332 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGRQTS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
 | |
| *                          BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            LDA, LDB, LWORK, M, P, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), AF( LDA, * ), R( LDA, * ),
 | |
| *      $                   Q( LDA, * ),
 | |
| *      $                   B( LDB, * ), BF( LDB, * ), T( LDB, * ),
 | |
| *      $                   Z( LDB, * ), BWK( LDB, * ),
 | |
| *      $                   TAUA( * ), TAUB( * ),
 | |
| *      $                   RESULT( 4 ), RWORK( * ), WORK( LWORK )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGRQTS tests SGGRQF, which computes the GRQ factorization of an
 | |
| *> M-by-N matrix A and a P-by-N matrix B: A = R*Q and B = Z*T*Q.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix A.  M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>          The number of rows of the matrix B.  P >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          The M-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] AF
 | |
| *> \verbatim
 | |
| *>          AF is REAL array, dimension (LDA,N)
 | |
| *>          Details of the GRQ factorization of A and B, as returned
 | |
| *>          by SGGRQF, see SGGRQF for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDA,N)
 | |
| *>          The N-by-N orthogonal matrix Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] R
 | |
| *> \verbatim
 | |
| *>          R is REAL array, dimension (LDA,MAX(M,N))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the arrays A, AF, R and Q.
 | |
| *>          LDA >= max(M,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUA
 | |
| *> \verbatim
 | |
| *>          TAUA is REAL array, dimension (min(M,N))
 | |
| *>          The scalar factors of the elementary reflectors, as returned
 | |
| *>          by SGGQRC.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,N)
 | |
| *>          On entry, the P-by-N matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BF
 | |
| *> \verbatim
 | |
| *>          BF is REAL array, dimension (LDB,N)
 | |
| *>          Details of the GQR factorization of A and B, as returned
 | |
| *>          by SGGRQF, see SGGRQF for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDB,P)
 | |
| *>          The P-by-P orthogonal matrix Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] T
 | |
| *> \verbatim
 | |
| *>          T is REAL array, dimension (LDB,max(P,N))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BWK
 | |
| *> \verbatim
 | |
| *>          BWK is REAL array, dimension (LDB,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the arrays B, BF, Z and T.
 | |
| *>          LDB >= max(P,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUB
 | |
| *> \verbatim
 | |
| *>          TAUB is REAL array, dimension (min(P,N))
 | |
| *>          The scalar factors of the elementary reflectors, as returned
 | |
| *>          by SGGRQF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK, LWORK >= max(M,P,N)**2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is REAL array, dimension (M)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RESULT
 | |
| *> \verbatim
 | |
| *>          RESULT is REAL array, dimension (4)
 | |
| *>          The test ratios:
 | |
| *>            RESULT(1) = norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP)
 | |
| *>            RESULT(2) = norm( T*Q - Z'*B ) / (MAX(P,N)*norm(B)*ULP)
 | |
| *>            RESULT(3) = norm( I - Q'*Q ) / ( N*ULP )
 | |
| *>            RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup single_eig
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGRQTS( M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
 | |
|      $                   BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
 | |
| *
 | |
| *  -- LAPACK test routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            LDA, LDB, LWORK, M, P, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), AF( LDA, * ), R( LDA, * ),
 | |
|      $                   Q( LDA, * ),
 | |
|      $                   B( LDB, * ), BF( LDB, * ), T( LDB, * ),
 | |
|      $                   Z( LDB, * ), BWK( LDB, * ),
 | |
|      $                   TAUA( * ), TAUB( * ),
 | |
|      $                   RESULT( 4 ), RWORK( * ), WORK( LWORK )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       REAL               ROGUE
 | |
|       PARAMETER          ( ROGUE = -1.0E+10 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            INFO
 | |
|       REAL               ANORM, BNORM, ULP, UNFL, RESID
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH, SLANGE, SLANSY
 | |
|       EXTERNAL           SLAMCH, SLANGE, SLANSY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEMM, SGGRQF, SLACPY, SLASET, SORGQR,
 | |
|      $                   SORGRQ, SSYRK
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       ULP = SLAMCH( 'Precision' )
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
| *
 | |
| *     Copy the matrix A to the array AF.
 | |
| *
 | |
|       CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
 | |
|       CALL SLACPY( 'Full', P, N, B, LDB, BF, LDB )
 | |
| *
 | |
|       ANORM = MAX( SLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
 | |
|       BNORM = MAX( SLANGE( '1', P, N, B, LDB, RWORK ), UNFL )
 | |
| *
 | |
| *     Factorize the matrices A and B in the arrays AF and BF.
 | |
| *
 | |
|       CALL SGGRQF( M, P, N, AF, LDA, TAUA, BF, LDB, TAUB, WORK,
 | |
|      $             LWORK, INFO )
 | |
| *
 | |
| *     Generate the N-by-N matrix Q
 | |
| *
 | |
|       CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
 | |
|       IF( M.LE.N ) THEN
 | |
|          IF( M.GT.0 .AND. M.LT.N )
 | |
|      $      CALL SLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
 | |
|          IF( M.GT.1 )
 | |
|      $      CALL SLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
 | |
|      $                   Q( N-M+2, N-M+1 ), LDA )
 | |
|       ELSE
 | |
|          IF( N.GT.1 )
 | |
|      $      CALL SLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
 | |
|      $                   Q( 2, 1 ), LDA )
 | |
|       END IF
 | |
|       CALL SORGRQ( N, N, MIN( M, N ), Q, LDA, TAUA, WORK, LWORK, INFO )
 | |
| *
 | |
| *     Generate the P-by-P matrix Z
 | |
| *
 | |
|       CALL SLASET( 'Full', P, P, ROGUE, ROGUE, Z, LDB )
 | |
|       IF( P.GT.1 )
 | |
|      $   CALL SLACPY( 'Lower', P-1, N, BF( 2,1 ), LDB, Z( 2,1 ), LDB )
 | |
|       CALL SORGQR( P, P, MIN( P,N ), Z, LDB, TAUB, WORK, LWORK, INFO )
 | |
| *
 | |
| *     Copy R
 | |
| *
 | |
|       CALL SLASET( 'Full', M, N, ZERO, ZERO, R, LDA )
 | |
|       IF( M.LE.N )THEN
 | |
|          CALL SLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA, R( 1, N-M+1 ),
 | |
|      $                LDA )
 | |
|       ELSE
 | |
|          CALL SLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
 | |
|          CALL SLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA, R( M-N+1, 1 ),
 | |
|      $                LDA )
 | |
|       END IF
 | |
| *
 | |
| *     Copy T
 | |
| *
 | |
|       CALL SLASET( 'Full', P, N, ZERO, ZERO, T, LDB )
 | |
|       CALL SLACPY( 'Upper', P, N, BF, LDB, T, LDB )
 | |
| *
 | |
| *     Compute R - A*Q'
 | |
| *
 | |
|       CALL SGEMM( 'No transpose', 'Transpose', M, N, N, -ONE, A, LDA, Q,
 | |
|      $            LDA, ONE, R, LDA )
 | |
| *
 | |
| *     Compute norm( R - A*Q' ) / ( MAX(M,N)*norm(A)*ULP ) .
 | |
| *
 | |
|       RESID = SLANGE( '1', M, N, R, LDA, RWORK )
 | |
|       IF( ANORM.GT.ZERO ) THEN
 | |
|          RESULT( 1 ) = ( ( RESID / REAL(MAX(1,M,N) ) ) / ANORM ) / ULP
 | |
|       ELSE
 | |
|          RESULT( 1 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Compute T*Q - Z'*B
 | |
| *
 | |
|       CALL SGEMM( 'Transpose', 'No transpose', P, N, P, ONE, Z, LDB, B,
 | |
|      $            LDB, ZERO, BWK, LDB )
 | |
|       CALL SGEMM( 'No transpose', 'No transpose', P, N, N, ONE, T, LDB,
 | |
|      $            Q, LDA, -ONE, BWK, LDB )
 | |
| *
 | |
| *     Compute norm( T*Q - Z'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
 | |
| *
 | |
|       RESID = SLANGE( '1', P, N, BWK, LDB, RWORK )
 | |
|       IF( BNORM.GT.ZERO ) THEN
 | |
|          RESULT( 2 ) = ( ( RESID / REAL( MAX( 1,P,M ) ) )/BNORM ) / ULP
 | |
|       ELSE
 | |
|          RESULT( 2 ) = ZERO
 | |
|       END IF
 | |
| *
 | |
| *     Compute I - Q*Q'
 | |
| *
 | |
|       CALL SLASET( 'Full', N, N, ZERO, ONE, R, LDA )
 | |
|       CALL SSYRK( 'Upper', 'No Transpose', N, N, -ONE, Q, LDA, ONE, R,
 | |
|      $            LDA )
 | |
| *
 | |
| *     Compute norm( I - Q'*Q ) / ( N * ULP ) .
 | |
| *
 | |
|       RESID = SLANSY( '1', 'Upper', N, R, LDA, RWORK )
 | |
|       RESULT( 3 ) = ( RESID / REAL( MAX( 1,N ) ) ) / ULP
 | |
| *
 | |
| *     Compute I - Z'*Z
 | |
| *
 | |
|       CALL SLASET( 'Full', P, P, ZERO, ONE, T, LDB )
 | |
|       CALL SSYRK( 'Upper', 'Transpose', P, P, -ONE, Z, LDB, ONE, T,
 | |
|      $            LDB )
 | |
| *
 | |
| *     Compute norm( I - Z'*Z ) / ( P*ULP ) .
 | |
| *
 | |
|       RESID = SLANSY( '1', 'Upper', P, T, LDB, RWORK )
 | |
|       RESULT( 4 ) = ( RESID / REAL( MAX( 1,P ) ) ) / ULP
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGRQTS
 | |
| *
 | |
|       END
 |