191 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			5.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CPPTRI
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CPPTRI + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpptri.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpptri.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpptri.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CPPTRI( UPLO, N, AP, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       COMPLEX            AP( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CPPTRI computes the inverse of a complex Hermitian positive definite
 | |
| *> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
 | |
| *> computed by CPPTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangular factor is stored in AP;
 | |
| *>          = 'L':  Lower triangular factor is stored in AP.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the triangular factor U or L from the Cholesky
 | |
| *>          factorization A = U**H*U or A = L*L**H, packed columnwise as
 | |
| *>          a linear array.  The j-th column of U or L is stored in the
 | |
| *>          array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, the upper or lower triangle of the (Hermitian)
 | |
| *>          inverse of A, overwriting the input factor U or L.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, the (i,i) element of the factor U or L is
 | |
| *>                zero, and the inverse could not be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CPPTRI( UPLO, N, AP, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       COMPLEX            AP( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            J, JC, JJ, JJN
 | |
|       REAL               AJJ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       COMPLEX            CDOTC
 | |
|       EXTERNAL           LSAME, CDOTC
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CHPR, CSSCAL, CTPMV, CTPTRI, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CPPTRI', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Invert the triangular Cholesky factor U or L.
 | |
| *
 | |
|       CALL CTPTRI( UPLO, 'Non-unit', N, AP, INFO )
 | |
|       IF( INFO.GT.0 )
 | |
|      $   RETURN
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Compute the product inv(U) * inv(U)**H.
 | |
| *
 | |
|          JJ = 0
 | |
|          DO 10 J = 1, N
 | |
|             JC = JJ + 1
 | |
|             JJ = JJ + J
 | |
|             IF( J.GT.1 )
 | |
|      $         CALL CHPR( 'Upper', J-1, ONE, AP( JC ), 1, AP )
 | |
|             AJJ = AP( JJ )
 | |
|             CALL CSSCAL( J, AJJ, AP( JC ), 1 )
 | |
|    10    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compute the product inv(L)**H * inv(L).
 | |
| *
 | |
|          JJ = 1
 | |
|          DO 20 J = 1, N
 | |
|             JJN = JJ + N - J + 1
 | |
|             AP( JJ ) = REAL( CDOTC( N-J+1, AP( JJ ), 1, AP( JJ ), 1 ) )
 | |
|             IF( J.LT.N )
 | |
|      $         CALL CTPMV( 'Lower', 'Conjugate transpose', 'Non-unit',
 | |
|      $                     N-J, AP( JJN ), AP( JJ+1 ), 1 )
 | |
|             JJ = JJN
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CPPTRI
 | |
| *
 | |
|       END
 |