530 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			530 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> DGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGEEV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeev.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeev.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeev.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
 | |
| *                         LDVR, WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBVL, JOBVR
 | |
| *       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
| *      $                   WI( * ), WORK( * ), WR( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGEEV computes for an N-by-N real nonsymmetric matrix A, the
 | |
| *> eigenvalues and, optionally, the left and/or right eigenvectors.
 | |
| *>
 | |
| *> The right eigenvector v(j) of A satisfies
 | |
| *>                  A * v(j) = lambda(j) * v(j)
 | |
| *> where lambda(j) is its eigenvalue.
 | |
| *> The left eigenvector u(j) of A satisfies
 | |
| *>               u(j)**H * A = lambda(j) * u(j)**H
 | |
| *> where u(j)**H denotes the conjugate-transpose of u(j).
 | |
| *>
 | |
| *> The computed eigenvectors are normalized to have Euclidean norm
 | |
| *> equal to 1 and largest component real.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBVL
 | |
| *> \verbatim
 | |
| *>          JOBVL is CHARACTER*1
 | |
| *>          = 'N': left eigenvectors of A are not computed;
 | |
| *>          = 'V': left eigenvectors of A are computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBVR
 | |
| *> \verbatim
 | |
| *>          JOBVR is CHARACTER*1
 | |
| *>          = 'N': right eigenvectors of A are not computed;
 | |
| *>          = 'V': right eigenvectors of A are computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          On entry, the N-by-N matrix A.
 | |
| *>          On exit, A has been overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WR
 | |
| *> \verbatim
 | |
| *>          WR is DOUBLE PRECISION array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WI
 | |
| *> \verbatim
 | |
| *>          WI is DOUBLE PRECISION array, dimension (N)
 | |
| *>          WR and WI contain the real and imaginary parts,
 | |
| *>          respectively, of the computed eigenvalues.  Complex
 | |
| *>          conjugate pairs of eigenvalues appear consecutively
 | |
| *>          with the eigenvalue having the positive imaginary part
 | |
| *>          first.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VL
 | |
| *> \verbatim
 | |
| *>          VL is DOUBLE PRECISION array, dimension (LDVL,N)
 | |
| *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
 | |
| *>          after another in the columns of VL, in the same order
 | |
| *>          as their eigenvalues.
 | |
| *>          If JOBVL = 'N', VL is not referenced.
 | |
| *>          If the j-th eigenvalue is real, then u(j) = VL(:,j),
 | |
| *>          the j-th column of VL.
 | |
| *>          If the j-th and (j+1)-st eigenvalues form a complex
 | |
| *>          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
 | |
| *>          u(j+1) = VL(:,j) - i*VL(:,j+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the array VL.  LDVL >= 1; if
 | |
| *>          JOBVL = 'V', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VR
 | |
| *> \verbatim
 | |
| *>          VR is DOUBLE PRECISION array, dimension (LDVR,N)
 | |
| *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
 | |
| *>          after another in the columns of VR, in the same order
 | |
| *>          as their eigenvalues.
 | |
| *>          If JOBVR = 'N', VR is not referenced.
 | |
| *>          If the j-th eigenvalue is real, then v(j) = VR(:,j),
 | |
| *>          the j-th column of VR.
 | |
| *>          If the j-th and (j+1)-st eigenvalues form a complex
 | |
| *>          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
 | |
| *>          v(j+1) = VR(:,j) - i*VR(:,j+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the array VR.  LDVR >= 1; if
 | |
| *>          JOBVR = 'V', LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,3*N), and
 | |
| *>          if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N.  For good
 | |
| *>          performance, LWORK must generally be larger.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
 | |
| *>                eigenvalues, and no eigenvectors have been computed;
 | |
| *>                elements i+1:N of WR and WI contain eigenvalues which
 | |
| *>                have converged.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date June 2016
 | |
| *
 | |
| *  @precisions fortran d -> s
 | |
| *
 | |
| *> \ingroup doubleGEeigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGEEV( JOBVL, JOBVR, N, A, LDA, WR, WI, VL, LDVL, VR,
 | |
|      $                  LDVR, WORK, LWORK, INFO )
 | |
|       implicit none
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     June 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBVL, JOBVR
 | |
|       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
|      $                   WI( * ), WORK( * ), WR( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
 | |
|       CHARACTER          SIDE
 | |
|       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, ITAU, IWRK, K,
 | |
|      $                   LWORK_TREVC, MAXWRK, MINWRK, NOUT
 | |
|       DOUBLE PRECISION   ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
 | |
|      $                   SN
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       LOGICAL            SELECT( 1 )
 | |
|       DOUBLE PRECISION   DUM( 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DGEBAK, DGEBAL, DGEHRD, DHSEQR, DLABAD, DLACPY,
 | |
|      $                   DLARTG, DLASCL, DORGHR, DROT, DSCAL, DTREVC3,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IDAMAX, ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, DLANGE, DLAPY2, DNRM2
 | |
|       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DLANGE, DLAPY2,
 | |
|      $                   DNRM2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       WANTVL = LSAME( JOBVL, 'V' )
 | |
|       WANTVR = LSAME( JOBVR, 'V' )
 | |
|       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -11
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *      (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace needed at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       NB refers to the optimal block size for the immediately
 | |
| *       following subroutine, as returned by ILAENV.
 | |
| *       HSWORK refers to the workspace preferred by DHSEQR, as
 | |
| *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
 | |
| *       the worst case.)
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( N.EQ.0 ) THEN
 | |
|             MINWRK = 1
 | |
|             MAXWRK = 1
 | |
|          ELSE
 | |
|             MAXWRK = 2*N + N*ILAENV( 1, 'DGEHRD', ' ', N, 1, N, 0 )
 | |
|             IF( WANTVL ) THEN
 | |
|                MINWRK = 4*N
 | |
|                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
 | |
|      $                       'DORGHR', ' ', N, 1, N, -1 ) )
 | |
|                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VL, LDVL,
 | |
|      $                      WORK, -1, INFO )
 | |
|                HSWORK = INT( WORK(1) )
 | |
|                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
 | |
|                CALL DTREVC3( 'L', 'B', SELECT, N, A, LDA,
 | |
|      $                       VL, LDVL, VR, LDVR, N, NOUT,
 | |
|      $                       WORK, -1, IERR )
 | |
|                LWORK_TREVC = INT( WORK(1) )
 | |
|                MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
 | |
|                MAXWRK = MAX( MAXWRK, 4*N )
 | |
|             ELSE IF( WANTVR ) THEN
 | |
|                MINWRK = 4*N
 | |
|                MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
 | |
|      $                       'DORGHR', ' ', N, 1, N, -1 ) )
 | |
|                CALL DHSEQR( 'S', 'V', N, 1, N, A, LDA, WR, WI, VR, LDVR,
 | |
|      $                      WORK, -1, INFO )
 | |
|                HSWORK = INT( WORK(1) )
 | |
|                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
 | |
|                CALL DTREVC3( 'R', 'B', SELECT, N, A, LDA,
 | |
|      $                       VL, LDVL, VR, LDVR, N, NOUT,
 | |
|      $                       WORK, -1, IERR )
 | |
|                LWORK_TREVC = INT( WORK(1) )
 | |
|                MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
 | |
|                MAXWRK = MAX( MAXWRK, 4*N )
 | |
|             ELSE
 | |
|                MINWRK = 3*N
 | |
|                CALL DHSEQR( 'E', 'N', N, 1, N, A, LDA, WR, WI, VR, LDVR,
 | |
|      $                      WORK, -1, INFO )
 | |
|                HSWORK = INT( WORK(1) )
 | |
|                MAXWRK = MAX( MAXWRK, N + 1, N + HSWORK )
 | |
|             END IF
 | |
|             MAXWRK = MAX( MAXWRK, MINWRK )
 | |
|          END IF
 | |
|          WORK( 1 ) = MAXWRK
 | |
| *
 | |
|          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -13
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGEEV ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = DLAMCH( 'P' )
 | |
|       SMLNUM = DLAMCH( 'S' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
|       SMLNUM = SQRT( SMLNUM ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = DLANGE( 'M', N, N, A, LDA, DUM )
 | |
|       SCALEA = .FALSE.
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
|          SCALEA = .TRUE.
 | |
|          CSCALE = SMLNUM
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
|          SCALEA = .TRUE.
 | |
|          CSCALE = BIGNUM
 | |
|       END IF
 | |
|       IF( SCALEA )
 | |
|      $   CALL DLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
 | |
| *
 | |
| *     Balance the matrix
 | |
| *     (Workspace: need N)
 | |
| *
 | |
|       IBAL = 1
 | |
|       CALL DGEBAL( 'B', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
 | |
| *
 | |
| *     Reduce to upper Hessenberg form
 | |
| *     (Workspace: need 3*N, prefer 2*N+N*NB)
 | |
| *
 | |
|       ITAU = IBAL + N
 | |
|       IWRK = ITAU + N
 | |
|       CALL DGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
 | |
|      $             LWORK-IWRK+1, IERR )
 | |
| *
 | |
|       IF( WANTVL ) THEN
 | |
| *
 | |
| *        Want left eigenvectors
 | |
| *        Copy Householder vectors to VL
 | |
| *
 | |
|          SIDE = 'L'
 | |
|          CALL DLACPY( 'L', N, N, A, LDA, VL, LDVL )
 | |
| *
 | |
| *        Generate orthogonal matrix in VL
 | |
| *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *
 | |
|          CALL DORGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
 | |
|      $                LWORK-IWRK+1, IERR )
 | |
| *
 | |
| *        Perform QR iteration, accumulating Schur vectors in VL
 | |
| *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
 | |
| *
 | |
|          IWRK = ITAU
 | |
|          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VL, LDVL,
 | |
|      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | |
| *
 | |
|          IF( WANTVR ) THEN
 | |
| *
 | |
| *           Want left and right eigenvectors
 | |
| *           Copy Schur vectors to VR
 | |
| *
 | |
|             SIDE = 'B'
 | |
|             CALL DLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( WANTVR ) THEN
 | |
| *
 | |
| *        Want right eigenvectors
 | |
| *        Copy Householder vectors to VR
 | |
| *
 | |
|          SIDE = 'R'
 | |
|          CALL DLACPY( 'L', N, N, A, LDA, VR, LDVR )
 | |
| *
 | |
| *        Generate orthogonal matrix in VR
 | |
| *        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
 | |
| *
 | |
|          CALL DORGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
 | |
|      $                LWORK-IWRK+1, IERR )
 | |
| *
 | |
| *        Perform QR iteration, accumulating Schur vectors in VR
 | |
| *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
 | |
| *
 | |
|          IWRK = ITAU
 | |
|          CALL DHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
 | |
|      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compute eigenvalues only
 | |
| *        (Workspace: need N+1, prefer N+HSWORK (see comments) )
 | |
| *
 | |
|          IWRK = ITAU
 | |
|          CALL DHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, WR, WI, VR, LDVR,
 | |
|      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | |
|       END IF
 | |
| *
 | |
| *     If INFO .NE. 0 from DHSEQR, then quit
 | |
| *
 | |
|       IF( INFO.NE.0 )
 | |
|      $   GO TO 50
 | |
| *
 | |
|       IF( WANTVL .OR. WANTVR ) THEN
 | |
| *
 | |
| *        Compute left and/or right eigenvectors
 | |
| *        (Workspace: need 4*N, prefer N + N + 2*N*NB)
 | |
| *
 | |
|          CALL DTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
 | |
|      $                 N, NOUT, WORK( IWRK ), LWORK-IWRK+1, IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTVL ) THEN
 | |
| *
 | |
| *        Undo balancing of left eigenvectors
 | |
| *        (Workspace: need N)
 | |
| *
 | |
|          CALL DGEBAK( 'B', 'L', N, ILO, IHI, WORK( IBAL ), N, VL, LDVL,
 | |
|      $                IERR )
 | |
| *
 | |
| *        Normalize left eigenvectors and make largest component real
 | |
| *
 | |
|          DO 20 I = 1, N
 | |
|             IF( WI( I ).EQ.ZERO ) THEN
 | |
|                SCL = ONE / DNRM2( N, VL( 1, I ), 1 )
 | |
|                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
 | |
|             ELSE IF( WI( I ).GT.ZERO ) THEN
 | |
|                SCL = ONE / DLAPY2( DNRM2( N, VL( 1, I ), 1 ),
 | |
|      $               DNRM2( N, VL( 1, I+1 ), 1 ) )
 | |
|                CALL DSCAL( N, SCL, VL( 1, I ), 1 )
 | |
|                CALL DSCAL( N, SCL, VL( 1, I+1 ), 1 )
 | |
|                DO 10 K = 1, N
 | |
|                   WORK( IWRK+K-1 ) = VL( K, I )**2 + VL( K, I+1 )**2
 | |
|    10          CONTINUE
 | |
|                K = IDAMAX( N, WORK( IWRK ), 1 )
 | |
|                CALL DLARTG( VL( K, I ), VL( K, I+1 ), CS, SN, R )
 | |
|                CALL DROT( N, VL( 1, I ), 1, VL( 1, I+1 ), 1, CS, SN )
 | |
|                VL( K, I+1 ) = ZERO
 | |
|             END IF
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTVR ) THEN
 | |
| *
 | |
| *        Undo balancing of right eigenvectors
 | |
| *        (Workspace: need N)
 | |
| *
 | |
|          CALL DGEBAK( 'B', 'R', N, ILO, IHI, WORK( IBAL ), N, VR, LDVR,
 | |
|      $                IERR )
 | |
| *
 | |
| *        Normalize right eigenvectors and make largest component real
 | |
| *
 | |
|          DO 40 I = 1, N
 | |
|             IF( WI( I ).EQ.ZERO ) THEN
 | |
|                SCL = ONE / DNRM2( N, VR( 1, I ), 1 )
 | |
|                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
 | |
|             ELSE IF( WI( I ).GT.ZERO ) THEN
 | |
|                SCL = ONE / DLAPY2( DNRM2( N, VR( 1, I ), 1 ),
 | |
|      $               DNRM2( N, VR( 1, I+1 ), 1 ) )
 | |
|                CALL DSCAL( N, SCL, VR( 1, I ), 1 )
 | |
|                CALL DSCAL( N, SCL, VR( 1, I+1 ), 1 )
 | |
|                DO 30 K = 1, N
 | |
|                   WORK( IWRK+K-1 ) = VR( K, I )**2 + VR( K, I+1 )**2
 | |
|    30          CONTINUE
 | |
|                K = IDAMAX( N, WORK( IWRK ), 1 )
 | |
|                CALL DLARTG( VR( K, I ), VR( K, I+1 ), CS, SN, R )
 | |
|                CALL DROT( N, VR( 1, I ), 1, VR( 1, I+1 ), 1, CS, SN )
 | |
|                VR( K, I+1 ) = ZERO
 | |
|             END IF
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling if necessary
 | |
| *
 | |
|    50 CONTINUE
 | |
|       IF( SCALEA ) THEN
 | |
|          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WR( INFO+1 ),
 | |
|      $                MAX( N-INFO, 1 ), IERR )
 | |
|          CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, WI( INFO+1 ),
 | |
|      $                MAX( N-INFO, 1 ), IERR )
 | |
|          IF( INFO.GT.0 ) THEN
 | |
|             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WR, N,
 | |
|      $                   IERR )
 | |
|             CALL DLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI, N,
 | |
|      $                   IERR )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = MAXWRK
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGEEV
 | |
| *
 | |
|       END
 |