320 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			320 lines
		
	
	
		
			9.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DPBSTF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DPBSTF + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbstf.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbstf.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbstf.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DPBSTF( UPLO, N, KD, AB, LDAB, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, KD, LDAB, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   AB( LDAB, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DPBSTF computes a split Cholesky factorization of a real
 | |
| *> symmetric positive definite band matrix A.
 | |
| *>
 | |
| *> This routine is designed to be used in conjunction with DSBGST.
 | |
| *>
 | |
| *> The factorization has the form  A = S**T*S  where S is a band matrix
 | |
| *> of the same bandwidth as A and the following structure:
 | |
| *>
 | |
| *>   S = ( U    )
 | |
| *>       ( M  L )
 | |
| *>
 | |
| *> where U is upper triangular of order m = (n+kd)/2, and L is lower
 | |
| *> triangular of order n-m.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AB
 | |
| *> \verbatim
 | |
| *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
 | |
| *>          On entry, the upper or lower triangle of the symmetric band
 | |
| *>          matrix A, stored in the first kd+1 rows of the array.  The
 | |
| *>          j-th column of A is stored in the j-th column of the array AB
 | |
| *>          as follows:
 | |
| *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | |
| *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the factor S from the split Cholesky
 | |
| *>          factorization A = S**T*S. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= KD+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0: if INFO = i, the factorization could not be completed,
 | |
| *>               because the updated element a(i,i) was negative; the
 | |
| *>               matrix A is not positive definite.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup doubleOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The band storage scheme is illustrated by the following example, when
 | |
| *>  N = 7, KD = 2:
 | |
| *>
 | |
| *>  S = ( s11  s12  s13                     )
 | |
| *>      (      s22  s23  s24                )
 | |
| *>      (           s33  s34                )
 | |
| *>      (                s44                )
 | |
| *>      (           s53  s54  s55           )
 | |
| *>      (                s64  s65  s66      )
 | |
| *>      (                     s75  s76  s77 )
 | |
| *>
 | |
| *>  If UPLO = 'U', the array AB holds:
 | |
| *>
 | |
| *>  on entry:                          on exit:
 | |
| *>
 | |
| *>   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53  s64  s75
 | |
| *>   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54  s65  s76
 | |
| *>  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77
 | |
| *>
 | |
| *>  If UPLO = 'L', the array AB holds:
 | |
| *>
 | |
| *>  on entry:                          on exit:
 | |
| *>
 | |
| *>  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55  s66  s77
 | |
| *>  a21  a32  a43  a54  a65  a76   *   s12  s23  s34  s54  s65  s76   *
 | |
| *>  a31  a42  a53  a64  a64   *    *   s13  s24  s53  s64  s75   *    *
 | |
| *>
 | |
| *>  Array elements marked * are not used by the routine.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DPBSTF( UPLO, N, KD, AB, LDAB, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, KD, LDAB, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   AB( LDAB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            J, KLD, KM, M
 | |
|       DOUBLE PRECISION   AJJ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DSCAL, DSYR, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( KD.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDAB.LT.KD+1 ) THEN
 | |
|          INFO = -5
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DPBSTF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       KLD = MAX( 1, LDAB-1 )
 | |
| *
 | |
| *     Set the splitting point m.
 | |
| *
 | |
|       M = ( N+KD ) / 2
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m).
 | |
| *
 | |
|          DO 10 J = N, M + 1, -1
 | |
| *
 | |
| *           Compute s(j,j) and test for non-positive-definiteness.
 | |
| *
 | |
|             AJJ = AB( KD+1, J )
 | |
|             IF( AJJ.LE.ZERO )
 | |
|      $         GO TO 50
 | |
|             AJJ = SQRT( AJJ )
 | |
|             AB( KD+1, J ) = AJJ
 | |
|             KM = MIN( J-1, KD )
 | |
| *
 | |
| *           Compute elements j-km:j-1 of the j-th column and update the
 | |
| *           the leading submatrix within the band.
 | |
| *
 | |
|             CALL DSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
 | |
|             CALL DSYR( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
 | |
|      $                 AB( KD+1, J-KM ), KLD )
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        Factorize the updated submatrix A(1:m,1:m) as U**T*U.
 | |
| *
 | |
|          DO 20 J = 1, M
 | |
| *
 | |
| *           Compute s(j,j) and test for non-positive-definiteness.
 | |
| *
 | |
|             AJJ = AB( KD+1, J )
 | |
|             IF( AJJ.LE.ZERO )
 | |
|      $         GO TO 50
 | |
|             AJJ = SQRT( AJJ )
 | |
|             AB( KD+1, J ) = AJJ
 | |
|             KM = MIN( KD, M-J )
 | |
| *
 | |
| *           Compute elements j+1:j+km of the j-th row and update the
 | |
| *           trailing submatrix within the band.
 | |
| *
 | |
|             IF( KM.GT.0 ) THEN
 | |
|                CALL DSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
 | |
|                CALL DSYR( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
 | |
|      $                    AB( KD+1, J+1 ), KLD )
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Factorize A(m+1:n,m+1:n) as L**T*L, and update A(1:m,1:m).
 | |
| *
 | |
|          DO 30 J = N, M + 1, -1
 | |
| *
 | |
| *           Compute s(j,j) and test for non-positive-definiteness.
 | |
| *
 | |
|             AJJ = AB( 1, J )
 | |
|             IF( AJJ.LE.ZERO )
 | |
|      $         GO TO 50
 | |
|             AJJ = SQRT( AJJ )
 | |
|             AB( 1, J ) = AJJ
 | |
|             KM = MIN( J-1, KD )
 | |
| *
 | |
| *           Compute elements j-km:j-1 of the j-th row and update the
 | |
| *           trailing submatrix within the band.
 | |
| *
 | |
|             CALL DSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
 | |
|             CALL DSYR( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
 | |
|      $                 AB( 1, J-KM ), KLD )
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Factorize the updated submatrix A(1:m,1:m) as U**T*U.
 | |
| *
 | |
|          DO 40 J = 1, M
 | |
| *
 | |
| *           Compute s(j,j) and test for non-positive-definiteness.
 | |
| *
 | |
|             AJJ = AB( 1, J )
 | |
|             IF( AJJ.LE.ZERO )
 | |
|      $         GO TO 50
 | |
|             AJJ = SQRT( AJJ )
 | |
|             AB( 1, J ) = AJJ
 | |
|             KM = MIN( KD, M-J )
 | |
| *
 | |
| *           Compute elements j+1:j+km of the j-th column and update the
 | |
| *           trailing submatrix within the band.
 | |
| *
 | |
|             IF( KM.GT.0 ) THEN
 | |
|                CALL DSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
 | |
|                CALL DSYR( 'Lower', KM, -ONE, AB( 2, J ), 1,
 | |
|      $                    AB( 1, J+1 ), KLD )
 | |
|             END IF
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
|    50 CONTINUE
 | |
|       INFO = J
 | |
|       RETURN
 | |
| *
 | |
| *     End of DPBSTF
 | |
| *
 | |
|       END
 |