177 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			177 lines
		
	
	
		
			4.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b DGET04
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE DGET04( N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            LDX, LDXACT, N, NRHS
 | 
						|
*       DOUBLE PRECISION   RCOND, RESID
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       DOUBLE PRECISION   X( LDX, * ), XACT( LDXACT, * )
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> DGET04 computes the difference between a computed solution and the
 | 
						|
*> true solution to a system of linear equations.
 | 
						|
*>
 | 
						|
*> RESID =  ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
 | 
						|
*> where RCOND is the reciprocal of the condition number and EPS is the
 | 
						|
*> machine epsilon.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of rows of the matrices X and XACT.  N >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] NRHS
 | 
						|
*> \verbatim
 | 
						|
*>          NRHS is INTEGER
 | 
						|
*>          The number of columns of the matrices X and XACT.  NRHS >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] X
 | 
						|
*> \verbatim
 | 
						|
*>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
 | 
						|
*>          The computed solution vectors.  Each vector is stored as a
 | 
						|
*>          column of the matrix X.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX
 | 
						|
*> \verbatim
 | 
						|
*>          LDX is INTEGER
 | 
						|
*>          The leading dimension of the array X.  LDX >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] XACT
 | 
						|
*> \verbatim
 | 
						|
*>          XACT is DOUBLE PRECISION array, dimension( LDX, NRHS )
 | 
						|
*>          The exact solution vectors.  Each vector is stored as a
 | 
						|
*>          column of the matrix XACT.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDXACT
 | 
						|
*> \verbatim
 | 
						|
*>          LDXACT is INTEGER
 | 
						|
*>          The leading dimension of the array XACT.  LDXACT >= max(1,N).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] RCOND
 | 
						|
*> \verbatim
 | 
						|
*>          RCOND is DOUBLE PRECISION
 | 
						|
*>          The reciprocal of the condition number of the coefficient
 | 
						|
*>          matrix in the system of equations.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] RESID
 | 
						|
*> \verbatim
 | 
						|
*>          RESID is DOUBLE PRECISION
 | 
						|
*>          The maximum over the NRHS solution vectors of
 | 
						|
*>          ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS )
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup double_lin
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE DGET04( N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID )
 | 
						|
*
 | 
						|
*  -- LAPACK test routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            LDX, LDXACT, N, NRHS
 | 
						|
      DOUBLE PRECISION   RCOND, RESID
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      DOUBLE PRECISION   X( LDX, * ), XACT( LDXACT, * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      DOUBLE PRECISION   ZERO
 | 
						|
      PARAMETER          ( ZERO = 0.0D+0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      INTEGER            I, IX, J
 | 
						|
      DOUBLE PRECISION   DIFFNM, EPS, XNORM
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      INTEGER            IDAMAX
 | 
						|
      DOUBLE PRECISION   DLAMCH
 | 
						|
      EXTERNAL           IDAMAX, DLAMCH
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Functions ..
 | 
						|
      INTRINSIC          ABS, MAX
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Quick exit if N = 0 or NRHS = 0.
 | 
						|
*
 | 
						|
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
 | 
						|
         RESID = ZERO
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Exit with RESID = 1/EPS if RCOND is invalid.
 | 
						|
*
 | 
						|
      EPS = DLAMCH( 'Epsilon' )
 | 
						|
      IF( RCOND.LT.ZERO ) THEN
 | 
						|
         RESID = 1.0D0 / EPS
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute the maximum of
 | 
						|
*        norm(X - XACT) / ( norm(XACT) * EPS )
 | 
						|
*     over all the vectors X and XACT .
 | 
						|
*
 | 
						|
      RESID = ZERO
 | 
						|
      DO 20 J = 1, NRHS
 | 
						|
         IX = IDAMAX( N, XACT( 1, J ), 1 )
 | 
						|
         XNORM = ABS( XACT( IX, J ) )
 | 
						|
         DIFFNM = ZERO
 | 
						|
         DO 10 I = 1, N
 | 
						|
            DIFFNM = MAX( DIFFNM, ABS( X( I, J )-XACT( I, J ) ) )
 | 
						|
   10    CONTINUE
 | 
						|
         IF( XNORM.LE.ZERO ) THEN
 | 
						|
            IF( DIFFNM.GT.ZERO )
 | 
						|
     $         RESID = 1.0D0 / EPS
 | 
						|
         ELSE
 | 
						|
            RESID = MAX( RESID, ( DIFFNM / XNORM )*RCOND )
 | 
						|
         END IF
 | 
						|
   20 CONTINUE
 | 
						|
      IF( RESID*EPS.LT.1.0D0 )
 | 
						|
     $   RESID = RESID / EPS
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of DGET04
 | 
						|
*
 | 
						|
      END
 |