342 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			342 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORMQL
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SORMQL + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sormql.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sormql.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sormql.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 | |
| *                          WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          SIDE, TRANS
 | |
| *       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), C( LDC, * ), TAU( * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SORMQL overwrites the general real M-by-N matrix C with
 | |
| *>
 | |
| *>                 SIDE = 'L'     SIDE = 'R'
 | |
| *> TRANS = 'N':      Q * C          C * Q
 | |
| *> TRANS = 'T':      Q**T * C       C * Q**T
 | |
| *>
 | |
| *> where Q is a real orthogonal matrix defined as the product of k
 | |
| *> elementary reflectors
 | |
| *>
 | |
| *>       Q = H(k) . . . H(2) H(1)
 | |
| *>
 | |
| *> as returned by SGEQLF. Q is of order M if SIDE = 'L' and of order N
 | |
| *> if SIDE = 'R'.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'L': apply Q or Q**T from the Left;
 | |
| *>          = 'R': apply Q or Q**T from the Right.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N':  No transpose, apply Q;
 | |
| *>          = 'T':  Transpose, apply Q**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix C. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix C. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of elementary reflectors whose product defines
 | |
| *>          the matrix Q.
 | |
| *>          If SIDE = 'L', M >= K >= 0;
 | |
| *>          if SIDE = 'R', N >= K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,K)
 | |
| *>          The i-th column must contain the vector which defines the
 | |
| *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
 | |
| *>          SGEQLF in the last k columns of its array argument A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.
 | |
| *>          If SIDE = 'L', LDA >= max(1,M);
 | |
| *>          if SIDE = 'R', LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (K)
 | |
| *>          TAU(i) must contain the scalar factor of the elementary
 | |
| *>          reflector H(i), as returned by SGEQLF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension (LDC,N)
 | |
| *>          On entry, the M-by-N matrix C.
 | |
| *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C. LDC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If SIDE = 'L', LWORK >= max(1,N);
 | |
| *>          if SIDE = 'R', LWORK >= max(1,M).
 | |
| *>          For good performance, LWORK should generally be larger.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORMQL( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 | |
|      $                   WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          SIDE, TRANS
 | |
|       INTEGER            INFO, K, LDA, LDC, LWORK, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), C( LDC, * ), TAU( * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            NBMAX, LDT, TSIZE
 | |
|       PARAMETER          ( NBMAX = 64, LDT = NBMAX+1,
 | |
|      $                     TSIZE = LDT*NBMAX )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LEFT, LQUERY, NOTRAN
 | |
|       INTEGER            I, I1, I2, I3, IB, IINFO, IWT, LDWORK, LWKOPT,
 | |
|      $                   MI, NB, NBMIN, NI, NQ, NW
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           LSAME, ILAENV
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLARFB, SLARFT, SORM2L, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LEFT = LSAME( SIDE, 'L' )
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
| *     NQ is the order of Q and NW is the minimum dimension of WORK
 | |
| *
 | |
|       IF( LEFT ) THEN
 | |
|          NQ = M
 | |
|          NW = MAX( 1, N )
 | |
|       ELSE
 | |
|          NQ = N
 | |
|          NW = MAX( 1, M )
 | |
|       END IF
 | |
|       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, NQ ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE IF( LWORK.LT.NW .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -12
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
| *
 | |
| *     Compute the workspace requirements
 | |
| *
 | |
|          IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | |
|             LWKOPT = 1
 | |
|          ELSE
 | |
|             NB = MIN( NBMAX, ILAENV( 1, 'SORMQL', SIDE // TRANS, M, N,
 | |
|      $                               K, -1 ) )
 | |
|             LWKOPT = NW*NB + TSIZE
 | |
|          END IF
 | |
|          WORK( 1 ) = LWKOPT
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SORMQL', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       NBMIN = 2
 | |
|       LDWORK = NW
 | |
|       IF( NB.GT.1 .AND. NB.LT.K ) THEN
 | |
|          IF( LWORK.LT.NW*NB+TSIZE ) THEN
 | |
|             NB = (LWORK-TSIZE) / LDWORK
 | |
|             NBMIN = MAX( 2, ILAENV( 2, 'SORMQL', SIDE // TRANS, M, N, K,
 | |
|      $              -1 ) )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( NB.LT.NBMIN .OR. NB.GE.K ) THEN
 | |
| *
 | |
| *        Use unblocked code
 | |
| *
 | |
|          CALL SORM2L( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK,
 | |
|      $                IINFO )
 | |
|       ELSE
 | |
| *
 | |
| *        Use blocked code
 | |
| *
 | |
|          IWT = 1 + NW*NB
 | |
|          IF( ( LEFT .AND. NOTRAN ) .OR.
 | |
|      $       ( .NOT.LEFT .AND. .NOT.NOTRAN ) ) THEN
 | |
|             I1 = 1
 | |
|             I2 = K
 | |
|             I3 = NB
 | |
|          ELSE
 | |
|             I1 = ( ( K-1 ) / NB )*NB + 1
 | |
|             I2 = 1
 | |
|             I3 = -NB
 | |
|          END IF
 | |
| *
 | |
|          IF( LEFT ) THEN
 | |
|             NI = N
 | |
|          ELSE
 | |
|             MI = M
 | |
|          END IF
 | |
| *
 | |
|          DO 10 I = I1, I2, I3
 | |
|             IB = MIN( NB, K-I+1 )
 | |
| *
 | |
| *           Form the triangular factor of the block reflector
 | |
| *           H = H(i+ib-1) . . . H(i+1) H(i)
 | |
| *
 | |
|             CALL SLARFT( 'Backward', 'Columnwise', NQ-K+I+IB-1, IB,
 | |
|      $                   A( 1, I ), LDA, TAU( I ), WORK( IWT ), LDT )
 | |
|             IF( LEFT ) THEN
 | |
| *
 | |
| *              H or H**T is applied to C(1:m-k+i+ib-1,1:n)
 | |
| *
 | |
|                MI = M - K + I + IB - 1
 | |
|             ELSE
 | |
| *
 | |
| *              H or H**T is applied to C(1:m,1:n-k+i+ib-1)
 | |
| *
 | |
|                NI = N - K + I + IB - 1
 | |
|             END IF
 | |
| *
 | |
| *           Apply H or H**T
 | |
| *
 | |
|             CALL SLARFB( SIDE, TRANS, 'Backward', 'Columnwise', MI, NI,
 | |
|      $                   IB, A( 1, I ), LDA, WORK( IWT ), LDT, C, LDC,
 | |
|      $                   WORK, LDWORK )
 | |
|    10    CONTINUE
 | |
|       END IF
 | |
|       WORK( 1 ) = LWKOPT
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORMQL
 | |
| *
 | |
|       END
 |