181 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			4.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SPTT02
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SPTT02( N, NRHS, D, E, X, LDX, B, LDB, RESID )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDB, LDX, N, NRHS
 | |
| *       REAL               RESID
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               B( LDB, * ), D( * ), E( * ), X( LDX, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SPTT02 computes the residual for the solution to a symmetric
 | |
| *> tridiagonal system of equations:
 | |
| *>    RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
 | |
| *> where EPS is the machine epsilon.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrices B and X.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The n diagonal elements of the tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] E
 | |
| *> \verbatim
 | |
| *>          E is REAL array, dimension (N-1)
 | |
| *>          The (n-1) subdiagonal elements of the tridiagonal matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] X
 | |
| *> \verbatim
 | |
| *>          X is REAL array, dimension (LDX,NRHS)
 | |
| *>          The n by nrhs matrix of solution vectors X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,NRHS)
 | |
| *>          On entry, the n by nrhs matrix of right hand side vectors B.
 | |
| *>          On exit, B is overwritten with the difference B - A*X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESID
 | |
| *> \verbatim
 | |
| *>          RESID is REAL
 | |
| *>          norm(B - A*X) / (norm(A) * norm(X) * EPS)
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup single_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SPTT02( N, NRHS, D, E, X, LDX, B, LDB, RESID )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDB, LDX, N, NRHS
 | |
|       REAL               RESID
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               B( LDB, * ), D( * ), E( * ), X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            J
 | |
|       REAL               ANORM, BNORM, EPS, XNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SASUM, SLAMCH, SLANST
 | |
|       EXTERNAL           SASUM, SLAMCH, SLANST
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLAPTM
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 ) THEN
 | |
|          RESID = ZERO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute the 1-norm of the tridiagonal matrix A.
 | |
| *
 | |
|       ANORM = SLANST( '1', N, D, E )
 | |
| *
 | |
| *     Exit with RESID = 1/EPS if ANORM = 0.
 | |
| *
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       IF( ANORM.LE.ZERO ) THEN
 | |
|          RESID = ONE / EPS
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute B - A*X.
 | |
| *
 | |
|       CALL SLAPTM( N, NRHS, -ONE, D, E, X, LDX, ONE, B, LDB )
 | |
| *
 | |
| *     Compute the maximum over the number of right hand sides of
 | |
| *        norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
 | |
| *
 | |
|       RESID = ZERO
 | |
|       DO 10 J = 1, NRHS
 | |
|          BNORM = SASUM( N, B( 1, J ), 1 )
 | |
|          XNORM = SASUM( N, X( 1, J ), 1 )
 | |
|          IF( XNORM.LE.ZERO ) THEN
 | |
|             RESID = ONE / EPS
 | |
|          ELSE
 | |
|             RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
 | |
|          END IF
 | |
|    10 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SPTT02
 | |
| *
 | |
|       END
 |