267 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
/***************************************************************************
 | 
						|
Copyright (c) 2020, The OpenBLAS Project
 | 
						|
All rights reserved.
 | 
						|
Redistribution and use in source and binary forms, with or without
 | 
						|
modification, are permitted provided that the following conditions are
 | 
						|
met:
 | 
						|
1. Redistributions of source code must retain the above copyright
 | 
						|
notice, this list of conditions and the following disclaimer.
 | 
						|
2. Redistributions in binary form must reproduce the above copyright
 | 
						|
notice, this list of conditions and the following disclaimer in
 | 
						|
the documentation and/or other materials provided with the
 | 
						|
distribution.
 | 
						|
3. Neither the name of the OpenBLAS project nor the names of
 | 
						|
its contributors may be used to endorse or promote products
 | 
						|
derived from this software without specific prior written permission.
 | 
						|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
						|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
 | 
						|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | 
						|
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | 
						|
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 | 
						|
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
*****************************************************************************/
 | 
						|
 | 
						|
#include "common.h"
 | 
						|
#if !defined(DOUBLE)
 | 
						|
#define VSETVL(n) vsetvl_e32m4(n)
 | 
						|
#define VSETVL_MAX vsetvlmax_e32m1()
 | 
						|
#define FLOAT_V_T vfloat32m4_t
 | 
						|
#define FLOAT_V_T_M1 vfloat32m1_t
 | 
						|
#define VFMVFS_FLOAT vfmv_f_s_f32m1_f32
 | 
						|
#define VLEV_FLOAT vle32_v_f32m4
 | 
						|
#define VLSEV_FLOAT vlse32_v_f32m4
 | 
						|
#define VSEV_FLOAT vse32_v_f32m4
 | 
						|
#define VSSEV_FLOAT vsse32_v_f32m4
 | 
						|
#define VFREDSUM_FLOAT vfredusum_vs_f32m4_f32m1
 | 
						|
#define VFMACCVV_FLOAT vfmacc_vv_f32m4
 | 
						|
#define VFMACCVF_FLOAT vfmacc_vf_f32m4
 | 
						|
#define VFMVVF_FLOAT vfmv_v_f_f32m4
 | 
						|
#define VFMVVF_FLOAT_M1 vfmv_v_f_f32m1
 | 
						|
#define VFDOTVV_FLOAT vfdot_vv_f32m4
 | 
						|
#define VFMULVV_FLOAT vfmul_vv_f32m4
 | 
						|
#else
 | 
						|
#define VSETVL(n) vsetvl_e64m4(n)
 | 
						|
#define VSETVL_MAX vsetvlmax_e64m1()
 | 
						|
#define FLOAT_V_T vfloat64m4_t
 | 
						|
#define FLOAT_V_T_M1 vfloat64m1_t
 | 
						|
#define VFMVFS_FLOAT vfmv_f_s_f64m1_f64
 | 
						|
#define VLEV_FLOAT vle64_v_f64m4
 | 
						|
#define VLSEV_FLOAT vlse64_v_f64m4
 | 
						|
#define VSEV_FLOAT vse64_v_f64m4
 | 
						|
#define VSSEV_FLOAT vsse64_v_f64m4
 | 
						|
#define VFREDSUM_FLOAT vfredusum_vs_f64m4_f64m1
 | 
						|
#define VFMACCVV_FLOAT vfmacc_vv_f64m4
 | 
						|
#define VFMACCVF_FLOAT vfmacc_vf_f64m4
 | 
						|
#define VFMVVF_FLOAT vfmv_v_f_f64m4
 | 
						|
#define VFMVVF_FLOAT_M1 vfmv_v_f_f64m1
 | 
						|
#define VFDOTVV_FLOAT vfdot_vv_f64m4
 | 
						|
#define VFMULVV_FLOAT vfmul_vv_f64m4
 | 
						|
#endif
 | 
						|
 | 
						|
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer)
 | 
						|
{
 | 
						|
        BLASLONG i, j, k;
 | 
						|
        BLASLONG ix,iy;
 | 
						|
        BLASLONG jx,jy;
 | 
						|
        FLOAT temp1;
 | 
						|
        FLOAT temp2;
 | 
						|
        FLOAT *a_ptr = a;
 | 
						|
        unsigned int gvl = 0;
 | 
						|
        FLOAT_V_T_M1 v_res, v_z0;
 | 
						|
        gvl = VSETVL_MAX;
 | 
						|
        v_res = VFMVVF_FLOAT_M1(0, gvl);
 | 
						|
        v_z0 = VFMVVF_FLOAT_M1(0, gvl);
 | 
						|
 | 
						|
        FLOAT_V_T va, vx, vy, vr;
 | 
						|
        BLASLONG stride_x, stride_y, inc_xv, inc_yv;
 | 
						|
 | 
						|
        BLASLONG m1 = m - offset;
 | 
						|
        if(inc_x == 1 && inc_y == 1){
 | 
						|
                a_ptr += m1 * lda;
 | 
						|
                for (j=m1; j<m; j++)
 | 
						|
                {
 | 
						|
                        temp1 = alpha * x[j];
 | 
						|
                        temp2 = 0.0;
 | 
						|
                        if(j > 0){
 | 
						|
                                i = 0;
 | 
						|
                                gvl = VSETVL(j);
 | 
						|
                                vr = VFMVVF_FLOAT(0, gvl);
 | 
						|
                                for(k = 0; k < j / gvl; k++){
 | 
						|
                                        vy = VLEV_FLOAT(&y[i], gvl);
 | 
						|
                                        va = VLEV_FLOAT(&a_ptr[i], gvl);
 | 
						|
                                        vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
 | 
						|
                                        VSEV_FLOAT(&y[i], vy, gvl);
 | 
						|
 | 
						|
                                        vx = VLEV_FLOAT(&x[i], gvl);
 | 
						|
                                        vr = VFMACCVV_FLOAT(vr, vx, va, gvl);
 | 
						|
 | 
						|
                                        i += gvl;
 | 
						|
                                }
 | 
						|
                                v_res = VFREDSUM_FLOAT(v_res, vr, v_z0, gvl);
 | 
						|
                                temp2 = VFMVFS_FLOAT(v_res);
 | 
						|
                                if(i < j){
 | 
						|
                                        gvl = VSETVL(j-i);
 | 
						|
                                        vy = VLEV_FLOAT(&y[i], gvl);
 | 
						|
                                        va = VLEV_FLOAT(&a_ptr[i], gvl);
 | 
						|
                                        vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
 | 
						|
                                        VSEV_FLOAT(&y[i], vy, gvl);
 | 
						|
 | 
						|
                                        vx = VLEV_FLOAT(&x[i], gvl);
 | 
						|
                                        vr = VFMULVV_FLOAT(vx, va, gvl);
 | 
						|
                                        v_res = VFREDSUM_FLOAT(v_res, vr, v_z0, gvl);
 | 
						|
                                        temp2 += VFMVFS_FLOAT(v_res);
 | 
						|
                                }
 | 
						|
                        }
 | 
						|
                        y[j] += temp1 * a_ptr[j] + alpha * temp2;
 | 
						|
                        a_ptr += lda;
 | 
						|
                }
 | 
						|
        }else if(inc_x == 1){
 | 
						|
                jy = m1 * inc_y;
 | 
						|
                a_ptr += m1 * lda;
 | 
						|
                stride_y = inc_y * sizeof(FLOAT);
 | 
						|
                for (j=m1; j<m; j++)
 | 
						|
                {
 | 
						|
                        temp1 = alpha * x[j];
 | 
						|
                        temp2 = 0.0;
 | 
						|
                        if(j > 0){
 | 
						|
                                iy = 0;
 | 
						|
                                i = 0;
 | 
						|
                                gvl = VSETVL(j);
 | 
						|
                                inc_yv = inc_y * gvl;
 | 
						|
                                vr = VFMVVF_FLOAT(0, gvl);
 | 
						|
                                for(k = 0; k < j / gvl; k++){
 | 
						|
                                        vy = VLSEV_FLOAT(&y[iy], stride_y, gvl);
 | 
						|
                                        va = VLEV_FLOAT(&a_ptr[i], gvl);
 | 
						|
                                        vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
 | 
						|
                                        VSSEV_FLOAT(&y[iy], stride_y, vy, gvl);
 | 
						|
 | 
						|
                                        vx = VLEV_FLOAT(&x[i], gvl);
 | 
						|
                                        vr = VFMACCVV_FLOAT(vr, vx, va, gvl);
 | 
						|
 | 
						|
                                        i += gvl;
 | 
						|
                                        iy += inc_yv;
 | 
						|
                                }
 | 
						|
                                v_res = VFREDSUM_FLOAT(v_res, vr, v_z0, gvl);
 | 
						|
                                temp2 = VFMVFS_FLOAT(v_res);
 | 
						|
                                if(i < j){
 | 
						|
                                        gvl = VSETVL(j-i);
 | 
						|
                                        vy = VLSEV_FLOAT(&y[iy], stride_y, gvl);
 | 
						|
                                        va = VLEV_FLOAT(&a_ptr[i], gvl);
 | 
						|
                                        vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
 | 
						|
                                        VSSEV_FLOAT(&y[iy], stride_y, vy, gvl);
 | 
						|
 | 
						|
                                        vx = VLEV_FLOAT(&x[i], gvl);
 | 
						|
                                        vr = VFMULVV_FLOAT(vx, va, gvl);
 | 
						|
                                        v_res = VFREDSUM_FLOAT(v_res, vr, v_z0, gvl);
 | 
						|
                                        temp2 += VFMVFS_FLOAT(v_res);
 | 
						|
                                }
 | 
						|
                        }
 | 
						|
                        y[jy] += temp1 * a_ptr[j] + alpha * temp2;
 | 
						|
                        a_ptr += lda;
 | 
						|
                        jy    += inc_y;
 | 
						|
                }
 | 
						|
        }else if(inc_y == 1){
 | 
						|
                jx = m1 * inc_x;
 | 
						|
                a_ptr += m1 * lda;
 | 
						|
                stride_x = inc_x * sizeof(FLOAT);
 | 
						|
                for (j=m1; j<m; j++)
 | 
						|
                {
 | 
						|
                        temp1 = alpha * x[jx];
 | 
						|
                        temp2 = 0.0;
 | 
						|
                        if(j > 0){
 | 
						|
                                ix = 0;
 | 
						|
                                i = 0;
 | 
						|
                                gvl = VSETVL(j);
 | 
						|
                                inc_xv = inc_x * gvl;
 | 
						|
                                vr = VFMVVF_FLOAT(0, gvl);
 | 
						|
                                for(k = 0; k < j / gvl; k++){
 | 
						|
                                        vy = VLEV_FLOAT(&y[i], gvl);
 | 
						|
                                        va = VLEV_FLOAT(&a_ptr[i], gvl);
 | 
						|
                                        vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
 | 
						|
                                        VSEV_FLOAT(&y[i], vy, gvl);
 | 
						|
 | 
						|
                                        vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
 | 
						|
                                        vr = VFMACCVV_FLOAT(vr, vx, va, gvl);
 | 
						|
 | 
						|
                                        i += gvl;
 | 
						|
                                        ix += inc_xv;
 | 
						|
                                }
 | 
						|
                                v_res = VFREDSUM_FLOAT(v_res, vr, v_z0, gvl);
 | 
						|
                                temp2 = VFMVFS_FLOAT(v_res);
 | 
						|
                                if(i < j){
 | 
						|
                                        gvl = VSETVL(j-i);
 | 
						|
                                        vy = VLEV_FLOAT(&y[i], gvl);
 | 
						|
                                        va = VLEV_FLOAT(&a_ptr[i], gvl);
 | 
						|
                                        vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
 | 
						|
                                        VSEV_FLOAT(&y[i], vy, gvl);
 | 
						|
 | 
						|
                                        vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
 | 
						|
                                        vr = VFMULVV_FLOAT(vx, va, gvl);
 | 
						|
                                        v_res = VFREDSUM_FLOAT(v_res, vr, v_z0, gvl);
 | 
						|
                                        temp2 += VFMVFS_FLOAT(v_res);
 | 
						|
                                }
 | 
						|
                        }
 | 
						|
                        y[j] += temp1 * a_ptr[j] + alpha * temp2;
 | 
						|
                        a_ptr += lda;
 | 
						|
                        jx    += inc_x;
 | 
						|
                }
 | 
						|
        }else{
 | 
						|
                jx = m1 * inc_x;
 | 
						|
                jy = m1 * inc_y;
 | 
						|
                a_ptr += m1 * lda;
 | 
						|
                stride_x = inc_x * sizeof(FLOAT);
 | 
						|
                stride_y = inc_y * sizeof(FLOAT);
 | 
						|
                for (j=m1; j<m; j++)
 | 
						|
                {
 | 
						|
                        temp1 = alpha * x[jx];
 | 
						|
                        temp2 = 0.0;
 | 
						|
                        if(j > 0){
 | 
						|
                                ix = 0;
 | 
						|
                                iy = 0;
 | 
						|
                                i = 0;
 | 
						|
                                gvl = VSETVL(j);
 | 
						|
                                inc_xv = inc_x * gvl;
 | 
						|
                                inc_yv = inc_y * gvl;
 | 
						|
                                vr = VFMVVF_FLOAT(0, gvl);
 | 
						|
                                for(k = 0; k < j / gvl; k++){
 | 
						|
                                        vy = VLSEV_FLOAT(&y[iy], stride_y, gvl);
 | 
						|
                                        va = VLEV_FLOAT(&a_ptr[i], gvl);
 | 
						|
                                        vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
 | 
						|
                                        VSSEV_FLOAT(&y[iy], stride_y, vy, gvl);
 | 
						|
 | 
						|
                                        vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
 | 
						|
                                        vr = VFMACCVV_FLOAT(vr, vx, va, gvl);
 | 
						|
 | 
						|
                                        i += gvl;
 | 
						|
                                        ix += inc_xv;
 | 
						|
                                        iy += inc_yv;
 | 
						|
                                }
 | 
						|
                                v_res = VFREDSUM_FLOAT(v_res, vr, v_z0, gvl);
 | 
						|
                                temp2 = VFMVFS_FLOAT(v_res);
 | 
						|
                                if(i < j){
 | 
						|
                                        gvl = VSETVL(j-i);
 | 
						|
                                        vy = VLSEV_FLOAT(&y[iy], stride_y, gvl);
 | 
						|
                                        va = VLEV_FLOAT(&a_ptr[i], gvl);
 | 
						|
                                        vy = VFMACCVF_FLOAT(vy, temp1, va, gvl);
 | 
						|
                                        VSSEV_FLOAT(&y[iy], stride_y, vy, gvl);
 | 
						|
 | 
						|
                                        vx = VLSEV_FLOAT(&x[ix], stride_x, gvl);
 | 
						|
                                        vr = VFMULVV_FLOAT(vx, va, gvl);
 | 
						|
                                        v_res = VFREDSUM_FLOAT(v_res, vr, v_z0, gvl);
 | 
						|
                                        temp2 += VFMVFS_FLOAT(v_res);
 | 
						|
                                }
 | 
						|
                        }
 | 
						|
                        y[jy] += temp1 * a_ptr[j] + alpha * temp2;
 | 
						|
                        a_ptr += lda;
 | 
						|
                        jx    += inc_x;
 | 
						|
                        jy    += inc_y;
 | 
						|
                }
 | 
						|
        }
 | 
						|
        return(0);
 | 
						|
}
 | 
						|
 |