620 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			620 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CSPTRF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CSPTRF + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/csptrf.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/csptrf.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/csptrf.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CSPTRF( UPLO, N, AP, IPIV, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       COMPLEX            AP( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CSPTRF computes the factorization of a complex symmetric matrix A
 | |
| *> stored in packed format using the Bunch-Kaufman diagonal pivoting
 | |
| *> method:
 | |
| *>
 | |
| *>    A = U*D*U**T  or  A = L*D*L**T
 | |
| *>
 | |
| *> where U (or L) is a product of permutation and unit upper (lower)
 | |
| *> triangular matrices, and D is symmetric and block diagonal with
 | |
| *> 1-by-1 and 2-by-2 diagonal blocks.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the symmetric matrix
 | |
| *>          A, packed columnwise in a linear array.  The j-th column of A
 | |
| *>          is stored in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, the block diagonal matrix D and the multipliers used
 | |
| *>          to obtain the factor U or L, stored as a packed triangular
 | |
| *>          matrix overwriting A (see below for further details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          Details of the interchanges and the block structure of D.
 | |
| *>          If IPIV(k) > 0, then rows and columns k and IPIV(k) were
 | |
| *>          interchanged and D(k,k) is a 1-by-1 diagonal block.
 | |
| *>          If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
 | |
| *>          columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
 | |
| *>          is a 2-by-2 diagonal block.  If UPLO = 'L' and IPIV(k) =
 | |
| *>          IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
 | |
| *>          interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0: if INFO = i, D(i,i) is exactly zero.  The factorization
 | |
| *>               has been completed, but the block diagonal matrix D is
 | |
| *>               exactly singular, and division by zero will occur if it
 | |
| *>               is used to solve a system of equations.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  5-96 - Based on modifications by J. Lewis, Boeing Computer Services
 | |
| *>         Company
 | |
| *>
 | |
| *>  If UPLO = 'U', then A = U*D*U**T, where
 | |
| *>     U = P(n)*U(n)* ... *P(k)U(k)* ...,
 | |
| *>  i.e., U is a product of terms P(k)*U(k), where k decreases from n to
 | |
| *>  1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 | |
| *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 | |
| *>  defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
 | |
| *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 | |
| *>
 | |
| *>             (   I    v    0   )   k-s
 | |
| *>     U(k) =  (   0    I    0   )   s
 | |
| *>             (   0    0    I   )   n-k
 | |
| *>                k-s   s   n-k
 | |
| *>
 | |
| *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
 | |
| *>  If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
 | |
| *>  and A(k,k), and v overwrites A(1:k-2,k-1:k).
 | |
| *>
 | |
| *>  If UPLO = 'L', then A = L*D*L**T, where
 | |
| *>     L = P(1)*L(1)* ... *P(k)*L(k)* ...,
 | |
| *>  i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
 | |
| *>  n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
 | |
| *>  and 2-by-2 diagonal blocks D(k).  P(k) is a permutation matrix as
 | |
| *>  defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
 | |
| *>  that if the diagonal block D(k) is of order s (s = 1 or 2), then
 | |
| *>
 | |
| *>             (   I    0     0   )  k-1
 | |
| *>     L(k) =  (   0    I     0   )  s
 | |
| *>             (   0    v     I   )  n-k-s+1
 | |
| *>                k-1   s  n-k-s+1
 | |
| *>
 | |
| *>  If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
 | |
| *>  If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
 | |
| *>  and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CSPTRF( UPLO, N, AP, IPIV, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       COMPLEX            AP( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       REAL               EIGHT, SEVTEN
 | |
|       PARAMETER          ( EIGHT = 8.0E+0, SEVTEN = 17.0E+0 )
 | |
|       COMPLEX            CONE
 | |
|       PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
 | |
|      $                   KSTEP, KX, NPP
 | |
|       REAL               ABSAKK, ALPHA, COLMAX, ROWMAX
 | |
|       COMPLEX            D11, D12, D21, D22, R1, T, WK, WKM1, WKP1, ZDUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ICAMAX
 | |
|       EXTERNAL           LSAME, ICAMAX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CSCAL, CSPR, CSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, AIMAG, MAX, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Statement Functions ..
 | |
|       REAL               CABS1
 | |
| *     ..
 | |
| *     .. Statement Function definitions ..
 | |
|       CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CSPTRF', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize ALPHA for use in choosing pivot block size.
 | |
| *
 | |
|       ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Factorize A as U*D*U**T using the upper triangle of A
 | |
| *
 | |
| *        K is the main loop index, decreasing from N to 1 in steps of
 | |
| *        1 or 2
 | |
| *
 | |
|          K = N
 | |
|          KC = ( N-1 )*N / 2 + 1
 | |
|    10    CONTINUE
 | |
|          KNC = KC
 | |
| *
 | |
| *        If K < 1, exit from loop
 | |
| *
 | |
|          IF( K.LT.1 )
 | |
|      $      GO TO 110
 | |
|          KSTEP = 1
 | |
| *
 | |
| *        Determine rows and columns to be interchanged and whether
 | |
| *        a 1-by-1 or 2-by-2 pivot block will be used
 | |
| *
 | |
|          ABSAKK = CABS1( AP( KC+K-1 ) )
 | |
| *
 | |
| *        IMAX is the row-index of the largest off-diagonal element in
 | |
| *        column K, and COLMAX is its absolute value
 | |
| *
 | |
|          IF( K.GT.1 ) THEN
 | |
|             IMAX = ICAMAX( K-1, AP( KC ), 1 )
 | |
|             COLMAX = CABS1( AP( KC+IMAX-1 ) )
 | |
|          ELSE
 | |
|             COLMAX = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | |
| *
 | |
| *           Column K is zero: set INFO and continue
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = K
 | |
|             KP = K
 | |
|          ELSE
 | |
|             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
 | |
| *
 | |
| *              no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                KP = K
 | |
|             ELSE
 | |
| *
 | |
|                ROWMAX = ZERO
 | |
|                JMAX = IMAX
 | |
|                KX = IMAX*( IMAX+1 ) / 2 + IMAX
 | |
|                DO 20 J = IMAX + 1, K
 | |
|                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
 | |
|                      ROWMAX = CABS1( AP( KX ) )
 | |
|                      JMAX = J
 | |
|                   END IF
 | |
|                   KX = KX + J
 | |
|    20          CONTINUE
 | |
|                KPC = ( IMAX-1 )*IMAX / 2 + 1
 | |
|                IF( IMAX.GT.1 ) THEN
 | |
|                   JMAX = ICAMAX( IMAX-1, AP( KPC ), 1 )
 | |
|                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-1 ) ) )
 | |
|                END IF
 | |
| *
 | |
|                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
 | |
| *
 | |
| *                 no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                   KP = K
 | |
|                ELSE IF( CABS1( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
 | |
| *
 | |
| *                 interchange rows and columns K and IMAX, use 1-by-1
 | |
| *                 pivot block
 | |
| *
 | |
|                   KP = IMAX
 | |
|                ELSE
 | |
| *
 | |
| *                 interchange rows and columns K-1 and IMAX, use 2-by-2
 | |
| *                 pivot block
 | |
| *
 | |
|                   KP = IMAX
 | |
|                   KSTEP = 2
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             KK = K - KSTEP + 1
 | |
|             IF( KSTEP.EQ.2 )
 | |
|      $         KNC = KNC - K + 1
 | |
|             IF( KP.NE.KK ) THEN
 | |
| *
 | |
| *              Interchange rows and columns KK and KP in the leading
 | |
| *              submatrix A(1:k,1:k)
 | |
| *
 | |
|                CALL CSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
 | |
|                KX = KPC + KP - 1
 | |
|                DO 30 J = KP + 1, KK - 1
 | |
|                   KX = KX + J - 1
 | |
|                   T = AP( KNC+J-1 )
 | |
|                   AP( KNC+J-1 ) = AP( KX )
 | |
|                   AP( KX ) = T
 | |
|    30          CONTINUE
 | |
|                T = AP( KNC+KK-1 )
 | |
|                AP( KNC+KK-1 ) = AP( KPC+KP-1 )
 | |
|                AP( KPC+KP-1 ) = T
 | |
|                IF( KSTEP.EQ.2 ) THEN
 | |
|                   T = AP( KC+K-2 )
 | |
|                   AP( KC+K-2 ) = AP( KC+KP-1 )
 | |
|                   AP( KC+KP-1 ) = T
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           Update the leading submatrix
 | |
| *
 | |
|             IF( KSTEP.EQ.1 ) THEN
 | |
| *
 | |
| *              1-by-1 pivot block D(k): column k now holds
 | |
| *
 | |
| *              W(k) = U(k)*D(k)
 | |
| *
 | |
| *              where U(k) is the k-th column of U
 | |
| *
 | |
| *              Perform a rank-1 update of A(1:k-1,1:k-1) as
 | |
| *
 | |
| *              A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
 | |
| *
 | |
|                R1 = CONE / AP( KC+K-1 )
 | |
|                CALL CSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
 | |
| *
 | |
| *              Store U(k) in column k
 | |
| *
 | |
|                CALL CSCAL( K-1, R1, AP( KC ), 1 )
 | |
|             ELSE
 | |
| *
 | |
| *              2-by-2 pivot block D(k): columns k and k-1 now hold
 | |
| *
 | |
| *              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
 | |
| *
 | |
| *              where U(k) and U(k-1) are the k-th and (k-1)-th columns
 | |
| *              of U
 | |
| *
 | |
| *              Perform a rank-2 update of A(1:k-2,1:k-2) as
 | |
| *
 | |
| *              A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
 | |
| *                 = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
 | |
| *
 | |
|                IF( K.GT.2 ) THEN
 | |
| *
 | |
|                   D12 = AP( K-1+( K-1 )*K / 2 )
 | |
|                   D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
 | |
|                   D11 = AP( K+( K-1 )*K / 2 ) / D12
 | |
|                   T = CONE / ( D11*D22-CONE )
 | |
|                   D12 = T / D12
 | |
| *
 | |
|                   DO 50 J = K - 2, 1, -1
 | |
|                      WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
 | |
|      $                      AP( J+( K-1 )*K / 2 ) )
 | |
|                      WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
 | |
|      $                    AP( J+( K-2 )*( K-1 ) / 2 ) )
 | |
|                      DO 40 I = J, 1, -1
 | |
|                         AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
 | |
|      $                     AP( I+( K-1 )*K / 2 )*WK -
 | |
|      $                     AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
 | |
|    40                CONTINUE
 | |
|                      AP( J+( K-1 )*K / 2 ) = WK
 | |
|                      AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
 | |
|    50             CONTINUE
 | |
| *
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Store details of the interchanges in IPIV
 | |
| *
 | |
|          IF( KSTEP.EQ.1 ) THEN
 | |
|             IPIV( K ) = KP
 | |
|          ELSE
 | |
|             IPIV( K ) = -KP
 | |
|             IPIV( K-1 ) = -KP
 | |
|          END IF
 | |
| *
 | |
| *        Decrease K and return to the start of the main loop
 | |
| *
 | |
|          K = K - KSTEP
 | |
|          KC = KNC - K
 | |
|          GO TO 10
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Factorize A as L*D*L**T using the lower triangle of A
 | |
| *
 | |
| *        K is the main loop index, increasing from 1 to N in steps of
 | |
| *        1 or 2
 | |
| *
 | |
|          K = 1
 | |
|          KC = 1
 | |
|          NPP = N*( N+1 ) / 2
 | |
|    60    CONTINUE
 | |
|          KNC = KC
 | |
| *
 | |
| *        If K > N, exit from loop
 | |
| *
 | |
|          IF( K.GT.N )
 | |
|      $      GO TO 110
 | |
|          KSTEP = 1
 | |
| *
 | |
| *        Determine rows and columns to be interchanged and whether
 | |
| *        a 1-by-1 or 2-by-2 pivot block will be used
 | |
| *
 | |
|          ABSAKK = CABS1( AP( KC ) )
 | |
| *
 | |
| *        IMAX is the row-index of the largest off-diagonal element in
 | |
| *        column K, and COLMAX is its absolute value
 | |
| *
 | |
|          IF( K.LT.N ) THEN
 | |
|             IMAX = K + ICAMAX( N-K, AP( KC+1 ), 1 )
 | |
|             COLMAX = CABS1( AP( KC+IMAX-K ) )
 | |
|          ELSE
 | |
|             COLMAX = ZERO
 | |
|          END IF
 | |
| *
 | |
|          IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
 | |
| *
 | |
| *           Column K is zero: set INFO and continue
 | |
| *
 | |
|             IF( INFO.EQ.0 )
 | |
|      $         INFO = K
 | |
|             KP = K
 | |
|          ELSE
 | |
|             IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
 | |
| *
 | |
| *              no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                KP = K
 | |
|             ELSE
 | |
| *
 | |
| *              JMAX is the column-index of the largest off-diagonal
 | |
| *              element in row IMAX, and ROWMAX is its absolute value
 | |
| *
 | |
|                ROWMAX = ZERO
 | |
|                KX = KC + IMAX - K
 | |
|                DO 70 J = K, IMAX - 1
 | |
|                   IF( CABS1( AP( KX ) ).GT.ROWMAX ) THEN
 | |
|                      ROWMAX = CABS1( AP( KX ) )
 | |
|                      JMAX = J
 | |
|                   END IF
 | |
|                   KX = KX + N - J
 | |
|    70          CONTINUE
 | |
|                KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
 | |
|                IF( IMAX.LT.N ) THEN
 | |
|                   JMAX = IMAX + ICAMAX( N-IMAX, AP( KPC+1 ), 1 )
 | |
|                   ROWMAX = MAX( ROWMAX, CABS1( AP( KPC+JMAX-IMAX ) ) )
 | |
|                END IF
 | |
| *
 | |
|                IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
 | |
| *
 | |
| *                 no interchange, use 1-by-1 pivot block
 | |
| *
 | |
|                   KP = K
 | |
|                ELSE IF( CABS1( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
 | |
| *
 | |
| *                 interchange rows and columns K and IMAX, use 1-by-1
 | |
| *                 pivot block
 | |
| *
 | |
|                   KP = IMAX
 | |
|                ELSE
 | |
| *
 | |
| *                 interchange rows and columns K+1 and IMAX, use 2-by-2
 | |
| *                 pivot block
 | |
| *
 | |
|                   KP = IMAX
 | |
|                   KSTEP = 2
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             KK = K + KSTEP - 1
 | |
|             IF( KSTEP.EQ.2 )
 | |
|      $         KNC = KNC + N - K + 1
 | |
|             IF( KP.NE.KK ) THEN
 | |
| *
 | |
| *              Interchange rows and columns KK and KP in the trailing
 | |
| *              submatrix A(k:n,k:n)
 | |
| *
 | |
|                IF( KP.LT.N )
 | |
|      $            CALL CSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
 | |
|      $                        1 )
 | |
|                KX = KNC + KP - KK
 | |
|                DO 80 J = KK + 1, KP - 1
 | |
|                   KX = KX + N - J + 1
 | |
|                   T = AP( KNC+J-KK )
 | |
|                   AP( KNC+J-KK ) = AP( KX )
 | |
|                   AP( KX ) = T
 | |
|    80          CONTINUE
 | |
|                T = AP( KNC )
 | |
|                AP( KNC ) = AP( KPC )
 | |
|                AP( KPC ) = T
 | |
|                IF( KSTEP.EQ.2 ) THEN
 | |
|                   T = AP( KC+1 )
 | |
|                   AP( KC+1 ) = AP( KC+KP-K )
 | |
|                   AP( KC+KP-K ) = T
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           Update the trailing submatrix
 | |
| *
 | |
|             IF( KSTEP.EQ.1 ) THEN
 | |
| *
 | |
| *              1-by-1 pivot block D(k): column k now holds
 | |
| *
 | |
| *              W(k) = L(k)*D(k)
 | |
| *
 | |
| *              where L(k) is the k-th column of L
 | |
| *
 | |
|                IF( K.LT.N ) THEN
 | |
| *
 | |
| *                 Perform a rank-1 update of A(k+1:n,k+1:n) as
 | |
| *
 | |
| *                 A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
 | |
| *
 | |
|                   R1 = CONE / AP( KC )
 | |
|                   CALL CSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
 | |
|      $                       AP( KC+N-K+1 ) )
 | |
| *
 | |
| *                 Store L(k) in column K
 | |
| *
 | |
|                   CALL CSCAL( N-K, R1, AP( KC+1 ), 1 )
 | |
|                END IF
 | |
|             ELSE
 | |
| *
 | |
| *              2-by-2 pivot block D(k): columns K and K+1 now hold
 | |
| *
 | |
| *              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
 | |
| *
 | |
| *              where L(k) and L(k+1) are the k-th and (k+1)-th columns
 | |
| *              of L
 | |
| *
 | |
|                IF( K.LT.N-1 ) THEN
 | |
| *
 | |
| *                 Perform a rank-2 update of A(k+2:n,k+2:n) as
 | |
| *
 | |
| *                 A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
 | |
| *                    = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
 | |
| *
 | |
| *                 where L(k) and L(k+1) are the k-th and (k+1)-th
 | |
| *                 columns of L
 | |
| *
 | |
|                   D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
 | |
|                   D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
 | |
|                   D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
 | |
|                   T = CONE / ( D11*D22-CONE )
 | |
|                   D21 = T / D21
 | |
| *
 | |
|                   DO 100 J = K + 2, N
 | |
|                      WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
 | |
|      $                    AP( J+K*( 2*N-K-1 ) / 2 ) )
 | |
|                      WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
 | |
|      $                      AP( J+( K-1 )*( 2*N-K ) / 2 ) )
 | |
|                      DO 90 I = J, N
 | |
|                         AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
 | |
|      $                     ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
 | |
|      $                     2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
 | |
|    90                CONTINUE
 | |
|                      AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
 | |
|                      AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
 | |
|   100             CONTINUE
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Store details of the interchanges in IPIV
 | |
| *
 | |
|          IF( KSTEP.EQ.1 ) THEN
 | |
|             IPIV( K ) = KP
 | |
|          ELSE
 | |
|             IPIV( K ) = -KP
 | |
|             IPIV( K+1 ) = -KP
 | |
|          END IF
 | |
| *
 | |
| *        Increase K and return to the start of the main loop
 | |
| *
 | |
|          K = K + KSTEP
 | |
|          KC = KNC + N - K + 2
 | |
|          GO TO 60
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|   110 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of CSPTRF
 | |
| *
 | |
|       END
 |