451 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			451 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CSPTRS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CSPTRS + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csptrs.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csptrs.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csptrs.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDB, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX            AP( * ), B( LDB, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CSPTRS solves a system of linear equations A*X = B with a complex
 | |
| *> symmetric matrix A stored in packed format using the factorization
 | |
| *> A = U*D*U**T or A = L*D*L**T computed by CSPTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the details of the factorization are stored
 | |
| *>          as an upper or lower triangular matrix.
 | |
| *>          = 'U':  Upper triangular, form is A = U*D*U**T;
 | |
| *>          = 'L':  Lower triangular, form is A = L*D*L**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | |
| *>          The block diagonal matrix D and the multipliers used to
 | |
| *>          obtain the factor U or L as computed by CSPTRF, stored as a
 | |
| *>          packed triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges and the block structure of D
 | |
| *>          as determined by CSPTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is COMPLEX array, dimension (LDB,NRHS)
 | |
| *>          On entry, the right hand side matrix B.
 | |
| *>          On exit, the solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDB, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX            AP( * ), B( LDB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ONE
 | |
|       PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            J, K, KC, KP
 | |
|       COMPLEX            AK, AKM1, AKM1K, BK, BKM1, DENOM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CGEMV, CGERU, CSCAL, CSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CSPTRS', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Solve A*X = B, where A = U*D*U**T.
 | |
| *
 | |
| *        First solve U*D*X = B, overwriting B with X.
 | |
| *
 | |
| *        K is the main loop index, decreasing from N to 1 in steps of
 | |
| *        1 or 2, depending on the size of the diagonal blocks.
 | |
| *
 | |
|          K = N
 | |
|          KC = N*( N+1 ) / 2 + 1
 | |
|    10    CONTINUE
 | |
| *
 | |
| *        If K < 1, exit from loop.
 | |
| *
 | |
|          IF( K.LT.1 )
 | |
|      $      GO TO 30
 | |
| *
 | |
|          KC = KC - K
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *
 | |
| *           1 x 1 diagonal block
 | |
| *
 | |
| *           Interchange rows K and IPIV(K).
 | |
| *
 | |
|             KP = IPIV( K )
 | |
|             IF( KP.NE.K )
 | |
|      $         CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
| *
 | |
| *           Multiply by inv(U(K)), where U(K) is the transformation
 | |
| *           stored in column K of A.
 | |
| *
 | |
|             CALL CGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
 | |
|      $                  B( 1, 1 ), LDB )
 | |
| *
 | |
| *           Multiply by the inverse of the diagonal block.
 | |
| *
 | |
|             CALL CSCAL( NRHS, ONE / AP( KC+K-1 ), B( K, 1 ), LDB )
 | |
|             K = K - 1
 | |
|          ELSE
 | |
| *
 | |
| *           2 x 2 diagonal block
 | |
| *
 | |
| *           Interchange rows K-1 and -IPIV(K).
 | |
| *
 | |
|             KP = -IPIV( K )
 | |
|             IF( KP.NE.K-1 )
 | |
|      $         CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB )
 | |
| *
 | |
| *           Multiply by inv(U(K)), where U(K) is the transformation
 | |
| *           stored in columns K-1 and K of A.
 | |
| *
 | |
|             CALL CGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB,
 | |
|      $                  B( 1, 1 ), LDB )
 | |
|             CALL CGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1,
 | |
|      $                  B( K-1, 1 ), LDB, B( 1, 1 ), LDB )
 | |
| *
 | |
| *           Multiply by the inverse of the diagonal block.
 | |
| *
 | |
|             AKM1K = AP( KC+K-2 )
 | |
|             AKM1 = AP( KC-1 ) / AKM1K
 | |
|             AK = AP( KC+K-1 ) / AKM1K
 | |
|             DENOM = AKM1*AK - ONE
 | |
|             DO 20 J = 1, NRHS
 | |
|                BKM1 = B( K-1, J ) / AKM1K
 | |
|                BK = B( K, J ) / AKM1K
 | |
|                B( K-1, J ) = ( AK*BKM1-BK ) / DENOM
 | |
|                B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM
 | |
|    20       CONTINUE
 | |
|             KC = KC - K + 1
 | |
|             K = K - 2
 | |
|          END IF
 | |
| *
 | |
|          GO TO 10
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        Next solve U**T*X = B, overwriting B with X.
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 to N in steps of
 | |
| *        1 or 2, depending on the size of the diagonal blocks.
 | |
| *
 | |
|          K = 1
 | |
|          KC = 1
 | |
|    40    CONTINUE
 | |
| *
 | |
| *        If K > N, exit from loop.
 | |
| *
 | |
|          IF( K.GT.N )
 | |
|      $      GO TO 50
 | |
| *
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *
 | |
| *           1 x 1 diagonal block
 | |
| *
 | |
| *           Multiply by inv(U**T(K)), where U(K) is the transformation
 | |
| *           stored in column K of A.
 | |
| *
 | |
|             CALL CGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ),
 | |
|      $                  1, ONE, B( K, 1 ), LDB )
 | |
| *
 | |
| *           Interchange rows K and IPIV(K).
 | |
| *
 | |
|             KP = IPIV( K )
 | |
|             IF( KP.NE.K )
 | |
|      $         CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             KC = KC + K
 | |
|             K = K + 1
 | |
|          ELSE
 | |
| *
 | |
| *           2 x 2 diagonal block
 | |
| *
 | |
| *           Multiply by inv(U**T(K+1)), where U(K+1) is the transformation
 | |
| *           stored in columns K and K+1 of A.
 | |
| *
 | |
|             CALL CGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ),
 | |
|      $                  1, ONE, B( K, 1 ), LDB )
 | |
|             CALL CGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB,
 | |
|      $                  AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB )
 | |
| *
 | |
| *           Interchange rows K and -IPIV(K).
 | |
| *
 | |
|             KP = -IPIV( K )
 | |
|             IF( KP.NE.K )
 | |
|      $         CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             KC = KC + 2*K + 1
 | |
|             K = K + 2
 | |
|          END IF
 | |
| *
 | |
|          GO TO 40
 | |
|    50    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Solve A*X = B, where A = L*D*L**T.
 | |
| *
 | |
| *        First solve L*D*X = B, overwriting B with X.
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 to N in steps of
 | |
| *        1 or 2, depending on the size of the diagonal blocks.
 | |
| *
 | |
|          K = 1
 | |
|          KC = 1
 | |
|    60    CONTINUE
 | |
| *
 | |
| *        If K > N, exit from loop.
 | |
| *
 | |
|          IF( K.GT.N )
 | |
|      $      GO TO 80
 | |
| *
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *
 | |
| *           1 x 1 diagonal block
 | |
| *
 | |
| *           Interchange rows K and IPIV(K).
 | |
| *
 | |
|             KP = IPIV( K )
 | |
|             IF( KP.NE.K )
 | |
|      $         CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
| *
 | |
| *           Multiply by inv(L(K)), where L(K) is the transformation
 | |
| *           stored in column K of A.
 | |
| *
 | |
|             IF( K.LT.N )
 | |
|      $         CALL CGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ),
 | |
|      $                     LDB, B( K+1, 1 ), LDB )
 | |
| *
 | |
| *           Multiply by the inverse of the diagonal block.
 | |
| *
 | |
|             CALL CSCAL( NRHS, ONE / AP( KC ), B( K, 1 ), LDB )
 | |
|             KC = KC + N - K + 1
 | |
|             K = K + 1
 | |
|          ELSE
 | |
| *
 | |
| *           2 x 2 diagonal block
 | |
| *
 | |
| *           Interchange rows K+1 and -IPIV(K).
 | |
| *
 | |
|             KP = -IPIV( K )
 | |
|             IF( KP.NE.K+1 )
 | |
|      $         CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB )
 | |
| *
 | |
| *           Multiply by inv(L(K)), where L(K) is the transformation
 | |
| *           stored in columns K and K+1 of A.
 | |
| *
 | |
|             IF( K.LT.N-1 ) THEN
 | |
|                CALL CGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ),
 | |
|      $                     LDB, B( K+2, 1 ), LDB )
 | |
|                CALL CGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1,
 | |
|      $                     B( K+1, 1 ), LDB, B( K+2, 1 ), LDB )
 | |
|             END IF
 | |
| *
 | |
| *           Multiply by the inverse of the diagonal block.
 | |
| *
 | |
|             AKM1K = AP( KC+1 )
 | |
|             AKM1 = AP( KC ) / AKM1K
 | |
|             AK = AP( KC+N-K+1 ) / AKM1K
 | |
|             DENOM = AKM1*AK - ONE
 | |
|             DO 70 J = 1, NRHS
 | |
|                BKM1 = B( K, J ) / AKM1K
 | |
|                BK = B( K+1, J ) / AKM1K
 | |
|                B( K, J ) = ( AK*BKM1-BK ) / DENOM
 | |
|                B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM
 | |
|    70       CONTINUE
 | |
|             KC = KC + 2*( N-K ) + 1
 | |
|             K = K + 2
 | |
|          END IF
 | |
| *
 | |
|          GO TO 60
 | |
|    80    CONTINUE
 | |
| *
 | |
| *        Next solve L**T*X = B, overwriting B with X.
 | |
| *
 | |
| *        K is the main loop index, decreasing from N to 1 in steps of
 | |
| *        1 or 2, depending on the size of the diagonal blocks.
 | |
| *
 | |
|          K = N
 | |
|          KC = N*( N+1 ) / 2 + 1
 | |
|    90    CONTINUE
 | |
| *
 | |
| *        If K < 1, exit from loop.
 | |
| *
 | |
|          IF( K.LT.1 )
 | |
|      $      GO TO 100
 | |
| *
 | |
|          KC = KC - ( N-K+1 )
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *
 | |
| *           1 x 1 diagonal block
 | |
| *
 | |
| *           Multiply by inv(L**T(K)), where L(K) is the transformation
 | |
| *           stored in column K of A.
 | |
| *
 | |
|             IF( K.LT.N )
 | |
|      $         CALL CGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
 | |
|      $                     LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB )
 | |
| *
 | |
| *           Interchange rows K and IPIV(K).
 | |
| *
 | |
|             KP = IPIV( K )
 | |
|             IF( KP.NE.K )
 | |
|      $         CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             K = K - 1
 | |
|          ELSE
 | |
| *
 | |
| *           2 x 2 diagonal block
 | |
| *
 | |
| *           Multiply by inv(L**T(K-1)), where L(K-1) is the transformation
 | |
| *           stored in columns K-1 and K of A.
 | |
| *
 | |
|             IF( K.LT.N ) THEN
 | |
|                CALL CGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
 | |
|      $                     LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB )
 | |
|                CALL CGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ),
 | |
|      $                     LDB, AP( KC-( N-K ) ), 1, ONE, B( K-1, 1 ),
 | |
|      $                     LDB )
 | |
|             END IF
 | |
| *
 | |
| *           Interchange rows K and -IPIV(K).
 | |
| *
 | |
|             KP = -IPIV( K )
 | |
|             IF( KP.NE.K )
 | |
|      $         CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
 | |
|             KC = KC - ( N-K+2 )
 | |
|             K = K - 2
 | |
|          END IF
 | |
| *
 | |
|          GO TO 90
 | |
|   100    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CSPTRS
 | |
| *
 | |
|       END
 |