299 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			299 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> CHEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for HE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download CHEEV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cheev.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cheev.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cheev.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
 | |
| *                         INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, UPLO
 | |
| *       INTEGER            INFO, LDA, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               RWORK( * ), W( * )
 | |
| *       COMPLEX            A( LDA, * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> CHEEV computes all eigenvalues and, optionally, eigenvectors of a
 | |
| *> complex Hermitian matrix A.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX array, dimension (LDA, N)
 | |
| *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the
 | |
| *>          leading N-by-N upper triangular part of A contains the
 | |
| *>          upper triangular part of the matrix A.  If UPLO = 'L',
 | |
| *>          the leading N-by-N lower triangular part of A contains
 | |
| *>          the lower triangular part of the matrix A.
 | |
| *>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
 | |
| *>          orthonormal eigenvectors of the matrix A.
 | |
| *>          If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
 | |
| *>          or the upper triangle (if UPLO='U') of A, including the
 | |
| *>          diagonal, is destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          If INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The length of the array WORK.  LWORK >= max(1,2*N-1).
 | |
| *>          For optimal efficiency, LWORK >= (NB+1)*N,
 | |
| *>          where NB is the blocksize for CHETRD returned by ILAENV.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (max(1, 3*N-2))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, the algorithm failed to converge; i
 | |
| *>                off-diagonal elements of an intermediate tridiagonal
 | |
| *>                form did not converge to zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \date December 2016
 | |
| *
 | |
| *> \ingroup complexHEeigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE CHEEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, RWORK,
 | |
|      $                  INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine (version 3.7.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     December 2016
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, UPLO
 | |
|       INTEGER            INFO, LDA, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               RWORK( * ), W( * )
 | |
|       COMPLEX            A( LDA, * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
|       COMPLEX            CONE
 | |
|       PARAMETER          ( CONE = ( 1.0E0, 0.0E0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LOWER, LQUERY, WANTZ
 | |
|       INTEGER            IINFO, IMAX, INDE, INDTAU, INDWRK, ISCALE,
 | |
|      $                   LLWORK, LWKOPT, NB
 | |
|       REAL               ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
 | |
|      $                   SMLNUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ILAENV
 | |
|       REAL               CLANHE, SLAMCH
 | |
|       EXTERNAL           ILAENV, LSAME, CLANHE, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           CHETRD, CLASCL, CSTEQR, CUNGTR, SSCAL, SSTERF,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       LOWER = LSAME( UPLO, 'L' )
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          NB = ILAENV( 1, 'CHETRD', UPLO, N, -1, -1, -1 )
 | |
|          LWKOPT = MAX( 1, ( NB+1 )*N )
 | |
|          WORK( 1 ) = LWKOPT
 | |
| *
 | |
|          IF( LWORK.LT.MAX( 1, 2*N-1 ) .AND. .NOT.LQUERY )
 | |
|      $      INFO = -8
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'CHEEV ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          W( 1 ) = A( 1, 1 )
 | |
|          WORK( 1 ) = 1
 | |
|          IF( WANTZ )
 | |
|      $      A( 1, 1 ) = CONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       EPS = SLAMCH( 'Precision' )
 | |
|       SMLNUM = SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RMIN = SQRT( SMLNUM )
 | |
|       RMAX = SQRT( BIGNUM )
 | |
| *
 | |
| *     Scale matrix to allowable range, if necessary.
 | |
| *
 | |
|       ANRM = CLANHE( 'M', UPLO, N, A, LDA, RWORK )
 | |
|       ISCALE = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMIN / ANRM
 | |
|       ELSE IF( ANRM.GT.RMAX ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMAX / ANRM
 | |
|       END IF
 | |
|       IF( ISCALE.EQ.1 )
 | |
|      $   CALL CLASCL( UPLO, 0, 0, ONE, SIGMA, N, N, A, LDA, INFO )
 | |
| *
 | |
| *     Call CHETRD to reduce Hermitian matrix to tridiagonal form.
 | |
| *
 | |
|       INDE = 1
 | |
|       INDTAU = 1
 | |
|       INDWRK = INDTAU + N
 | |
|       LLWORK = LWORK - INDWRK + 1
 | |
|       CALL CHETRD( UPLO, N, A, LDA, W, RWORK( INDE ), WORK( INDTAU ),
 | |
|      $             WORK( INDWRK ), LLWORK, IINFO )
 | |
| *
 | |
| *     For eigenvalues only, call SSTERF.  For eigenvectors, first call
 | |
| *     CUNGTR to generate the unitary matrix, then call CSTEQR.
 | |
| *
 | |
|       IF( .NOT.WANTZ ) THEN
 | |
|          CALL SSTERF( N, W, RWORK( INDE ), INFO )
 | |
|       ELSE
 | |
|          CALL CUNGTR( UPLO, N, A, LDA, WORK( INDTAU ), WORK( INDWRK ),
 | |
|      $                LLWORK, IINFO )
 | |
|          INDWRK = INDE + N
 | |
|          CALL CSTEQR( JOBZ, N, W, RWORK( INDE ), A, LDA,
 | |
|      $                RWORK( INDWRK ), INFO )
 | |
|       END IF
 | |
| *
 | |
| *     If matrix was scaled, then rescale eigenvalues appropriately.
 | |
| *
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          IF( INFO.EQ.0 ) THEN
 | |
|             IMAX = N
 | |
|          ELSE
 | |
|             IMAX = INFO - 1
 | |
|          END IF
 | |
|          CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
 | |
|       END IF
 | |
| *
 | |
| *     Set WORK(1) to optimal complex workspace size.
 | |
| *
 | |
|       WORK( 1 ) = LWKOPT
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of CHEEV
 | |
| *
 | |
|       END
 |