284 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			284 lines
		
	
	
		
			7.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CTRCON
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CTRCON + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrcon.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrcon.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrcon.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CTRCON( NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK,
 | |
| *                          RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, NORM, UPLO
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       REAL               RCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * )
 | |
| *       COMPLEX            A( LDA, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CTRCON estimates the reciprocal of the condition number of a
 | |
| *> triangular matrix A, in either the 1-norm or the infinity-norm.
 | |
| *>
 | |
| *> The norm of A is computed and an estimate is obtained for
 | |
| *> norm(inv(A)), then the reciprocal of the condition number is
 | |
| *> computed as
 | |
| *>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies whether the 1-norm condition number or the
 | |
| *>          infinity-norm condition number is required:
 | |
| *>          = '1' or 'O':  1-norm;
 | |
| *>          = 'I':         Infinity-norm.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  A is upper triangular;
 | |
| *>          = 'L':  A is lower triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          = 'N':  A is non-unit triangular;
 | |
| *>          = 'U':  A is unit triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA,N)
 | |
| *>          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
 | |
| *>          upper triangular part of the array A contains the upper
 | |
| *>          triangular matrix, and the strictly lower triangular part of
 | |
| *>          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
 | |
| *>          triangular part of the array A contains the lower triangular
 | |
| *>          matrix, and the strictly upper triangular part of A is not
 | |
| *>          referenced.  If DIAG = 'U', the diagonal elements of A are
 | |
| *>          also not referenced and are assumed to be 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RCOND
 | |
| *> \verbatim
 | |
| *>          RCOND is REAL
 | |
| *>          The reciprocal of the condition number of the matrix A,
 | |
| *>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CTRCON( NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK,
 | |
|      $                   RWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, NORM, UPLO
 | |
|       INTEGER            INFO, LDA, N
 | |
|       REAL               RCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * )
 | |
|       COMPLEX            A( LDA, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOUNIT, ONENRM, UPPER
 | |
|       CHARACTER          NORMIN
 | |
|       INTEGER            IX, KASE, KASE1
 | |
|       REAL               AINVNM, ANORM, SCALE, SMLNUM, XNORM
 | |
|       COMPLEX            ZDUM
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ICAMAX
 | |
|       REAL               CLANTR, SLAMCH
 | |
|       EXTERNAL           LSAME, ICAMAX, CLANTR, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CLACN2, CLATRS, CSRSCL, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, MAX, REAL
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
 | |
|       NOUNIT = LSAME( DIAG, 'N' )
 | |
| *
 | |
|       IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CTRCON', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          RCOND = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       RCOND = ZERO
 | |
|       SMLNUM = SLAMCH( 'Safe minimum' )*REAL( MAX( 1, N ) )
 | |
| *
 | |
| *     Compute the norm of the triangular matrix A.
 | |
| *
 | |
|       ANORM = CLANTR( NORM, UPLO, DIAG, N, N, A, LDA, RWORK )
 | |
| *
 | |
| *     Continue only if ANORM > 0.
 | |
| *
 | |
|       IF( ANORM.GT.ZERO ) THEN
 | |
| *
 | |
| *        Estimate the norm of the inverse of A.
 | |
| *
 | |
|          AINVNM = ZERO
 | |
|          NORMIN = 'N'
 | |
|          IF( ONENRM ) THEN
 | |
|             KASE1 = 1
 | |
|          ELSE
 | |
|             KASE1 = 2
 | |
|          END IF
 | |
|          KASE = 0
 | |
|    10    CONTINUE
 | |
|          CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
 | |
|          IF( KASE.NE.0 ) THEN
 | |
|             IF( KASE.EQ.KASE1 ) THEN
 | |
| *
 | |
| *              Multiply by inv(A).
 | |
| *
 | |
|                CALL CLATRS( UPLO, 'No transpose', DIAG, NORMIN, N, A,
 | |
|      $                      LDA, WORK, SCALE, RWORK, INFO )
 | |
|             ELSE
 | |
| *
 | |
| *              Multiply by inv(A**H).
 | |
| *
 | |
|                CALL CLATRS( UPLO, 'Conjugate transpose', DIAG, NORMIN,
 | |
|      $                      N, A, LDA, WORK, SCALE, RWORK, INFO )
 | |
|             END IF
 | |
|             NORMIN = 'Y'
 | |
| *
 | |
| *           Multiply by 1/SCALE if doing so will not cause overflow.
 | |
| *
 | |
|             IF( SCALE.NE.ONE ) THEN
 | |
|                IX = ICAMAX( N, WORK, 1 )
 | |
|                XNORM = CABS1( WORK( IX ) )
 | |
|                IF( SCALE.LT.XNORM*SMLNUM .OR. SCALE.EQ.ZERO )
 | |
|      $            GO TO 20
 | |
|                CALL CSRSCL( N, SCALE, WORK, 1 )
 | |
|             END IF
 | |
|             GO TO 10
 | |
|          END IF
 | |
| *
 | |
| *        Compute the estimate of the reciprocal condition number.
 | |
| *
 | |
|          IF( AINVNM.NE.ZERO )
 | |
|      $      RCOND = ( ONE / ANORM ) / AINVNM
 | |
|       END IF
 | |
| *
 | |
|    20 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of CTRCON
 | |
| *
 | |
|       END
 |