572 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			572 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b STRSEN
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download STRSEN + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strsen.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strsen.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strsen.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE STRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
 | |
| *                          M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          COMPQ, JOB
 | |
| *       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
 | |
| *       REAL               S, SEP
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            SELECT( * )
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
 | |
| *      $                   WR( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> STRSEN reorders the real Schur factorization of a real matrix
 | |
| *> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
 | |
| *> the leading diagonal blocks of the upper quasi-triangular matrix T,
 | |
| *> and the leading columns of Q form an orthonormal basis of the
 | |
| *> corresponding right invariant subspace.
 | |
| *>
 | |
| *> Optionally the routine computes the reciprocal condition numbers of
 | |
| *> the cluster of eigenvalues and/or the invariant subspace.
 | |
| *>
 | |
| *> T must be in Schur canonical form (as returned by SHSEQR), that is,
 | |
| *> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
 | |
| *> 2-by-2 diagonal block has its diagonal elements equal and its
 | |
| *> off-diagonal elements of opposite sign.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOB
 | |
| *> \verbatim
 | |
| *>          JOB is CHARACTER*1
 | |
| *>          Specifies whether condition numbers are required for the
 | |
| *>          cluster of eigenvalues (S) or the invariant subspace (SEP):
 | |
| *>          = 'N': none;
 | |
| *>          = 'E': for eigenvalues only (S);
 | |
| *>          = 'V': for invariant subspace only (SEP);
 | |
| *>          = 'B': for both eigenvalues and invariant subspace (S and
 | |
| *>                 SEP).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] COMPQ
 | |
| *> \verbatim
 | |
| *>          COMPQ is CHARACTER*1
 | |
| *>          = 'V': update the matrix Q of Schur vectors;
 | |
| *>          = 'N': do not update Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SELECT
 | |
| *> \verbatim
 | |
| *>          SELECT is LOGICAL array, dimension (N)
 | |
| *>          SELECT specifies the eigenvalues in the selected cluster. To
 | |
| *>          select a real eigenvalue w(j), SELECT(j) must be set to
 | |
| *>          .TRUE.. To select a complex conjugate pair of eigenvalues
 | |
| *>          w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
 | |
| *>          either SELECT(j) or SELECT(j+1) or both must be set to
 | |
| *>          .TRUE.; a complex conjugate pair of eigenvalues must be
 | |
| *>          either both included in the cluster or both excluded.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix T. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] T
 | |
| *> \verbatim
 | |
| *>          T is REAL array, dimension (LDT,N)
 | |
| *>          On entry, the upper quasi-triangular matrix T, in Schur
 | |
| *>          canonical form.
 | |
| *>          On exit, T is overwritten by the reordered matrix T, again in
 | |
| *>          Schur canonical form, with the selected eigenvalues in the
 | |
| *>          leading diagonal blocks.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T. LDT >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDQ,N)
 | |
| *>          On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
 | |
| *>          On exit, if COMPQ = 'V', Q has been postmultiplied by the
 | |
| *>          orthogonal transformation matrix which reorders T; the
 | |
| *>          leading M columns of Q form an orthonormal basis for the
 | |
| *>          specified invariant subspace.
 | |
| *>          If COMPQ = 'N', Q is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q.
 | |
| *>          LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WR
 | |
| *> \verbatim
 | |
| *>          WR is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WI
 | |
| *> \verbatim
 | |
| *>          WI is REAL array, dimension (N)
 | |
| *>
 | |
| *>          The real and imaginary parts, respectively, of the reordered
 | |
| *>          eigenvalues of T. The eigenvalues are stored in the same
 | |
| *>          order as on the diagonal of T, with WR(i) = T(i,i) and, if
 | |
| *>          T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
 | |
| *>          WI(i+1) = -WI(i). Note that if a complex eigenvalue is
 | |
| *>          sufficiently ill-conditioned, then its value may differ
 | |
| *>          significantly from its value before reordering.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The dimension of the specified invariant subspace.
 | |
| *>          0 < = M <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is REAL
 | |
| *>          If JOB = 'E' or 'B', S is a lower bound on the reciprocal
 | |
| *>          condition number for the selected cluster of eigenvalues.
 | |
| *>          S cannot underestimate the true reciprocal condition number
 | |
| *>          by more than a factor of sqrt(N). If M = 0 or N, S = 1.
 | |
| *>          If JOB = 'N' or 'V', S is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SEP
 | |
| *> \verbatim
 | |
| *>          SEP is REAL
 | |
| *>          If JOB = 'V' or 'B', SEP is the estimated reciprocal
 | |
| *>          condition number of the specified invariant subspace. If
 | |
| *>          M = 0 or N, SEP = norm(T).
 | |
| *>          If JOB = 'N' or 'E', SEP is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If JOB = 'N', LWORK >= max(1,N);
 | |
| *>          if JOB = 'E', LWORK >= max(1,M*(N-M));
 | |
| *>          if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.
 | |
| *>          If JOB = 'N' or 'E', LIWORK >= 1;
 | |
| *>          if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal size of the IWORK array,
 | |
| *>          returns this value as the first entry of the IWORK array, and
 | |
| *>          no error message related to LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          = 1: reordering of T failed because some eigenvalues are too
 | |
| *>               close to separate (the problem is very ill-conditioned);
 | |
| *>               T may have been partially reordered, and WR and WI
 | |
| *>               contain the eigenvalues in the same order as in T; S and
 | |
| *>               SEP (if requested) are set to zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date April 2012
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  STRSEN first collects the selected eigenvalues by computing an
 | |
| *>  orthogonal transformation Z to move them to the top left corner of T.
 | |
| *>  In other words, the selected eigenvalues are the eigenvalues of T11
 | |
| *>  in:
 | |
| *>
 | |
| *>          Z**T * T * Z = ( T11 T12 ) n1
 | |
| *>                         (  0  T22 ) n2
 | |
| *>                            n1  n2
 | |
| *>
 | |
| *>  where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
 | |
| *>  of Z span the specified invariant subspace of T.
 | |
| *>
 | |
| *>  If T has been obtained from the real Schur factorization of a matrix
 | |
| *>  A = Q*T*Q**T, then the reordered real Schur factorization of A is given
 | |
| *>  by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
 | |
| *>  the corresponding invariant subspace of A.
 | |
| *>
 | |
| *>  The reciprocal condition number of the average of the eigenvalues of
 | |
| *>  T11 may be returned in S. S lies between 0 (very badly conditioned)
 | |
| *>  and 1 (very well conditioned). It is computed as follows. First we
 | |
| *>  compute R so that
 | |
| *>
 | |
| *>                         P = ( I  R ) n1
 | |
| *>                             ( 0  0 ) n2
 | |
| *>                               n1 n2
 | |
| *>
 | |
| *>  is the projector on the invariant subspace associated with T11.
 | |
| *>  R is the solution of the Sylvester equation:
 | |
| *>
 | |
| *>                        T11*R - R*T22 = T12.
 | |
| *>
 | |
| *>  Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
 | |
| *>  the two-norm of M. Then S is computed as the lower bound
 | |
| *>
 | |
| *>                      (1 + F-norm(R)**2)**(-1/2)
 | |
| *>
 | |
| *>  on the reciprocal of 2-norm(P), the true reciprocal condition number.
 | |
| *>  S cannot underestimate 1 / 2-norm(P) by more than a factor of
 | |
| *>  sqrt(N).
 | |
| *>
 | |
| *>  An approximate error bound for the computed average of the
 | |
| *>  eigenvalues of T11 is
 | |
| *>
 | |
| *>                         EPS * norm(T) / S
 | |
| *>
 | |
| *>  where EPS is the machine precision.
 | |
| *>
 | |
| *>  The reciprocal condition number of the right invariant subspace
 | |
| *>  spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
 | |
| *>  SEP is defined as the separation of T11 and T22:
 | |
| *>
 | |
| *>                     sep( T11, T22 ) = sigma-min( C )
 | |
| *>
 | |
| *>  where sigma-min(C) is the smallest singular value of the
 | |
| *>  n1*n2-by-n1*n2 matrix
 | |
| *>
 | |
| *>     C  = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
 | |
| *>
 | |
| *>  I(m) is an m by m identity matrix, and kprod denotes the Kronecker
 | |
| *>  product. We estimate sigma-min(C) by the reciprocal of an estimate of
 | |
| *>  the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
 | |
| *>  cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
 | |
| *>
 | |
| *>  When SEP is small, small changes in T can cause large changes in
 | |
| *>  the invariant subspace. An approximate bound on the maximum angular
 | |
| *>  error in the computed right invariant subspace is
 | |
| *>
 | |
| *>                      EPS * norm(T) / SEP
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE STRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
 | |
|      $                   M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     April 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          COMPQ, JOB
 | |
|       INTEGER            INFO, LDQ, LDT, LIWORK, LWORK, M, N
 | |
|       REAL               S, SEP
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            SELECT( * )
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
 | |
|      $                   WR( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
 | |
|      $                    WANTSP
 | |
|       INTEGER            IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
 | |
|      $                   NN
 | |
|       REAL               EST, RNORM, SCALE
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLANGE
 | |
|       EXTERNAL           LSAME, SLANGE
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLACN2, SLACPY, STREXC, STRSYL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters
 | |
| *
 | |
|       WANTBH = LSAME( JOB, 'B' )
 | |
|       WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
 | |
|       WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
 | |
|       WANTQ = LSAME( COMPQ, 'V' )
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
 | |
|      $     THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE
 | |
| *
 | |
| *        Set M to the dimension of the specified invariant subspace,
 | |
| *        and test LWORK and LIWORK.
 | |
| *
 | |
|          M = 0
 | |
|          PAIR = .FALSE.
 | |
|          DO 10 K = 1, N
 | |
|             IF( PAIR ) THEN
 | |
|                PAIR = .FALSE.
 | |
|             ELSE
 | |
|                IF( K.LT.N ) THEN
 | |
|                   IF( T( K+1, K ).EQ.ZERO ) THEN
 | |
|                      IF( SELECT( K ) )
 | |
|      $                  M = M + 1
 | |
|                   ELSE
 | |
|                      PAIR = .TRUE.
 | |
|                      IF( SELECT( K ) .OR. SELECT( K+1 ) )
 | |
|      $                  M = M + 2
 | |
|                   END IF
 | |
|                ELSE
 | |
|                   IF( SELECT( N ) )
 | |
|      $               M = M + 1
 | |
|                END IF
 | |
|             END IF
 | |
|    10    CONTINUE
 | |
| *
 | |
|          N1 = M
 | |
|          N2 = N - M
 | |
|          NN = N1*N2
 | |
| *
 | |
|          IF(  WANTSP ) THEN
 | |
|             LWMIN = MAX( 1, 2*NN )
 | |
|             LIWMIN = MAX( 1, NN )
 | |
|          ELSE IF( LSAME( JOB, 'N' ) ) THEN
 | |
|             LWMIN = MAX( 1, N )
 | |
|             LIWMIN = 1
 | |
|          ELSE IF( LSAME( JOB, 'E' ) ) THEN
 | |
|             LWMIN = MAX( 1, NN )
 | |
|             LIWMIN = 1
 | |
|          END IF
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -15
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -17
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          WORK( 1 ) = LWMIN
 | |
|          IWORK( 1 ) = LIWMIN
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'STRSEN', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( M.EQ.N .OR. M.EQ.0 ) THEN
 | |
|          IF( WANTS )
 | |
|      $      S = ONE
 | |
|          IF( WANTSP )
 | |
|      $      SEP = SLANGE( '1', N, N, T, LDT, WORK )
 | |
|          GO TO 40
 | |
|       END IF
 | |
| *
 | |
| *     Collect the selected blocks at the top-left corner of T.
 | |
| *
 | |
|       KS = 0
 | |
|       PAIR = .FALSE.
 | |
|       DO 20 K = 1, N
 | |
|          IF( PAIR ) THEN
 | |
|             PAIR = .FALSE.
 | |
|          ELSE
 | |
|             SWAP = SELECT( K )
 | |
|             IF( K.LT.N ) THEN
 | |
|                IF( T( K+1, K ).NE.ZERO ) THEN
 | |
|                   PAIR = .TRUE.
 | |
|                   SWAP = SWAP .OR. SELECT( K+1 )
 | |
|                END IF
 | |
|             END IF
 | |
|             IF( SWAP ) THEN
 | |
|                KS = KS + 1
 | |
| *
 | |
| *              Swap the K-th block to position KS.
 | |
| *
 | |
|                IERR = 0
 | |
|                KK = K
 | |
|                IF( K.NE.KS )
 | |
|      $            CALL STREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
 | |
|      $                         IERR )
 | |
|                IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
 | |
| *
 | |
| *                 Blocks too close to swap: exit.
 | |
| *
 | |
|                   INFO = 1
 | |
|                   IF( WANTS )
 | |
|      $               S = ZERO
 | |
|                   IF( WANTSP )
 | |
|      $               SEP = ZERO
 | |
|                   GO TO 40
 | |
|                END IF
 | |
|                IF( PAIR )
 | |
|      $            KS = KS + 1
 | |
|             END IF
 | |
|          END IF
 | |
|    20 CONTINUE
 | |
| *
 | |
|       IF( WANTS ) THEN
 | |
| *
 | |
| *        Solve Sylvester equation for R:
 | |
| *
 | |
| *           T11*R - R*T22 = scale*T12
 | |
| *
 | |
|          CALL SLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
 | |
|          CALL STRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
 | |
|      $                LDT, WORK, N1, SCALE, IERR )
 | |
| *
 | |
| *        Estimate the reciprocal of the condition number of the cluster
 | |
| *        of eigenvalues.
 | |
| *
 | |
|          RNORM = SLANGE( 'F', N1, N2, WORK, N1, WORK )
 | |
|          IF( RNORM.EQ.ZERO ) THEN
 | |
|             S = ONE
 | |
|          ELSE
 | |
|             S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
 | |
|      $          SQRT( RNORM ) )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTSP ) THEN
 | |
| *
 | |
| *        Estimate sep(T11,T22).
 | |
| *
 | |
|          EST = ZERO
 | |
|          KASE = 0
 | |
|    30    CONTINUE
 | |
|          CALL SLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
 | |
|          IF( KASE.NE.0 ) THEN
 | |
|             IF( KASE.EQ.1 ) THEN
 | |
| *
 | |
| *              Solve  T11*R - R*T22 = scale*X.
 | |
| *
 | |
|                CALL STRSYL( 'N', 'N', -1, N1, N2, T, LDT,
 | |
|      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
 | |
|      $                      IERR )
 | |
|             ELSE
 | |
| *
 | |
| *              Solve T11**T*R - R*T22**T = scale*X.
 | |
| *
 | |
|                CALL STRSYL( 'T', 'T', -1, N1, N2, T, LDT,
 | |
|      $                      T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
 | |
|      $                      IERR )
 | |
|             END IF
 | |
|             GO TO 30
 | |
|          END IF
 | |
| *
 | |
|          SEP = SCALE / EST
 | |
|       END IF
 | |
| *
 | |
|    40 CONTINUE
 | |
| *
 | |
| *     Store the output eigenvalues in WR and WI.
 | |
| *
 | |
|       DO 50 K = 1, N
 | |
|          WR( K ) = T( K, K )
 | |
|          WI( K ) = ZERO
 | |
|    50 CONTINUE
 | |
|       DO 60 K = 1, N - 1
 | |
|          IF( T( K+1, K ).NE.ZERO ) THEN
 | |
|             WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
 | |
|      $                SQRT( ABS( T( K+1, K ) ) )
 | |
|             WI( K+1 ) = -WI( K )
 | |
|          END IF
 | |
|    60 CONTINUE
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of STRSEN
 | |
| *
 | |
|       END
 |