503 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			503 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b STPTTF copies a triangular matrix from the standard packed format (TP) to the rectangular full packed format (TF).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download STPTTF + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stpttf.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stpttf.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stpttf.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE STPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANSR, UPLO
 | |
| *       INTEGER            INFO, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               AP( 0: * ), ARF( 0: * )
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> STPTTF copies a triangular matrix A from standard packed format (TP)
 | |
| *> to rectangular full packed format (TF).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANSR
 | |
| *> \verbatim
 | |
| *>          TRANSR is CHARACTER*1
 | |
| *>          = 'N':  ARF in Normal format is wanted;
 | |
| *>          = 'T':  ARF in Conjugate-transpose format is wanted.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  A is upper triangular;
 | |
| *>          = 'L':  A is lower triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AP
 | |
| *> \verbatim
 | |
| *>          AP is REAL array, dimension ( N*(N+1)/2 ),
 | |
| *>          On entry, the upper or lower triangular matrix A, packed
 | |
| *>          columnwise in a linear array. The j-th column of A is stored
 | |
| *>          in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] ARF
 | |
| *> \verbatim
 | |
| *>          ARF is REAL array, dimension ( N*(N+1)/2 ),
 | |
| *>          On exit, the upper or lower triangular matrix A stored in
 | |
| *>          RFP format. For a further discussion see Notes below.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  We first consider Rectangular Full Packed (RFP) Format when N is
 | |
| *>  even. We give an example where N = 6.
 | |
| *>
 | |
| *>      AP is Upper             AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04 05       00
 | |
| *>      11 12 13 14 15       10 11
 | |
| *>         22 23 24 25       20 21 22
 | |
| *>            33 34 35       30 31 32 33
 | |
| *>               44 45       40 41 42 43 44
 | |
| *>                  55       50 51 52 53 54 55
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 | |
| *>  the transpose of the first three columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 | |
| *>  the transpose of the last three columns of AP lower.
 | |
| *>  This covers the case N even and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>        03 04 05                33 43 53
 | |
| *>        13 14 15                00 44 54
 | |
| *>        23 24 25                10 11 55
 | |
| *>        33 34 35                20 21 22
 | |
| *>        00 44 45                30 31 32
 | |
| *>        01 11 55                40 41 42
 | |
| *>        02 12 22                50 51 52
 | |
| *>
 | |
| *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
 | |
| *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
 | |
| *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
 | |
| *>
 | |
| *>
 | |
| *>  We then consider Rectangular Full Packed (RFP) Format when N is
 | |
| *>  odd. We give an example where N = 5.
 | |
| *>
 | |
| *>     AP is Upper                 AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04              00
 | |
| *>      11 12 13 14              10 11
 | |
| *>         22 23 24              20 21 22
 | |
| *>            33 34              30 31 32 33
 | |
| *>               44              40 41 42 43 44
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
 | |
| *>  the transpose of the first two columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
 | |
| *>  the transpose of the last two columns of AP lower.
 | |
| *>  This covers the case N odd and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>        02 03 04                00 33 43
 | |
| *>        12 13 14                10 11 44
 | |
| *>        22 23 24                20 21 22
 | |
| *>        00 33 34                30 31 32
 | |
| *>        01 11 44                40 41 42
 | |
| *>
 | |
| *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     02 12 22 00 01             00 10 20 30 40 50
 | |
| *>     03 13 23 33 11             33 11 21 31 41 51
 | |
| *>     04 14 24 34 44             43 44 22 32 42 52
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE STPTTF( TRANSR, UPLO, N, AP, ARF, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANSR, UPLO
 | |
|       INTEGER            INFO, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               AP( 0: * ), ARF( 0: * )
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LOWER, NISODD, NORMALTRANSR
 | |
|       INTEGER            N1, N2, K, NT
 | |
|       INTEGER            I, J, IJ
 | |
|       INTEGER            IJP, JP, LDA, JS
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MOD
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       NORMALTRANSR = LSAME( TRANSR, 'N' )
 | |
|       LOWER = LSAME( UPLO, 'L' )
 | |
|       IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'STPTTF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( NORMALTRANSR ) THEN
 | |
|             ARF( 0 ) = AP( 0 )
 | |
|          ELSE
 | |
|             ARF( 0 ) = AP( 0 )
 | |
|          END IF
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Size of array ARF(0:NT-1)
 | |
| *
 | |
|       NT = N*( N+1 ) / 2
 | |
| *
 | |
| *     Set N1 and N2 depending on LOWER
 | |
| *
 | |
|       IF( LOWER ) THEN
 | |
|          N2 = N / 2
 | |
|          N1 = N - N2
 | |
|       ELSE
 | |
|          N1 = N / 2
 | |
|          N2 = N - N1
 | |
|       END IF
 | |
| *
 | |
| *     If N is odd, set NISODD = .TRUE.
 | |
| *     If N is even, set K = N/2 and NISODD = .FALSE.
 | |
| *
 | |
| *     set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
 | |
| *     where noe = 0 if n is even, noe = 1 if n is odd
 | |
| *
 | |
|       IF( MOD( N, 2 ).EQ.0 ) THEN
 | |
|          K = N / 2
 | |
|          NISODD = .FALSE.
 | |
|          LDA = N + 1
 | |
|       ELSE
 | |
|          NISODD = .TRUE.
 | |
|          LDA = N
 | |
|       END IF
 | |
| *
 | |
| *     ARF^C has lda rows and n+1-noe cols
 | |
| *
 | |
|       IF( .NOT.NORMALTRANSR )
 | |
|      $   LDA = ( N+1 ) / 2
 | |
| *
 | |
| *     start execution: there are eight cases
 | |
| *
 | |
|       IF( NISODD ) THEN
 | |
| *
 | |
| *        N is odd
 | |
| *
 | |
|          IF( NORMALTRANSR ) THEN
 | |
| *
 | |
| *           N is odd and TRANSR = 'N'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              N is odd, TRANSR = 'N', and UPLO = 'L'
 | |
| *
 | |
|                IJP = 0
 | |
|                JP = 0
 | |
|                DO J = 0, N2
 | |
|                   DO I = J, N - 1
 | |
|                      IJ = I + JP
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                   JP = JP + LDA
 | |
|                END DO
 | |
|                DO I = 0, N2 - 1
 | |
|                   DO J = 1 + I, N2
 | |
|                      IJ = I + J*LDA
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              N is odd, TRANSR = 'N', and UPLO = 'U'
 | |
| *
 | |
|                IJP = 0
 | |
|                DO J = 0, N1 - 1
 | |
|                   IJ = N2 + J
 | |
|                   DO I = 0, J
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                      IJ = IJ + LDA
 | |
|                   END DO
 | |
|                END DO
 | |
|                JS = 0
 | |
|                DO J = N1, N - 1
 | |
|                   IJ = JS
 | |
|                   DO IJ = JS, JS + J
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                   JS = JS + LDA
 | |
|                END DO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           N is odd and TRANSR = 'T'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              N is odd, TRANSR = 'T', and UPLO = 'L'
 | |
| *
 | |
|                IJP = 0
 | |
|                DO I = 0, N2
 | |
|                   DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                END DO
 | |
|                JS = 1
 | |
|                DO J = 0, N2 - 1
 | |
|                   DO IJ = JS, JS + N2 - J - 1
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                   JS = JS + LDA + 1
 | |
|                END DO
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              N is odd, TRANSR = 'T', and UPLO = 'U'
 | |
| *
 | |
|                IJP = 0
 | |
|                JS = N2*LDA
 | |
|                DO J = 0, N1 - 1
 | |
|                   DO IJ = JS, JS + J
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                   JS = JS + LDA
 | |
|                END DO
 | |
|                DO I = 0, N1
 | |
|                   DO IJ = I, I + ( N1+I )*LDA, LDA
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        N is even
 | |
| *
 | |
|          IF( NORMALTRANSR ) THEN
 | |
| *
 | |
| *           N is even and TRANSR = 'N'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              N is even, TRANSR = 'N', and UPLO = 'L'
 | |
| *
 | |
|                IJP = 0
 | |
|                JP = 0
 | |
|                DO J = 0, K - 1
 | |
|                   DO I = J, N - 1
 | |
|                      IJ = 1 + I + JP
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                   JP = JP + LDA
 | |
|                END DO
 | |
|                DO I = 0, K - 1
 | |
|                   DO J = I, K - 1
 | |
|                      IJ = I + J*LDA
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              N is even, TRANSR = 'N', and UPLO = 'U'
 | |
| *
 | |
|                IJP = 0
 | |
|                DO J = 0, K - 1
 | |
|                   IJ = K + 1 + J
 | |
|                   DO I = 0, J
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                      IJ = IJ + LDA
 | |
|                   END DO
 | |
|                END DO
 | |
|                JS = 0
 | |
|                DO J = K, N - 1
 | |
|                   IJ = JS
 | |
|                   DO IJ = JS, JS + J
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                   JS = JS + LDA
 | |
|                END DO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          ELSE
 | |
| *
 | |
| *           N is even and TRANSR = 'T'
 | |
| *
 | |
|             IF( LOWER ) THEN
 | |
| *
 | |
| *              N is even, TRANSR = 'T', and UPLO = 'L'
 | |
| *
 | |
|                IJP = 0
 | |
|                DO I = 0, K - 1
 | |
|                   DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                END DO
 | |
|                JS = 0
 | |
|                DO J = 0, K - 1
 | |
|                   DO IJ = JS, JS + K - J - 1
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                   JS = JS + LDA + 1
 | |
|                END DO
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              N is even, TRANSR = 'T', and UPLO = 'U'
 | |
| *
 | |
|                IJP = 0
 | |
|                JS = ( K+1 )*LDA
 | |
|                DO J = 0, K - 1
 | |
|                   DO IJ = JS, JS + J
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                   JS = JS + LDA
 | |
|                END DO
 | |
|                DO I = 0, K - 1
 | |
|                   DO IJ = I, I + ( K+I )*LDA, LDA
 | |
|                      ARF( IJ ) = AP( IJP )
 | |
|                      IJP = IJP + 1
 | |
|                   END DO
 | |
|                END DO
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of STPTTF
 | |
| *
 | |
|       END
 |