||
vector<Tracklet> SORT::getTracklets() const
|
||||
{
|
||||
return this->_tracklets;
|
||||
}
|
||||
|
||||
double SORT::_iou(Tracklet& tracklet, sv::Box& box)
|
||||
{
|
||||
double trackletX1 = tracklet.bbox(0)-tracklet.bbox(2)/2;
|
||||
double trackletY1 = tracklet.bbox(1)-tracklet.bbox(3)/2;
|
||||
double trackletX2 = tracklet.bbox(0) + tracklet.bbox(2)/2;
|
||||
double trackletY2 = tracklet.bbox(1) + tracklet.bbox(3)/2;
|
||||
|
||||
double detectionX1 = box.x1;
|
||||
double detectionY1 = box.y1;
|
||||
double detectionX2 = box.x2;
|
||||
double detectionY2 = box.y2;
|
||||
|
||||
double intersectionX1 = max(trackletX1, detectionX1);
|
||||
double intersectionY1 = max(trackletY1, detectionY1);
|
||||
double intersectionX2 = min(trackletX2, detectionX2);
|
||||
double intersectionY2 = min(trackletY2, detectionY2);
|
||||
|
||||
double w = (intersectionX2-intersectionX1 > 0.0) ? (intersectionX2-intersectionX1) : 0.0;
|
||||
double h = (intersectionY2-intersectionY1 > 0.0) ? (intersectionY2-intersectionY1) : 0.0;
|
||||
double intersectionArea = w * h;
|
||||
|
||||
double trackletArea = tracklet.bbox(2) * tracklet.bbox(3);
|
||||
|
||||
double detectionArea = (box.x2-box.x1) * (box.y2-box.y1);
|
||||
double unionArea = trackletArea + detectionArea - intersectionArea;
|
||||
double iou = (1 - intersectionArea / unionArea * 1.0);
|
||||
|
||||
return iou;
|
||||
}
|
||||
|
||||
// Function to find the minimum element in a vector
|
||||
double SORT::_findMin(const std::vector<double>& vec) {
|
||||
double minVal = std::numeric_limits<double>::max();
|
||||
for (double val : vec) {
|
||||
if (val < minVal) {
|
||||
minVal = val;
|
||||
}
|
||||
}
|
||||
return minVal;
|
||||
}
|
||||
|
||||
// Function to subtract the minimum value from each row of the cost matrix
|
||||
void SORT::_subtractMinFromRows(std::vector<std::vector<double>>& costMatrix) {
|
||||
for (auto& row : costMatrix) {
|
||||
double minVal = _findMin(row);
|
||||
for (double& val : row) {
|
||||
val -= minVal;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Function to subtract the minimum value from each column of the cost matrix
|
||||
void SORT::_subtractMinFromCols(std::vector<std::vector<double>>& costMatrix) {
|
||||
for (size_t col = 0; col < costMatrix[0].size(); ++col) {
|
||||
double minVal = std::numeric_limits<double>::max();
|
||||
for (size_t row = 0; row < costMatrix.size(); ++row) {
|
||||
if (costMatrix[row][col] < minVal) {
|
||||
minVal = costMatrix[row][col];
|
||||
}
|
||||
}
|
||||
for (size_t row = 0; row < costMatrix.size(); ++row) {
|
||||
costMatrix[row][col] -= minVal;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Function to find a matching using the Hungarian algorithm
|
||||
vector<pair<int, int> > SORT::_hungarian(vector<vector<double> > costMatrix)
|
||||
{
|
||||
size_t numRows = costMatrix.size();
|
||||
size_t numCols = costMatrix[0].size();
|
||||
|
||||
//transpose the matrix if necessary
|
||||
const bool transposed = numCols > numRows;
|
||||
if (transposed) {
|
||||
vector<vector<double>> transposedMatrix(numCols, vector<double>(numRows));
|
||||
for (int i = 0; i < numRows; i++)
|
||||
{
|
||||
for (int j = 0; j < numCols; j++)
|
||||
{
|
||||
transposedMatrix[j][i] = costMatrix[i][j];
|
||||
}
|
||||
}
|
||||
costMatrix = transposedMatrix;
|
||||
swap(numRows, numCols);
|
||||
}
|
||||
// Determine the larger dimension for matching
|
||||
size_t maxDim = std::max(numRows, numCols);
|
||||
|
||||
// Create a square cost matrix by padding with zeros if necessary
|
||||
std::vector<std::vector<double>> squareMatrix(maxDim, std::vector<double>(maxDim, 0.0));
|
||||
for (size_t row = 0; row < numRows; ++row) {
|
||||
for (size_t col = 0; col < numCols; ++col) {
|
||||
squareMatrix[row][col] = costMatrix[row][col];
|
||||
}
|
||||
}
|
||||
|
||||
// Subtract the minimum value from each row and column
|
||||
_subtractMinFromRows(squareMatrix);
|
||||
_subtractMinFromCols(squareMatrix);
|
||||
|
||||
// Initialize the assignment vectors with -1 values
|
||||
std::vector<int> rowAssignment(maxDim, -1);
|
||||
std::vector<int> colAssignment(maxDim, -1);
|
||||
|
||||
// Perform the matching
|
||||
for (size_t row = 0; row < maxDim; ++row) {
|
||||
std::vector<bool> visitedCols(maxDim, false);
|
||||
for (size_t col = 0; col < maxDim; ++col) {
|
||||
if (squareMatrix[row][col] == 0 && colAssignment[col] == -1) {
|
||||
rowAssignment[row] = col;
|
||||
colAssignment[col] = row;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Convert the assignment vectors to pair<int, int> format
|
||||
std::vector<std::pair<int, int>> assignmentPairs;
|
||||
for (size_t row = 0; row < numRows; ++row) {
|
||||
int col = rowAssignment[row];
|
||||
if (col != -1) {
|
||||
if (col >= numCols) {
|
||||
col = -1;
|
||||
}
|
||||
assignmentPairs.emplace_back(row, col);
|
||||
}
|
||||
}
|
||||
if (transposed) {
|
||||
for (auto& assignment : assignmentPairs)
|
||||
{
|
||||
swap(assignment.first, assignment.second);
|
||||
}
|
||||
}
|
||||
return assignmentPairs;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -15,7 +15,7 @@ namespace sv {
|
|||
|
||||
|
||||
class SORT;
|
||||
|
||||
class BYTETracker;
|
||||
|
||||
class MultipleObjectTracker : public CameraAlgorithm
|
||||
{
|
||||
|
@ -39,70 +39,12 @@ private:
|
|||
double _iou_thres;
|
||||
int _max_age;
|
||||
int _min_hits;
|
||||
int _frame_rate;
|
||||
int _track_buffer;
|
||||
|
||||
SORT* _sort_impl;
|
||||
BYTETracker* _bytetrack_impl;
|
||||
CommonObjectDetector* _detector;
|
||||
};
|
||||
|
||||
|
||||
// define the tracklet struct to store the tracked objects.
|
||||
struct Tracklet
|
||||
{
|
||||
/* data */
|
||||
public:
|
||||
Eigen::Vector4d bbox; // double x, y, w, h;
|
||||
int id = 0;
|
||||
int age;
|
||||
int hits;
|
||||
int misses;
|
||||
int frame_id = 0;
|
||||
int category_id;
|
||||
bool tentative;
|
||||
std::vector<double> features;
|
||||
Eigen::Matrix<double, 8, 1> mean;
|
||||
Eigen::Matrix<double, 8, 8> covariance;
|
||||
};
|
||||
|
||||
|
||||
class KalmanFilter {
|
||||
public:
|
||||
KalmanFilter();
|
||||
~KalmanFilter();
|
||||
std::pair<Eigen::Matrix<double, 8, 1>, Eigen::Matrix<double, 8, 8> > initiate(Eigen::Vector4d &bbox);
|
||||
std::pair<Eigen::Matrix<double, 8, 1>, Eigen::Matrix<double, 8, 8> > update(Eigen::Matrix<double, 8, 1> mean, Eigen::Matrix<double, 8, 8> covariances, Box &box);
|
||||
std::pair<Eigen::Matrix<double, 8, 1>, Eigen::Matrix<double, 8, 8> > predict(Eigen::Matrix<double, 8, 1> mean, Eigen::Matrix<double, 8, 8> covariances);
|
||||
std::pair<Eigen::Matrix<double, 4, 1>, Eigen::Matrix<double, 4, 4> > project(Eigen::Matrix<double, 8, 1> mean, Eigen::Matrix<double, 8, 8> covariances);
|
||||
private:
|
||||
Eigen::Matrix<double, 8, 8> _F;
|
||||
Eigen::Matrix<double, 4, 8> _H;
|
||||
Eigen::Matrix<double, 9, 1> _chi2inv95;
|
||||
double _std_weight_position;
|
||||
double _std_weight_vel;
|
||||
};
|
||||
|
||||
|
||||
class SORT {
|
||||
public:
|
||||
SORT(double iou_threshold, int max_age, int min_hits): _iou_threshold(iou_threshold), _max_age(max_age), _min_hits(min_hits), _next_tracklet_id(0) {};
|
||||
~SORT();
|
||||
void update(TargetsInFrame &tgts);
|
||||
std::vector<Tracklet> getTracklets() const;
|
||||
private:
|
||||
double _iou(Tracklet &tracklet, Box &box);
|
||||
std::vector<std::pair<int,int>> _hungarian(std::vector<std::vector<double>> costMatrix);
|
||||
double _findMin(const std::vector<double>& vec);
|
||||
void _subtractMinFromRows(std::vector<std::vector<double>>& costMatrix);
|
||||
void _subtractMinFromCols(std::vector<std::vector<double>>& costMatrix);
|
||||
//bool _augment(const std::vector<std::vector<double>>& costMatrix, int row, std::vector<int>& rowMatch, std::vector<int>& colMatch, std::vector<bool>& visited);
|
||||
|
||||
double _iou_threshold;
|
||||
int _max_age;
|
||||
int _min_hits;
|
||||
int _next_tracklet_id;
|
||||
std::vector <Tracklet> _tracklets;
|
||||
std::vector <Tracklet> _new_tracklets;
|
||||
};
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue