405 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			405 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CSPTRI
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CSPTRI + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csptri.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csptri.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csptri.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX            AP( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CSPTRI computes the inverse of a complex symmetric indefinite matrix
 | |
| *> A in packed storage using the factorization A = U*D*U**T or
 | |
| *> A = L*D*L**T computed by CSPTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the details of the factorization are stored
 | |
| *>          as an upper or lower triangular matrix.
 | |
| *>          = 'U':  Upper triangular, form is A = U*D*U**T;
 | |
| *>          = 'L':  Lower triangular, form is A = L*D*L**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the block diagonal matrix D and the multipliers
 | |
| *>          used to obtain the factor U or L as computed by CSPTRF,
 | |
| *>          stored as a packed triangular matrix.
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the (symmetric) inverse of the original
 | |
| *>          matrix, stored as a packed triangular matrix. The j-th column
 | |
| *>          of inv(A) is stored in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L',
 | |
| *>             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges and the block structure of D
 | |
| *>          as determined by CSPTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
 | |
| *>               inverse could not be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CSPTRI( UPLO, N, AP, IPIV, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX            AP( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX            ONE, ZERO
 | |
|       PARAMETER          ( ONE = ( 1.0E+0, 0.0E+0 ),
 | |
|      $                   ZERO = ( 0.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            J, K, KC, KCNEXT, KP, KPC, KSTEP, KX, NPP
 | |
|       COMPLEX            AK, AKKP1, AKP1, D, T, TEMP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       COMPLEX            CDOTU
 | |
|       EXTERNAL           LSAME, CDOTU
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CCOPY, CSPMV, CSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CSPTRI', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Check that the diagonal matrix D is nonsingular.
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Upper triangular storage: examine D from bottom to top
 | |
| *
 | |
|          KP = N*( N+1 ) / 2
 | |
|          DO 10 INFO = N, 1, -1
 | |
|             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
 | |
|      $         RETURN
 | |
|             KP = KP - INFO
 | |
|    10    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Lower triangular storage: examine D from top to bottom.
 | |
| *
 | |
|          KP = 1
 | |
|          DO 20 INFO = 1, N
 | |
|             IF( IPIV( INFO ).GT.0 .AND. AP( KP ).EQ.ZERO )
 | |
|      $         RETURN
 | |
|             KP = KP + N - INFO + 1
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
|       INFO = 0
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Compute inv(A) from the factorization A = U*D*U**T.
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 to N in steps of
 | |
| *        1 or 2, depending on the size of the diagonal blocks.
 | |
| *
 | |
|          K = 1
 | |
|          KC = 1
 | |
|    30    CONTINUE
 | |
| *
 | |
| *        If K > N, exit from loop.
 | |
| *
 | |
|          IF( K.GT.N )
 | |
|      $      GO TO 50
 | |
| *
 | |
|          KCNEXT = KC + K
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *
 | |
| *           1 x 1 diagonal block
 | |
| *
 | |
| *           Invert the diagonal block.
 | |
| *
 | |
|             AP( KC+K-1 ) = ONE / AP( KC+K-1 )
 | |
| *
 | |
| *           Compute column K of the inverse.
 | |
| *
 | |
|             IF( K.GT.1 ) THEN
 | |
|                CALL CCOPY( K-1, AP( KC ), 1, WORK, 1 )
 | |
|                CALL CSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
 | |
|      $                     1 )
 | |
|                AP( KC+K-1 ) = AP( KC+K-1 ) -
 | |
|      $                        CDOTU( K-1, WORK, 1, AP( KC ), 1 )
 | |
|             END IF
 | |
|             KSTEP = 1
 | |
|          ELSE
 | |
| *
 | |
| *           2 x 2 diagonal block
 | |
| *
 | |
| *           Invert the diagonal block.
 | |
| *
 | |
|             T = AP( KCNEXT+K-1 )
 | |
|             AK = AP( KC+K-1 ) / T
 | |
|             AKP1 = AP( KCNEXT+K ) / T
 | |
|             AKKP1 = AP( KCNEXT+K-1 ) / T
 | |
|             D = T*( AK*AKP1-ONE )
 | |
|             AP( KC+K-1 ) = AKP1 / D
 | |
|             AP( KCNEXT+K ) = AK / D
 | |
|             AP( KCNEXT+K-1 ) = -AKKP1 / D
 | |
| *
 | |
| *           Compute columns K and K+1 of the inverse.
 | |
| *
 | |
|             IF( K.GT.1 ) THEN
 | |
|                CALL CCOPY( K-1, AP( KC ), 1, WORK, 1 )
 | |
|                CALL CSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO, AP( KC ),
 | |
|      $                     1 )
 | |
|                AP( KC+K-1 ) = AP( KC+K-1 ) -
 | |
|      $                        CDOTU( K-1, WORK, 1, AP( KC ), 1 )
 | |
|                AP( KCNEXT+K-1 ) = AP( KCNEXT+K-1 ) -
 | |
|      $                            CDOTU( K-1, AP( KC ), 1, AP( KCNEXT ),
 | |
|      $                            1 )
 | |
|                CALL CCOPY( K-1, AP( KCNEXT ), 1, WORK, 1 )
 | |
|                CALL CSPMV( UPLO, K-1, -ONE, AP, WORK, 1, ZERO,
 | |
|      $                     AP( KCNEXT ), 1 )
 | |
|                AP( KCNEXT+K ) = AP( KCNEXT+K ) -
 | |
|      $                          CDOTU( K-1, WORK, 1, AP( KCNEXT ), 1 )
 | |
|             END IF
 | |
|             KSTEP = 2
 | |
|             KCNEXT = KCNEXT + K + 1
 | |
|          END IF
 | |
| *
 | |
|          KP = ABS( IPIV( K ) )
 | |
|          IF( KP.NE.K ) THEN
 | |
| *
 | |
| *           Interchange rows and columns K and KP in the leading
 | |
| *           submatrix A(1:k+1,1:k+1)
 | |
| *
 | |
|             KPC = ( KP-1 )*KP / 2 + 1
 | |
|             CALL CSWAP( KP-1, AP( KC ), 1, AP( KPC ), 1 )
 | |
|             KX = KPC + KP - 1
 | |
|             DO 40 J = KP + 1, K - 1
 | |
|                KX = KX + J - 1
 | |
|                TEMP = AP( KC+J-1 )
 | |
|                AP( KC+J-1 ) = AP( KX )
 | |
|                AP( KX ) = TEMP
 | |
|    40       CONTINUE
 | |
|             TEMP = AP( KC+K-1 )
 | |
|             AP( KC+K-1 ) = AP( KPC+KP-1 )
 | |
|             AP( KPC+KP-1 ) = TEMP
 | |
|             IF( KSTEP.EQ.2 ) THEN
 | |
|                TEMP = AP( KC+K+K-1 )
 | |
|                AP( KC+K+K-1 ) = AP( KC+K+KP-1 )
 | |
|                AP( KC+K+KP-1 ) = TEMP
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          K = K + KSTEP
 | |
|          KC = KCNEXT
 | |
|          GO TO 30
 | |
|    50    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compute inv(A) from the factorization A = L*D*L**T.
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 to N in steps of
 | |
| *        1 or 2, depending on the size of the diagonal blocks.
 | |
| *
 | |
|          NPP = N*( N+1 ) / 2
 | |
|          K = N
 | |
|          KC = NPP
 | |
|    60    CONTINUE
 | |
| *
 | |
| *        If K < 1, exit from loop.
 | |
| *
 | |
|          IF( K.LT.1 )
 | |
|      $      GO TO 80
 | |
| *
 | |
|          KCNEXT = KC - ( N-K+2 )
 | |
|          IF( IPIV( K ).GT.0 ) THEN
 | |
| *
 | |
| *           1 x 1 diagonal block
 | |
| *
 | |
| *           Invert the diagonal block.
 | |
| *
 | |
|             AP( KC ) = ONE / AP( KC )
 | |
| *
 | |
| *           Compute column K of the inverse.
 | |
| *
 | |
|             IF( K.LT.N ) THEN
 | |
|                CALL CCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
 | |
|                CALL CSPMV( UPLO, N-K, -ONE, AP( KC+N-K+1 ), WORK, 1,
 | |
|      $                     ZERO, AP( KC+1 ), 1 )
 | |
|                AP( KC ) = AP( KC ) - CDOTU( N-K, WORK, 1, AP( KC+1 ),
 | |
|      $                    1 )
 | |
|             END IF
 | |
|             KSTEP = 1
 | |
|          ELSE
 | |
| *
 | |
| *           2 x 2 diagonal block
 | |
| *
 | |
| *           Invert the diagonal block.
 | |
| *
 | |
|             T = AP( KCNEXT+1 )
 | |
|             AK = AP( KCNEXT ) / T
 | |
|             AKP1 = AP( KC ) / T
 | |
|             AKKP1 = AP( KCNEXT+1 ) / T
 | |
|             D = T*( AK*AKP1-ONE )
 | |
|             AP( KCNEXT ) = AKP1 / D
 | |
|             AP( KC ) = AK / D
 | |
|             AP( KCNEXT+1 ) = -AKKP1 / D
 | |
| *
 | |
| *           Compute columns K-1 and K of the inverse.
 | |
| *
 | |
|             IF( K.LT.N ) THEN
 | |
|                CALL CCOPY( N-K, AP( KC+1 ), 1, WORK, 1 )
 | |
|                CALL CSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
 | |
|      $                     ZERO, AP( KC+1 ), 1 )
 | |
|                AP( KC ) = AP( KC ) - CDOTU( N-K, WORK, 1, AP( KC+1 ),
 | |
|      $                    1 )
 | |
|                AP( KCNEXT+1 ) = AP( KCNEXT+1 ) -
 | |
|      $                          CDOTU( N-K, AP( KC+1 ), 1,
 | |
|      $                          AP( KCNEXT+2 ), 1 )
 | |
|                CALL CCOPY( N-K, AP( KCNEXT+2 ), 1, WORK, 1 )
 | |
|                CALL CSPMV( UPLO, N-K, -ONE, AP( KC+( N-K+1 ) ), WORK, 1,
 | |
|      $                     ZERO, AP( KCNEXT+2 ), 1 )
 | |
|                AP( KCNEXT ) = AP( KCNEXT ) -
 | |
|      $                        CDOTU( N-K, WORK, 1, AP( KCNEXT+2 ), 1 )
 | |
|             END IF
 | |
|             KSTEP = 2
 | |
|             KCNEXT = KCNEXT - ( N-K+3 )
 | |
|          END IF
 | |
| *
 | |
|          KP = ABS( IPIV( K ) )
 | |
|          IF( KP.NE.K ) THEN
 | |
| *
 | |
| *           Interchange rows and columns K and KP in the trailing
 | |
| *           submatrix A(k-1:n,k-1:n)
 | |
| *
 | |
|             KPC = NPP - ( N-KP+1 )*( N-KP+2 ) / 2 + 1
 | |
|             IF( KP.LT.N )
 | |
|      $         CALL CSWAP( N-KP, AP( KC+KP-K+1 ), 1, AP( KPC+1 ), 1 )
 | |
|             KX = KC + KP - K
 | |
|             DO 70 J = K + 1, KP - 1
 | |
|                KX = KX + N - J + 1
 | |
|                TEMP = AP( KC+J-K )
 | |
|                AP( KC+J-K ) = AP( KX )
 | |
|                AP( KX ) = TEMP
 | |
|    70       CONTINUE
 | |
|             TEMP = AP( KC )
 | |
|             AP( KC ) = AP( KPC )
 | |
|             AP( KPC ) = TEMP
 | |
|             IF( KSTEP.EQ.2 ) THEN
 | |
|                TEMP = AP( KC-N+K-1 )
 | |
|                AP( KC-N+K-1 ) = AP( KC-N+KP-1 )
 | |
|                AP( KC-N+KP-1 ) = TEMP
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
|          K = K - KSTEP
 | |
|          KC = KCNEXT
 | |
|          GO TO 60
 | |
|    80    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CSPTRI
 | |
| *
 | |
|       END
 |