221 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SPOT01
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          UPLO
 | 
						|
*       INTEGER            LDA, LDAFAC, N
 | 
						|
*       REAL               RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> SPOT01 reconstructs a symmetric positive definite matrix  A  from
 | 
						|
*> its L*L' or U'*U factorization and computes the residual
 | 
						|
*>    norm( L*L' - A ) / ( N * norm(A) * EPS ) or
 | 
						|
*>    norm( U'*U - A ) / ( N * norm(A) * EPS ),
 | 
						|
*> where EPS is the machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] UPLO
 | 
						|
*> \verbatim
 | 
						|
*>          UPLO is CHARACTER*1
 | 
						|
*>          Specifies whether the upper or lower triangular part of the
 | 
						|
*>          symmetric matrix A is stored:
 | 
						|
*>          = 'U':  Upper triangular
 | 
						|
*>          = 'L':  Lower triangular
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows and columns of the matrix A.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] A
 | 
						|
*> \verbatim
 | 
						|
*>          A is REAL array, dimension (LDA,N)
 | 
						|
*>          The original symmetric matrix A.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDA
 | 
						|
*> \verbatim
 | 
						|
*>          LDA is INTEGER
 | 
						|
*>          The leading dimension of the array A.  LDA >= max(1,N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] AFAC
 | 
						|
*> \verbatim
 | 
						|
*>          AFAC is REAL array, dimension (LDAFAC,N)
 | 
						|
*>          On entry, the factor L or U from the L * L**T or U**T * U
 | 
						|
*>          factorization of A.
 | 
						|
*>          Overwritten with the reconstructed matrix, and then with
 | 
						|
*>          the difference L * L**T - A (or U**T * U - A).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDAFAC
 | 
						|
*> \verbatim
 | 
						|
*>          LDAFAC is INTEGER
 | 
						|
*>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RWORK
 | 
						|
*> \verbatim
 | 
						|
*>          RWORK is REAL array, dimension (N)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is REAL
 | 
						|
*>          If UPLO = 'L', norm(L * L**T - A) / ( N * norm(A) * EPS )
 | 
						|
*>          If UPLO = 'U', norm(U**T * U - A) / ( N * norm(A) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup single_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          UPLO
 | 
						|
      INTEGER            LDA, LDAFAC, N
 | 
						|
      REAL               RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               ZERO, ONE
 | 
						|
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, J, K
 | 
						|
      REAL               ANORM, EPS, T
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      REAL               SDOT, SLAMCH, SLANSY
 | 
						|
      EXTERNAL           LSAME, SDOT, SLAMCH, SLANSY
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SSCAL, SSYR, STRMV
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          REAL
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if ANORM = 0.
 | 
						|
*
 | 
						|
      EPS = SLAMCH( 'Epsilon' )
 | 
						|
      ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
 | 
						|
      IF( ANORM.LE.ZERO ) THEN
 | 
						|
         RESID = ONE / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the product U**T * U, overwriting U.
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 10 K = N, 1, -1
 | 
						|
*
 | 
						|
*           Compute the (K,K) element of the result.
 | 
						|
*
 | 
						|
            T = SDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
 | 
						|
            AFAC( K, K ) = T
 | 
						|
*
 | 
						|
*           Compute the rest of column K.
 | 
						|
*
 | 
						|
            CALL STRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC,
 | 
						|
     $                  LDAFAC, AFAC( 1, K ), 1 )
 | 
						|
*
 | 
						|
   10    CONTINUE
 | 
						|
*
 | 
						|
*     Compute the product L * L**T, overwriting L.
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
         DO 20 K = N, 1, -1
 | 
						|
*
 | 
						|
*           Add a multiple of column K of the factor L to each of
 | 
						|
*           columns K+1 through N.
 | 
						|
*
 | 
						|
            IF( K+1.LE.N )
 | 
						|
     $         CALL SSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
 | 
						|
     $                    AFAC( K+1, K+1 ), LDAFAC )
 | 
						|
*
 | 
						|
*           Scale column K by the diagonal element.
 | 
						|
*
 | 
						|
            T = AFAC( K, K )
 | 
						|
            CALL SSCAL( N-K+1, T, AFAC( K, K ), 1 )
 | 
						|
*
 | 
						|
   20    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the difference L * L**T - A (or U**T * U - A).
 | 
						|
*
 | 
						|
      IF( LSAME( UPLO, 'U' ) ) THEN
 | 
						|
         DO 40 J = 1, N
 | 
						|
            DO 30 I = 1, J
 | 
						|
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | 
						|
   30       CONTINUE
 | 
						|
   40    CONTINUE
 | 
						|
      ELSE
 | 
						|
         DO 60 J = 1, N
 | 
						|
            DO 50 I = J, N
 | 
						|
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
 | 
						|
   50       CONTINUE
 | 
						|
   60    CONTINUE
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
 | 
						|
*
 | 
						|
      RESID = SLANSY( '1', UPLO, N, AFAC, LDAFAC, RWORK )
 | 
						|
*
 | 
						|
      RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SPOT01
 | 
						|
*
 | 
						|
      END
 |