241 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			241 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b CPPEQU
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CPPEQU + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cppequ.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cppequ.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cppequ.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, N
 | |
| *       REAL               AMAX, SCOND
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               S( * )
 | |
| *       COMPLEX            AP( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CPPEQU computes row and column scalings intended to equilibrate a
 | |
| *> Hermitian positive definite matrix A in packed storage and reduce
 | |
| *> its condition number (with respect to the two-norm).  S contains the
 | |
| *> scale factors, S(i)=1/sqrt(A(i,i)), chosen so that the scaled matrix
 | |
| *> B with elements B(i,j)=S(i)*A(i,j)*S(j) has ones on the diagonal.
 | |
| *> This choice of S puts the condition number of B within a factor N of
 | |
| *> the smallest possible condition number over all possible diagonal
 | |
| *> scalings.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX array, dimension (N*(N+1)/2)
 | |
| *>          The upper or lower triangle of the Hermitian matrix A, packed
 | |
| *>          columnwise in a linear array.  The j-th column of A is stored
 | |
| *>          in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] S
 | |
| *> \verbatim
 | |
| *>          S is REAL array, dimension (N)
 | |
| *>          If INFO = 0, S contains the scale factors for A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] SCOND
 | |
| *> \verbatim
 | |
| *>          SCOND is REAL
 | |
| *>          If INFO = 0, S contains the ratio of the smallest S(i) to
 | |
| *>          the largest S(i).  If SCOND >= 0.1 and AMAX is neither too
 | |
| *>          large nor too small, it is not worth scaling by S.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AMAX
 | |
| *> \verbatim
 | |
| *>          AMAX is REAL
 | |
| *>          Absolute value of largest matrix element.  If AMAX is very
 | |
| *>          close to overflow or very close to underflow, the matrix
 | |
| *>          should be scaled.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, the i-th diagonal element is nonpositive.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CPPEQU( UPLO, N, AP, S, SCOND, AMAX, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, N
 | |
|       REAL               AMAX, SCOND
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               S( * )
 | |
|       COMPLEX            AP( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I, JJ
 | |
|       REAL               SMIN
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, REAL, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CPPEQU', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          SCOND = ONE
 | |
|          AMAX = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Initialize SMIN and AMAX.
 | |
| *
 | |
|       S( 1 ) = REAL( AP( 1 ) )
 | |
|       SMIN = S( 1 )
 | |
|       AMAX = S( 1 )
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        UPLO = 'U':  Upper triangle of A is stored.
 | |
| *        Find the minimum and maximum diagonal elements.
 | |
| *
 | |
|          JJ = 1
 | |
|          DO 10 I = 2, N
 | |
|             JJ = JJ + I
 | |
|             S( I ) = REAL( AP( JJ ) )
 | |
|             SMIN = MIN( SMIN, S( I ) )
 | |
|             AMAX = MAX( AMAX, S( I ) )
 | |
|    10    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        UPLO = 'L':  Lower triangle of A is stored.
 | |
| *        Find the minimum and maximum diagonal elements.
 | |
| *
 | |
|          JJ = 1
 | |
|          DO 20 I = 2, N
 | |
|             JJ = JJ + N - I + 2
 | |
|             S( I ) = REAL( AP( JJ ) )
 | |
|             SMIN = MIN( SMIN, S( I ) )
 | |
|             AMAX = MAX( AMAX, S( I ) )
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( SMIN.LE.ZERO ) THEN
 | |
| *
 | |
| *        Find the first non-positive diagonal element and return.
 | |
| *
 | |
|          DO 30 I = 1, N
 | |
|             IF( S( I ).LE.ZERO ) THEN
 | |
|                INFO = I
 | |
|                RETURN
 | |
|             END IF
 | |
|    30    CONTINUE
 | |
|       ELSE
 | |
| *
 | |
| *        Set the scale factors to the reciprocals
 | |
| *        of the diagonal elements.
 | |
| *
 | |
|          DO 40 I = 1, N
 | |
|             S( I ) = ONE / SQRT( S( I ) )
 | |
|    40    CONTINUE
 | |
| *
 | |
| *        Compute SCOND = min(S(I)) / max(S(I))
 | |
| *
 | |
|          SCOND = SQRT( SMIN ) / SQRT( AMAX )
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of CPPEQU
 | |
| *
 | |
|       END
 |