965 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			965 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLANSF
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLANSF + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slansf.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slansf.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slansf.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       REAL FUNCTION SLANSF( NORM, TRANSR, UPLO, N, A, WORK )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          NORM, TRANSR, UPLO
 | |
| *       INTEGER            N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( 0: * ), WORK( 0: * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SLANSF returns the value of the one norm, or the Frobenius norm, or
 | |
| *> the infinity norm, or the element of largest absolute value of a
 | |
| *> real symmetric matrix A in RFP format.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \return SLANSF
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    SLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | |
| *>             (
 | |
| *>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | |
| *>             (
 | |
| *>             ( normI(A),         NORM = 'I' or 'i'
 | |
| *>             (
 | |
| *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | |
| *>
 | |
| *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | |
| *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | |
| *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | |
| *> squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies the value to be returned in SLANSF as described
 | |
| *>          above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANSR
 | |
| *> \verbatim
 | |
| *>          TRANSR is CHARACTER*1
 | |
| *>          Specifies whether the RFP format of A is normal or
 | |
| *>          transposed format.
 | |
| *>          = 'N':  RFP format is Normal;
 | |
| *>          = 'T':  RFP format is Transpose.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>           On entry, UPLO specifies whether the RFP matrix A came from
 | |
| *>           an upper or lower triangular matrix as follows:
 | |
| *>           = 'U': RFP A came from an upper triangular matrix;
 | |
| *>           = 'L': RFP A came from a lower triangular matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A. N >= 0. When N = 0, SLANSF is
 | |
| *>          set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension ( N*(N+1)/2 );
 | |
| *>          On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
 | |
| *>          part of the symmetric matrix A stored in RFP format. See the
 | |
| *>          "Notes" below for more details.
 | |
| *>          Unchanged on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK)),
 | |
| *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 | |
| *>          WORK is not referenced.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  We first consider Rectangular Full Packed (RFP) Format when N is
 | |
| *>  even. We give an example where N = 6.
 | |
| *>
 | |
| *>      AP is Upper             AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04 05       00
 | |
| *>      11 12 13 14 15       10 11
 | |
| *>         22 23 24 25       20 21 22
 | |
| *>            33 34 35       30 31 32 33
 | |
| *>               44 45       40 41 42 43 44
 | |
| *>                  55       50 51 52 53 54 55
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
 | |
| *>  the transpose of the first three columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
 | |
| *>  the transpose of the last three columns of AP lower.
 | |
| *>  This covers the case N even and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>        03 04 05                33 43 53
 | |
| *>        13 14 15                00 44 54
 | |
| *>        23 24 25                10 11 55
 | |
| *>        33 34 35                20 21 22
 | |
| *>        00 44 45                30 31 32
 | |
| *>        01 11 55                40 41 42
 | |
| *>        02 12 22                50 51 52
 | |
| *>
 | |
| *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
 | |
| *>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
 | |
| *>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
 | |
| *>
 | |
| *>
 | |
| *>  We then consider Rectangular Full Packed (RFP) Format when N is
 | |
| *>  odd. We give an example where N = 5.
 | |
| *>
 | |
| *>     AP is Upper                 AP is Lower
 | |
| *>
 | |
| *>   00 01 02 03 04              00
 | |
| *>      11 12 13 14              10 11
 | |
| *>         22 23 24              20 21 22
 | |
| *>            33 34              30 31 32 33
 | |
| *>               44              40 41 42 43 44
 | |
| *>
 | |
| *>
 | |
| *>  Let TRANSR = 'N'. RFP holds AP as follows:
 | |
| *>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
 | |
| *>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
 | |
| *>  the transpose of the first two columns of AP upper.
 | |
| *>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
 | |
| *>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
 | |
| *>  the transpose of the last two columns of AP lower.
 | |
| *>  This covers the case N odd and TRANSR = 'N'.
 | |
| *>
 | |
| *>         RFP A                   RFP A
 | |
| *>
 | |
| *>        02 03 04                00 33 43
 | |
| *>        12 13 14                10 11 44
 | |
| *>        22 23 24                20 21 22
 | |
| *>        00 33 34                30 31 32
 | |
| *>        01 11 44                40 41 42
 | |
| *>
 | |
| *>  Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
 | |
| *>  transpose of RFP A above. One therefore gets:
 | |
| *>
 | |
| *>           RFP A                   RFP A
 | |
| *>
 | |
| *>     02 12 22 00 01             00 10 20 30 40 50
 | |
| *>     03 13 23 33 11             33 11 21 31 41 51
 | |
| *>     04 14 24 34 44             43 44 22 32 42 52
 | |
| *> \endverbatim
 | |
| *
 | |
| *  =====================================================================
 | |
|       REAL FUNCTION SLANSF( NORM, TRANSR, UPLO, N, A, WORK )
 | |
| *
 | |
| *  -- LAPACK computational routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          NORM, TRANSR, UPLO
 | |
|       INTEGER            N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( 0: * ), WORK( 0: * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     ..
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, IFM, ILU, NOE, N1, K, L, LDA
 | |
|       REAL               SCALE, S, VALUE, AA, TEMP
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, SISNAN
 | |
|       EXTERNAL           LSAME, SISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLASSQ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          SLANSF = ZERO
 | |
|          RETURN
 | |
|       ELSE IF( N.EQ.1 ) THEN
 | |
|          SLANSF = ABS( A(0) )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     set noe = 1 if n is odd. if n is even set noe=0
 | |
| *
 | |
|       NOE = 1
 | |
|       IF( MOD( N, 2 ).EQ.0 )
 | |
|      $   NOE = 0
 | |
| *
 | |
| *     set ifm = 0 when form='T or 't' and 1 otherwise
 | |
| *
 | |
|       IFM = 1
 | |
|       IF( LSAME( TRANSR, 'T' ) )
 | |
|      $   IFM = 0
 | |
| *
 | |
| *     set ilu = 0 when uplo='U or 'u' and 1 otherwise
 | |
| *
 | |
|       ILU = 1
 | |
|       IF( LSAME( UPLO, 'U' ) )
 | |
|      $   ILU = 0
 | |
| *
 | |
| *     set lda = (n+1)/2 when ifm = 0
 | |
| *     set lda = n when ifm = 1 and noe = 1
 | |
| *     set lda = n+1 when ifm = 1 and noe = 0
 | |
| *
 | |
|       IF( IFM.EQ.1 ) THEN
 | |
|          IF( NOE.EQ.1 ) THEN
 | |
|             LDA = N
 | |
|          ELSE
 | |
| *           noe=0
 | |
|             LDA = N + 1
 | |
|          END IF
 | |
|       ELSE
 | |
| *        ifm=0
 | |
|          LDA = ( N+1 ) / 2
 | |
|       END IF
 | |
| *
 | |
|       IF( LSAME( NORM, 'M' ) ) THEN
 | |
| *
 | |
| *       Find max(abs(A(i,j))).
 | |
| *
 | |
|          K = ( N+1 ) / 2
 | |
|          VALUE = ZERO
 | |
|          IF( NOE.EQ.1 ) THEN
 | |
| *           n is odd
 | |
|             IF( IFM.EQ.1 ) THEN
 | |
| *           A is n by k
 | |
|                DO J = 0, K - 1
 | |
|                   DO I = 0, N - 1
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END DO
 | |
|             ELSE
 | |
| *              xpose case; A is k by n
 | |
|                DO J = 0, N - 1
 | |
|                   DO I = 0, K - 1
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END DO
 | |
|             END IF
 | |
|          ELSE
 | |
| *           n is even
 | |
|             IF( IFM.EQ.1 ) THEN
 | |
| *              A is n+1 by k
 | |
|                DO J = 0, K - 1
 | |
|                   DO I = 0, N
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END DO
 | |
|             ELSE
 | |
| *              xpose case; A is k by n+1
 | |
|                DO J = 0, N
 | |
|                   DO I = 0, K - 1
 | |
|                      TEMP = ABS( A( I+J*LDA ) )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END DO
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
 | |
|      $         ( NORM.EQ.'1' ) ) THEN
 | |
| *
 | |
| *        Find normI(A) ( = norm1(A), since A is symmetric).
 | |
| *
 | |
|          IF( IFM.EQ.1 ) THEN
 | |
|             K = N / 2
 | |
|             IF( NOE.EQ.1 ) THEN
 | |
| *              n is odd
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
|                   DO I = 0, K - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = 0, K
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K + J - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(i,j+k)
 | |
|                         S = S + AA
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                      END DO
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    -> A(j+k,j+k)
 | |
|                      WORK( J+K ) = S + AA
 | |
|                      IF( I.EQ.K+K )
 | |
|      $                  GO TO 10
 | |
|                      I = I + 1
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    -> A(j,j)
 | |
|                      WORK( J ) = WORK( J ) + AA
 | |
|                      S = ZERO
 | |
|                      DO L = J + 1, K - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(l,j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|    10             CONTINUE
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 ilu = 1
 | |
|                   K = K + 1
 | |
| *                 k=(n+1)/2 for n odd and ilu=1
 | |
|                   DO I = K, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = K - 1, 0, -1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - 2
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(j+k,i+k)
 | |
|                         S = S + AA
 | |
|                         WORK( I+K ) = WORK( I+K ) + AA
 | |
|                      END DO
 | |
|                      IF( J.GT.0 ) THEN
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(j+k,j+k)
 | |
|                         S = S + AA
 | |
|                         WORK( I+K ) = WORK( I+K ) + S
 | |
| *                       i=j
 | |
|                         I = I + 1
 | |
|                      END IF
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    -> A(j,j)
 | |
|                      WORK( J ) = AA
 | |
|                      S = ZERO
 | |
|                      DO L = J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(l,j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
|             ELSE
 | |
| *              n is even
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
|                   DO I = 0, K - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = 0, K - 1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K + J - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(i,j+k)
 | |
|                         S = S + AA
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                      END DO
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    -> A(j+k,j+k)
 | |
|                      WORK( J+K ) = S + AA
 | |
|                      I = I + 1
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    -> A(j,j)
 | |
|                      WORK( J ) = WORK( J ) + AA
 | |
|                      S = ZERO
 | |
|                      DO L = J + 1, K - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(l,j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 ilu = 1
 | |
|                   DO I = K, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = K - 1, 0, -1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(j+k,i+k)
 | |
|                         S = S + AA
 | |
|                         WORK( I+K ) = WORK( I+K ) + AA
 | |
|                      END DO
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    -> A(j+k,j+k)
 | |
|                      S = S + AA
 | |
|                      WORK( I+K ) = WORK( I+K ) + S
 | |
| *                    i=j
 | |
|                      I = I + 1
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    -> A(j,j)
 | |
|                      WORK( J ) = AA
 | |
|                      S = ZERO
 | |
|                      DO L = J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       -> A(l,j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
|             END IF
 | |
|          ELSE
 | |
| *           ifm=0
 | |
|             K = N / 2
 | |
|             IF( NOE.EQ.1 ) THEN
 | |
| *              n is odd
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
|                   N1 = K
 | |
| *                 n/2
 | |
|                   K = K + 1
 | |
| *                 k is the row size and lda
 | |
|                   DO I = N1, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = 0, N1 - 1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,n1+i)
 | |
|                         WORK( I+N1 ) = WORK( I+N1 ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = S
 | |
|                   END DO
 | |
| *                 j=n1=k-1 is special
 | |
|                   S = ABS( A( 0+J*LDA ) )
 | |
| *                 A(k-1,k-1)
 | |
|                   DO I = 1, K - 1
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(k-1,i+n1)
 | |
|                      WORK( I+N1 ) = WORK( I+N1 ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
|                   WORK( J ) = WORK( J ) + S
 | |
|                   DO J = K, N - 1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - K - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(i,j-k)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
| *                    i=j-k
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(j-k,j-k)
 | |
|                      S = S + AA
 | |
|                      WORK( J-K ) = WORK( J-K ) + S
 | |
|                      I = I + 1
 | |
|                      S = ABS( A( I+J*LDA ) )
 | |
| *                    A(j,j)
 | |
|                      DO L = J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,l)
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 ilu=1
 | |
|                   K = K + 1
 | |
| *                 k=(n+1)/2 for n odd and ilu=1
 | |
|                   DO I = K, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
| *                    process
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,i)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    i=j so process of A(j,j)
 | |
|                      S = S + AA
 | |
|                      WORK( J ) = S
 | |
| *                    is initialised here
 | |
|                      I = I + 1
 | |
| *                    i=j process A(j+k,j+k)
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
|                      S = AA
 | |
|                      DO L = K + J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(l,k+j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( K+J ) = WORK( K+J ) + S
 | |
|                   END DO
 | |
| *                 j=k-1 is special :process col A(k-1,0:k-1)
 | |
|                   S = ZERO
 | |
|                   DO I = 0, K - 2
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(k,i)
 | |
|                      WORK( I ) = WORK( I ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
| *                 i=k-1
 | |
|                   AA = ABS( A( I+J*LDA ) )
 | |
| *                 A(k-1,k-1)
 | |
|                   S = S + AA
 | |
|                   WORK( I ) = S
 | |
| *                 done with col j=k+1
 | |
|                   DO J = K, N - 1
 | |
| *                    process col j of A = A(j,0:k-1)
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,i)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) ) 
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
|             ELSE
 | |
| *              n is even
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
|                   DO I = K, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
|                   DO J = 0, K - 1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,i+k)
 | |
|                         WORK( I+K ) = WORK( I+K ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = S
 | |
|                   END DO
 | |
| *                 j=k
 | |
|                   AA = ABS( A( 0+J*LDA ) )
 | |
| *                 A(k,k)
 | |
|                   S = AA
 | |
|                   DO I = 1, K - 1
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(k,k+i)
 | |
|                      WORK( I+K ) = WORK( I+K ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
|                   WORK( J ) = WORK( J ) + S
 | |
|                   DO J = K + 1, N - 1
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - 2 - K
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(i,j-k-1)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
| *                     i=j-1-k
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(j-k-1,j-k-1)
 | |
|                      S = S + AA
 | |
|                      WORK( J-K-1 ) = WORK( J-K-1 ) + S
 | |
|                      I = I + 1
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(j,j)
 | |
|                      S = AA
 | |
|                      DO L = J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j,l)
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J ) = WORK( J ) + S
 | |
|                   END DO
 | |
| *                 j=n
 | |
|                   S = ZERO
 | |
|                   DO I = 0, K - 2
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(i,k-1)
 | |
|                      WORK( I ) = WORK( I ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
| *                 i=k-1
 | |
|                   AA = ABS( A( I+J*LDA ) )
 | |
| *                 A(k-1,k-1)
 | |
|                   S = S + AA
 | |
|                   WORK( I ) = WORK( I ) + S
 | |
|                   VALUE = WORK ( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                ELSE
 | |
| *                 ilu=1
 | |
|                   DO I = K, N - 1
 | |
|                      WORK( I ) = ZERO
 | |
|                   END DO
 | |
| *                 j=0 is special :process col A(k:n-1,k)
 | |
|                   S = ABS( A( 0 ) )
 | |
| *                 A(k,k)
 | |
|                   DO I = 1, K - 1
 | |
|                      AA = ABS( A( I ) )
 | |
| *                    A(k+i,k)
 | |
|                      WORK( I+K ) = WORK( I+K ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
|                   WORK( K ) = WORK( K ) + S
 | |
|                   DO J = 1, K - 1
 | |
| *                    process
 | |
|                      S = ZERO
 | |
|                      DO I = 0, J - 2
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j-1,i)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    i=j-1 so process of A(j-1,j-1)
 | |
|                      S = S + AA
 | |
|                      WORK( J-1 ) = S
 | |
| *                    is initialised here
 | |
|                      I = I + 1
 | |
| *                    i=j process A(j+k,j+k)
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
|                      S = AA
 | |
|                      DO L = K + J + 1, N - 1
 | |
|                         I = I + 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(l,k+j)
 | |
|                         S = S + AA
 | |
|                         WORK( L ) = WORK( L ) + AA
 | |
|                      END DO
 | |
|                      WORK( K+J ) = WORK( K+J ) + S
 | |
|                   END DO
 | |
| *                 j=k is special :process col A(k,0:k-1)
 | |
|                   S = ZERO
 | |
|                   DO I = 0, K - 2
 | |
|                      AA = ABS( A( I+J*LDA ) )
 | |
| *                    A(k,i)
 | |
|                      WORK( I ) = WORK( I ) + AA
 | |
|                      S = S + AA
 | |
|                   END DO
 | |
| *                 i=k-1
 | |
|                   AA = ABS( A( I+J*LDA ) )
 | |
| *                 A(k-1,k-1)
 | |
|                   S = S + AA
 | |
|                   WORK( I ) = S
 | |
| *                 done with col j=k+1
 | |
|                   DO J = K + 1, N
 | |
| *                    process col j-1 of A = A(j-1,0:k-1)
 | |
|                      S = ZERO
 | |
|                      DO I = 0, K - 1
 | |
|                         AA = ABS( A( I+J*LDA ) )
 | |
| *                       A(j-1,i)
 | |
|                         WORK( I ) = WORK( I ) + AA
 | |
|                         S = S + AA
 | |
|                      END DO
 | |
|                      WORK( J-1 ) = WORK( J-1 ) + S
 | |
|                   END DO
 | |
|                   VALUE = WORK( 0 )
 | |
|                   DO I = 1, N-1
 | |
|                      TEMP = WORK( I )
 | |
|                      IF( VALUE .LT. TEMP .OR. SISNAN( TEMP ) )
 | |
|      $                    VALUE = TEMP
 | |
|                   END DO
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | |
| *
 | |
| *       Find normF(A).
 | |
| *
 | |
|          K = ( N+1 ) / 2
 | |
|          SCALE = ZERO
 | |
|          S = ONE
 | |
|          IF( NOE.EQ.1 ) THEN
 | |
| *           n is odd
 | |
|             IF( IFM.EQ.1 ) THEN
 | |
| *              A is normal
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 A is upper
 | |
|                   DO J = 0, K - 3
 | |
|                      CALL SLASSQ( K-J-2, A( K+J+1+J*LDA ), 1, SCALE, S )
 | |
| *                    L at A(k,0)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 1
 | |
|                      CALL SLASSQ( K+J-1, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    trap U at A(0,0)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   CALL SLASSQ( K-1, A( K ), LDA+1, SCALE, S )
 | |
| *                 tri L at A(k,0)
 | |
|                   CALL SLASSQ( K, A( K-1 ), LDA+1, SCALE, S )
 | |
| *                 tri U at A(k-1,0)
 | |
|                ELSE
 | |
| *                 ilu=1 & A is lower
 | |
|                   DO J = 0, K - 1
 | |
|                      CALL SLASSQ( N-J-1, A( J+1+J*LDA ), 1, SCALE, S )
 | |
| *                    trap L at A(0,0)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL SLASSQ( J, A( 0+( 1+J )*LDA ), 1, SCALE, S )
 | |
| *                    U at A(0,1)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
 | |
| *                 tri L at A(0,0)
 | |
|                   CALL SLASSQ( K-1, A( 0+LDA ), LDA+1, SCALE, S )
 | |
| *                 tri U at A(0,1)
 | |
|                END IF
 | |
|             ELSE
 | |
| *              A is xpose
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 A**T is upper
 | |
|                   DO J = 1, K - 2
 | |
|                      CALL SLASSQ( J, A( 0+( K+J )*LDA ), 1, SCALE, S )
 | |
| *                    U at A(0,k)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    k by k-1 rect. at A(0,0)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL SLASSQ( K-J-1, A( J+1+( J+K-1 )*LDA ), 1,
 | |
|      $                            SCALE, S )
 | |
| *                    L at A(0,k-1)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   CALL SLASSQ( K-1, A( 0+K*LDA ), LDA+1, SCALE, S )
 | |
| *                 tri U at A(0,k)
 | |
|                   CALL SLASSQ( K, A( 0+( K-1 )*LDA ), LDA+1, SCALE, S )
 | |
| *                 tri L at A(0,k-1)
 | |
|                ELSE
 | |
| *                 A**T is lower
 | |
|                   DO J = 1, K - 1
 | |
|                      CALL SLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    U at A(0,0)
 | |
|                   END DO
 | |
|                   DO J = K, N - 1
 | |
|                      CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    k by k-1 rect. at A(0,k)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 3
 | |
|                      CALL SLASSQ( K-J-2, A( J+2+J*LDA ), 1, SCALE, S )
 | |
| *                    L at A(1,0)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
 | |
| *                 tri U at A(0,0)
 | |
|                   CALL SLASSQ( K-1, A( 1 ), LDA+1, SCALE, S )
 | |
| *                 tri L at A(1,0)
 | |
|                END IF
 | |
|             END IF
 | |
|          ELSE
 | |
| *           n is even
 | |
|             IF( IFM.EQ.1 ) THEN
 | |
| *              A is normal
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 A is upper
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL SLASSQ( K-J-1, A( K+J+2+J*LDA ), 1, SCALE, S )
 | |
| *                    L at A(k+1,0)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 1
 | |
|                      CALL SLASSQ( K+J, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    trap U at A(0,0)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   CALL SLASSQ( K, A( K+1 ), LDA+1, SCALE, S )
 | |
| *                 tri L at A(k+1,0)
 | |
|                   CALL SLASSQ( K, A( K ), LDA+1, SCALE, S )
 | |
| *                 tri U at A(k,0)
 | |
|                ELSE
 | |
| *                 ilu=1 & A is lower
 | |
|                   DO J = 0, K - 1
 | |
|                      CALL SLASSQ( N-J-1, A( J+2+J*LDA ), 1, SCALE, S )
 | |
| *                    trap L at A(1,0)
 | |
|                   END DO
 | |
|                   DO J = 1, K - 1
 | |
|                      CALL SLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    U at A(0,0)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   CALL SLASSQ( K, A( 1 ), LDA+1, SCALE, S )
 | |
| *                 tri L at A(1,0)
 | |
|                   CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
 | |
| *                 tri U at A(0,0)
 | |
|                END IF
 | |
|             ELSE
 | |
| *              A is xpose
 | |
|                IF( ILU.EQ.0 ) THEN
 | |
| *                 A**T is upper
 | |
|                   DO J = 1, K - 1
 | |
|                      CALL SLASSQ( J, A( 0+( K+1+J )*LDA ), 1, SCALE, S )
 | |
| *                    U at A(0,k+1)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 1
 | |
|                      CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    k by k rect. at A(0,0)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL SLASSQ( K-J-1, A( J+1+( J+K )*LDA ), 1, SCALE,
 | |
|      $                            S )
 | |
| *                    L at A(0,k)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   CALL SLASSQ( K, A( 0+( K+1 )*LDA ), LDA+1, SCALE, S )
 | |
| *                 tri U at A(0,k+1)
 | |
|                   CALL SLASSQ( K, A( 0+K*LDA ), LDA+1, SCALE, S )
 | |
| *                 tri L at A(0,k)
 | |
|                ELSE
 | |
| *                 A**T is lower
 | |
|                   DO J = 1, K - 1
 | |
|                      CALL SLASSQ( J, A( 0+( J+1 )*LDA ), 1, SCALE, S )
 | |
| *                    U at A(0,1)
 | |
|                   END DO
 | |
|                   DO J = K + 1, N
 | |
|                      CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
 | |
| *                    k by k rect. at A(0,k+1)
 | |
|                   END DO
 | |
|                   DO J = 0, K - 2
 | |
|                      CALL SLASSQ( K-J-1, A( J+1+J*LDA ), 1, SCALE, S )
 | |
| *                    L at A(0,0)
 | |
|                   END DO
 | |
|                   S = S + S
 | |
| *                 double s for the off diagonal elements
 | |
|                   CALL SLASSQ( K, A( LDA ), LDA+1, SCALE, S )
 | |
| *                 tri L at A(0,1)
 | |
|                   CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
 | |
| *                 tri U at A(0,0)
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
|          VALUE = SCALE*SQRT( S )
 | |
|       END IF
 | |
| *
 | |
|       SLANSF = VALUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of SLANSF
 | |
| *
 | |
|       END
 |