436 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			436 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DPBTRF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DPBTRF + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbtrf.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbtrf.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbtrf.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DPBTRF( UPLO, N, KD, AB, LDAB, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, KD, LDAB, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   AB( LDAB, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DPBTRF computes the Cholesky factorization of a real symmetric
 | |
| *> positive definite band matrix A.
 | |
| *>
 | |
| *> The factorization has the form
 | |
| *>    A = U**T * U,  if UPLO = 'U', or
 | |
| *>    A = L  * L**T,  if UPLO = 'L',
 | |
| *> where U is an upper triangular matrix and L is lower triangular.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AB
 | |
| *> \verbatim
 | |
| *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
 | |
| *>          On entry, the upper or lower triangle of the symmetric band
 | |
| *>          matrix A, stored in the first KD+1 rows of the array.  The
 | |
| *>          j-th column of A is stored in the j-th column of the array AB
 | |
| *>          as follows:
 | |
| *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | |
| *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the triangular factor U or L from the
 | |
| *>          Cholesky factorization A = U**T*U or A = L*L**T of the band
 | |
| *>          matrix A, in the same storage format as A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= KD+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, the leading minor of order i is not
 | |
| *>                positive definite, and the factorization could not be
 | |
| *>                completed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The band storage scheme is illustrated by the following example, when
 | |
| *>  N = 6, KD = 2, and UPLO = 'U':
 | |
| *>
 | |
| *>  On entry:                       On exit:
 | |
| *>
 | |
| *>      *    *   a13  a24  a35  a46      *    *   u13  u24  u35  u46
 | |
| *>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
 | |
| *>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
 | |
| *>
 | |
| *>  Similarly, if UPLO = 'L' the format of A is as follows:
 | |
| *>
 | |
| *>  On entry:                       On exit:
 | |
| *>
 | |
| *>     a11  a22  a33  a44  a55  a66     l11  l22  l33  l44  l55  l66
 | |
| *>     a21  a32  a43  a54  a65   *      l21  l32  l43  l54  l65   *
 | |
| *>     a31  a42  a53  a64   *    *      l31  l42  l53  l64   *    *
 | |
| *>
 | |
| *>  Array elements marked * are not used by the routine.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>  Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DPBTRF( UPLO, N, KD, AB, LDAB, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, KD, LDAB, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   AB( LDAB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
|       INTEGER            NBMAX, LDWORK
 | |
|       PARAMETER          ( NBMAX = 32, LDWORK = NBMAX+1 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, I2, I3, IB, II, J, JJ, NB
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       DOUBLE PRECISION   WORK( LDWORK, NBMAX )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       EXTERNAL           LSAME, ILAENV
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEMM, DPBTF2, DPOTF2, DSYRK, DTRSM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( ( .NOT.LSAME( UPLO, 'U' ) ) .AND.
 | |
|      $    ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( KD.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDAB.LT.KD+1 ) THEN
 | |
|          INFO = -5
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DPBTRF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Determine the block size for this environment
 | |
| *
 | |
|       NB = ILAENV( 1, 'DPBTRF', UPLO, N, KD, -1, -1 )
 | |
| *
 | |
| *     The block size must not exceed the semi-bandwidth KD, and must not
 | |
| *     exceed the limit set by the size of the local array WORK.
 | |
| *
 | |
|       NB = MIN( NB, NBMAX )
 | |
| *
 | |
|       IF( NB.LE.1 .OR. NB.GT.KD ) THEN
 | |
| *
 | |
| *        Use unblocked code
 | |
| *
 | |
|          CALL DPBTF2( UPLO, N, KD, AB, LDAB, INFO )
 | |
|       ELSE
 | |
| *
 | |
| *        Use blocked code
 | |
| *
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
| *
 | |
| *           Compute the Cholesky factorization of a symmetric band
 | |
| *           matrix, given the upper triangle of the matrix in band
 | |
| *           storage.
 | |
| *
 | |
| *           Zero the upper triangle of the work array.
 | |
| *
 | |
|             DO 20 J = 1, NB
 | |
|                DO 10 I = 1, J - 1
 | |
|                   WORK( I, J ) = ZERO
 | |
|    10          CONTINUE
 | |
|    20       CONTINUE
 | |
| *
 | |
| *           Process the band matrix one diagonal block at a time.
 | |
| *
 | |
|             DO 70 I = 1, N, NB
 | |
|                IB = MIN( NB, N-I+1 )
 | |
| *
 | |
| *              Factorize the diagonal block
 | |
| *
 | |
|                CALL DPOTF2( UPLO, IB, AB( KD+1, I ), LDAB-1, II )
 | |
|                IF( II.NE.0 ) THEN
 | |
|                   INFO = I + II - 1
 | |
|                   GO TO 150
 | |
|                END IF
 | |
|                IF( I+IB.LE.N ) THEN
 | |
| *
 | |
| *                 Update the relevant part of the trailing submatrix.
 | |
| *                 If A11 denotes the diagonal block which has just been
 | |
| *                 factorized, then we need to update the remaining
 | |
| *                 blocks in the diagram:
 | |
| *
 | |
| *                    A11   A12   A13
 | |
| *                          A22   A23
 | |
| *                                A33
 | |
| *
 | |
| *                 The numbers of rows and columns in the partitioning
 | |
| *                 are IB, I2, I3 respectively. The blocks A12, A22 and
 | |
| *                 A23 are empty if IB = KD. The upper triangle of A13
 | |
| *                 lies outside the band.
 | |
| *
 | |
|                   I2 = MIN( KD-IB, N-I-IB+1 )
 | |
|                   I3 = MIN( IB, N-I-KD+1 )
 | |
| *
 | |
|                   IF( I2.GT.0 ) THEN
 | |
| *
 | |
| *                    Update A12
 | |
| *
 | |
|                      CALL DTRSM( 'Left', 'Upper', 'Transpose',
 | |
|      $                           'Non-unit', IB, I2, ONE, AB( KD+1, I ),
 | |
|      $                           LDAB-1, AB( KD+1-IB, I+IB ), LDAB-1 )
 | |
| *
 | |
| *                    Update A22
 | |
| *
 | |
|                      CALL DSYRK( 'Upper', 'Transpose', I2, IB, -ONE,
 | |
|      $                           AB( KD+1-IB, I+IB ), LDAB-1, ONE,
 | |
|      $                           AB( KD+1, I+IB ), LDAB-1 )
 | |
|                   END IF
 | |
| *
 | |
|                   IF( I3.GT.0 ) THEN
 | |
| *
 | |
| *                    Copy the lower triangle of A13 into the work array.
 | |
| *
 | |
|                      DO 40 JJ = 1, I3
 | |
|                         DO 30 II = JJ, IB
 | |
|                            WORK( II, JJ ) = AB( II-JJ+1, JJ+I+KD-1 )
 | |
|    30                   CONTINUE
 | |
|    40                CONTINUE
 | |
| *
 | |
| *                    Update A13 (in the work array).
 | |
| *
 | |
|                      CALL DTRSM( 'Left', 'Upper', 'Transpose',
 | |
|      $                           'Non-unit', IB, I3, ONE, AB( KD+1, I ),
 | |
|      $                           LDAB-1, WORK, LDWORK )
 | |
| *
 | |
| *                    Update A23
 | |
| *
 | |
|                      IF( I2.GT.0 )
 | |
|      $                  CALL DGEMM( 'Transpose', 'No Transpose', I2, I3,
 | |
|      $                              IB, -ONE, AB( KD+1-IB, I+IB ),
 | |
|      $                              LDAB-1, WORK, LDWORK, ONE,
 | |
|      $                              AB( 1+IB, I+KD ), LDAB-1 )
 | |
| *
 | |
| *                    Update A33
 | |
| *
 | |
|                      CALL DSYRK( 'Upper', 'Transpose', I3, IB, -ONE,
 | |
|      $                           WORK, LDWORK, ONE, AB( KD+1, I+KD ),
 | |
|      $                           LDAB-1 )
 | |
| *
 | |
| *                    Copy the lower triangle of A13 back into place.
 | |
| *
 | |
|                      DO 60 JJ = 1, I3
 | |
|                         DO 50 II = JJ, IB
 | |
|                            AB( II-JJ+1, JJ+I+KD-1 ) = WORK( II, JJ )
 | |
|    50                   CONTINUE
 | |
|    60                CONTINUE
 | |
|                   END IF
 | |
|                END IF
 | |
|    70       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           Compute the Cholesky factorization of a symmetric band
 | |
| *           matrix, given the lower triangle of the matrix in band
 | |
| *           storage.
 | |
| *
 | |
| *           Zero the lower triangle of the work array.
 | |
| *
 | |
|             DO 90 J = 1, NB
 | |
|                DO 80 I = J + 1, NB
 | |
|                   WORK( I, J ) = ZERO
 | |
|    80          CONTINUE
 | |
|    90       CONTINUE
 | |
| *
 | |
| *           Process the band matrix one diagonal block at a time.
 | |
| *
 | |
|             DO 140 I = 1, N, NB
 | |
|                IB = MIN( NB, N-I+1 )
 | |
| *
 | |
| *              Factorize the diagonal block
 | |
| *
 | |
|                CALL DPOTF2( UPLO, IB, AB( 1, I ), LDAB-1, II )
 | |
|                IF( II.NE.0 ) THEN
 | |
|                   INFO = I + II - 1
 | |
|                   GO TO 150
 | |
|                END IF
 | |
|                IF( I+IB.LE.N ) THEN
 | |
| *
 | |
| *                 Update the relevant part of the trailing submatrix.
 | |
| *                 If A11 denotes the diagonal block which has just been
 | |
| *                 factorized, then we need to update the remaining
 | |
| *                 blocks in the diagram:
 | |
| *
 | |
| *                    A11
 | |
| *                    A21   A22
 | |
| *                    A31   A32   A33
 | |
| *
 | |
| *                 The numbers of rows and columns in the partitioning
 | |
| *                 are IB, I2, I3 respectively. The blocks A21, A22 and
 | |
| *                 A32 are empty if IB = KD. The lower triangle of A31
 | |
| *                 lies outside the band.
 | |
| *
 | |
|                   I2 = MIN( KD-IB, N-I-IB+1 )
 | |
|                   I3 = MIN( IB, N-I-KD+1 )
 | |
| *
 | |
|                   IF( I2.GT.0 ) THEN
 | |
| *
 | |
| *                    Update A21
 | |
| *
 | |
|                      CALL DTRSM( 'Right', 'Lower', 'Transpose',
 | |
|      $                           'Non-unit', I2, IB, ONE, AB( 1, I ),
 | |
|      $                           LDAB-1, AB( 1+IB, I ), LDAB-1 )
 | |
| *
 | |
| *                    Update A22
 | |
| *
 | |
|                      CALL DSYRK( 'Lower', 'No Transpose', I2, IB, -ONE,
 | |
|      $                           AB( 1+IB, I ), LDAB-1, ONE,
 | |
|      $                           AB( 1, I+IB ), LDAB-1 )
 | |
|                   END IF
 | |
| *
 | |
|                   IF( I3.GT.0 ) THEN
 | |
| *
 | |
| *                    Copy the upper triangle of A31 into the work array.
 | |
| *
 | |
|                      DO 110 JJ = 1, IB
 | |
|                         DO 100 II = 1, MIN( JJ, I3 )
 | |
|                            WORK( II, JJ ) = AB( KD+1-JJ+II, JJ+I-1 )
 | |
|   100                   CONTINUE
 | |
|   110                CONTINUE
 | |
| *
 | |
| *                    Update A31 (in the work array).
 | |
| *
 | |
|                      CALL DTRSM( 'Right', 'Lower', 'Transpose',
 | |
|      $                           'Non-unit', I3, IB, ONE, AB( 1, I ),
 | |
|      $                           LDAB-1, WORK, LDWORK )
 | |
| *
 | |
| *                    Update A32
 | |
| *
 | |
|                      IF( I2.GT.0 )
 | |
|      $                  CALL DGEMM( 'No transpose', 'Transpose', I3, I2,
 | |
|      $                              IB, -ONE, WORK, LDWORK,
 | |
|      $                              AB( 1+IB, I ), LDAB-1, ONE,
 | |
|      $                              AB( 1+KD-IB, I+IB ), LDAB-1 )
 | |
| *
 | |
| *                    Update A33
 | |
| *
 | |
|                      CALL DSYRK( 'Lower', 'No Transpose', I3, IB, -ONE,
 | |
|      $                           WORK, LDWORK, ONE, AB( 1, I+KD ),
 | |
|      $                           LDAB-1 )
 | |
| *
 | |
| *                    Copy the upper triangle of A31 back into place.
 | |
| *
 | |
|                      DO 130 JJ = 1, IB
 | |
|                         DO 120 II = 1, MIN( JJ, I3 )
 | |
|                            AB( KD+1-JJ+II, JJ+I-1 ) = WORK( II, JJ )
 | |
|   120                   CONTINUE
 | |
|   130                CONTINUE
 | |
|                   END IF
 | |
|                END IF
 | |
|   140       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
|   150 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of DPBTRF
 | |
| *
 | |
|       END
 |