262 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			262 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DGECON
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DGECON + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgecon.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgecon.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgecon.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
 | |
| *                          INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          NORM
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       DOUBLE PRECISION   ANORM, RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DGECON estimates the reciprocal of the condition number of a general
 | |
| *> real matrix A, in either the 1-norm or the infinity-norm, using
 | |
| *> the LU factorization computed by DGETRF.
 | |
| *>
 | |
| *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
 | |
| *> condition number is computed as
 | |
| *>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies whether the 1-norm condition number or the
 | |
| *>          infinity-norm condition number is required:
 | |
| *>          = '1' or 'O':  1-norm;
 | |
| *>          = 'I':         Infinity-norm.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (LDA,N)
 | |
| *>          The factors L and U from the factorization A = P*L*U
 | |
| *>          as computed by DGETRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ANORM
 | |
| *> \verbatim
 | |
| *>          ANORM is DOUBLE PRECISION
 | |
| *>          If NORM = '1' or 'O', the 1-norm of the original matrix A.
 | |
| *>          If NORM = 'I', the infinity-norm of the original matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is DOUBLE PRECISION
 | |
| *>          The reciprocal of the condition number of the matrix A,
 | |
| *>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (4*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, IWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          NORM
 | |
|       INTEGER            INFO, LDA, N
 | |
|       DOUBLE PRECISION   ANORM, RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       DOUBLE PRECISION   A( LDA, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ONENRM
 | |
|       CHARACTER          NORMIN
 | |
|       INTEGER            IX, KASE, KASE1
 | |
|       DOUBLE PRECISION   AINVNM, SCALE, SL, SMLNUM, SU
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DLAMCH
 | |
|       EXTERNAL           LSAME, IDAMAX, DLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLACN2, DLATRS, DRSCL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
 | |
|       IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( ANORM.LT.ZERO ) THEN
 | |
|          INFO = -5
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'DGECON', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       RCOND = ZERO
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          RCOND = ONE
 | |
|          RETURN
 | |
|       ELSE IF( ANORM.EQ.ZERO ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       SMLNUM = DLAMCH( 'Safe minimum' )
 | |
| *
 | |
| *     Estimate the norm of inv(A).
 | |
| *
 | |
|       AINVNM = ZERO
 | |
|       NORMIN = 'N'
 | |
|       IF( ONENRM ) THEN
 | |
|          KASE1 = 1
 | |
|       ELSE
 | |
|          KASE1 = 2
 | |
|       END IF
 | |
|       KASE = 0
 | |
|    10 CONTINUE
 | |
|       CALL DLACN2( N, WORK( N+1 ), WORK, IWORK, AINVNM, KASE, ISAVE )
 | |
|       IF( KASE.NE.0 ) THEN
 | |
|          IF( KASE.EQ.KASE1 ) THEN
 | |
| *
 | |
| *           Multiply by inv(L).
 | |
| *
 | |
|             CALL DLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A,
 | |
|      $                   LDA, WORK, SL, WORK( 2*N+1 ), INFO )
 | |
| *
 | |
| *           Multiply by inv(U).
 | |
| *
 | |
|             CALL DLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
 | |
|      $                   A, LDA, WORK, SU, WORK( 3*N+1 ), INFO )
 | |
|          ELSE
 | |
| *
 | |
| *           Multiply by inv(U**T).
 | |
| *
 | |
|             CALL DLATRS( 'Upper', 'Transpose', 'Non-unit', NORMIN, N, A,
 | |
|      $                   LDA, WORK, SU, WORK( 3*N+1 ), INFO )
 | |
| *
 | |
| *           Multiply by inv(L**T).
 | |
| *
 | |
|             CALL DLATRS( 'Lower', 'Transpose', 'Unit', NORMIN, N, A,
 | |
|      $                   LDA, WORK, SL, WORK( 2*N+1 ), INFO )
 | |
|          END IF
 | |
| *
 | |
| *        Divide X by 1/(SL*SU) if doing so will not cause overflow.
 | |
| *
 | |
|          SCALE = SL*SU
 | |
|          NORMIN = 'Y'
 | |
|          IF( SCALE.NE.ONE ) THEN
 | |
|             IX = IDAMAX( N, WORK, 1 )
 | |
|             IF( SCALE.LT.ABS( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
 | |
|      $         GO TO 20
 | |
|             CALL DRSCL( N, SCALE, WORK, 1 )
 | |
|          END IF
 | |
|          GO TO 10
 | |
|       END IF
 | |
| *
 | |
| *     Compute the estimate of the reciprocal condition number.
 | |
| *
 | |
|       IF( AINVNM.NE.ZERO )
 | |
|      $   RCOND = ( ONE / AINVNM ) / ANORM
 | |
| *
 | |
|    20 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of DGECON
 | |
| *
 | |
|       END
 |