226 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			226 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLANGB + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlangb.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlangb.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlangb.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB,
 | |
| *                        WORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          NORM
 | |
| *       INTEGER            KL, KU, LDAB, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DLANGB  returns the value of the one norm,  or the Frobenius norm, or
 | |
| *> the  infinity norm,  or the element of  largest absolute value  of an
 | |
| *> n by n band matrix  A,  with kl sub-diagonals and ku super-diagonals.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \return DLANGB
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | |
| *>             (
 | |
| *>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | |
| *>             (
 | |
| *>             ( normI(A),         NORM = 'I' or 'i'
 | |
| *>             (
 | |
| *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | |
| *>
 | |
| *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | |
| *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | |
| *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | |
| *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies the value to be returned in DLANGB as described
 | |
| *>          above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.  When N = 0, DLANGB is
 | |
| *>          set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>          The number of sub-diagonals of the matrix A.  KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>          The number of super-diagonals of the matrix A.  KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AB
 | |
| *> \verbatim
 | |
| *>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
 | |
| *>          The band matrix A, stored in rows 1 to KL+KU+1.  The j-th
 | |
| *>          column of A is stored in the j-th column of the array AB as
 | |
| *>          follows:
 | |
| *>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 | |
| *>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
 | |
| *>          referenced.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup doubleGBauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB,
 | |
|      $                 WORK )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          NORM
 | |
|       INTEGER            KL, KU, LDAB, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   AB( LDAB, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, K, L
 | |
|       DOUBLE PRECISION   SCALE, SUM, VALUE, TEMP
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLASSQ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, DISNAN
 | |
|       EXTERNAL           LSAME, DISNAN
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          VALUE = ZERO
 | |
|       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | |
| *
 | |
| *        Find max(abs(A(i,j))).
 | |
| *
 | |
|          VALUE = ZERO
 | |
|          DO 20 J = 1, N
 | |
|             DO 10 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
 | |
|                TEMP = ABS( AB( I, J ) )
 | |
|                IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
 | |
|    10       CONTINUE
 | |
|    20    CONTINUE
 | |
|       ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
 | |
| *
 | |
| *        Find norm1(A).
 | |
| *
 | |
|          VALUE = ZERO
 | |
|          DO 40 J = 1, N
 | |
|             SUM = ZERO
 | |
|             DO 30 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
 | |
|                SUM = SUM + ABS( AB( I, J ) )
 | |
|    30       CONTINUE
 | |
|             IF( VALUE.LT.SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    40    CONTINUE
 | |
|       ELSE IF( LSAME( NORM, 'I' ) ) THEN
 | |
| *
 | |
| *        Find normI(A).
 | |
| *
 | |
|          DO 50 I = 1, N
 | |
|             WORK( I ) = ZERO
 | |
|    50    CONTINUE
 | |
|          DO 70 J = 1, N
 | |
|             K = KU + 1 - J
 | |
|             DO 60 I = MAX( 1, J-KU ), MIN( N, J+KL )
 | |
|                WORK( I ) = WORK( I ) + ABS( AB( K+I, J ) )
 | |
|    60       CONTINUE
 | |
|    70    CONTINUE
 | |
|          VALUE = ZERO
 | |
|          DO 80 I = 1, N
 | |
|             TEMP = WORK( I )
 | |
|             IF( VALUE.LT.TEMP .OR. DISNAN( TEMP ) ) VALUE = TEMP
 | |
|    80    CONTINUE
 | |
|       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | |
| *
 | |
| *        Find normF(A).
 | |
| *
 | |
|          SCALE = ZERO
 | |
|          SUM = ONE
 | |
|          DO 90 J = 1, N
 | |
|             L = MAX( 1, J-KU )
 | |
|             K = KU + 1 - J + L
 | |
|             CALL DLASSQ( MIN( N, J+KL )-L+1, AB( K, J ), 1, SCALE, SUM )
 | |
|    90    CONTINUE
 | |
|          VALUE = SCALE*SQRT( SUM )
 | |
|       END IF
 | |
| *
 | |
|       DLANGB = VALUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of DLANGB
 | |
| *
 | |
|       END
 |