376 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			376 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b SORBDB4
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at
 | 
						|
*            http://www.netlib.org/lapack/explore-html/
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download SORBDB4 + dependencies
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb4.f">
 | 
						|
*> [TGZ]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb4.f">
 | 
						|
*> [ZIP]</a>
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb4.f">
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
 | 
						|
*                           TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
 | 
						|
*                           INFO )
 | 
						|
*
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       REAL               PHI(*), THETA(*)
 | 
						|
*       REAL               PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
 | 
						|
*      $                   WORK(*), X11(LDX11,*), X21(LDX21,*)
 | 
						|
*       ..
 | 
						|
*
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*>\verbatim
 | 
						|
*>
 | 
						|
*> SORBDB4 simultaneously bidiagonalizes the blocks of a tall and skinny
 | 
						|
*> matrix X with orthonomal columns:
 | 
						|
*>
 | 
						|
*>                            [ B11 ]
 | 
						|
*>      [ X11 ]   [ P1 |    ] [  0  ]
 | 
						|
*>      [-----] = [---------] [-----] Q1**T .
 | 
						|
*>      [ X21 ]   [    | P2 ] [ B21 ]
 | 
						|
*>                            [  0  ]
 | 
						|
*>
 | 
						|
*> X11 is P-by-Q, and X21 is (M-P)-by-Q. M-Q must be no larger than P,
 | 
						|
*> M-P, or Q. Routines SORBDB1, SORBDB2, and SORBDB3 handle cases in
 | 
						|
*> which M-Q is not the minimum dimension.
 | 
						|
*>
 | 
						|
*> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
 | 
						|
*> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
 | 
						|
*> Householder vectors.
 | 
						|
*>
 | 
						|
*> B11 and B12 are (M-Q)-by-(M-Q) bidiagonal matrices represented
 | 
						|
*> implicitly by angles THETA, PHI.
 | 
						|
*>
 | 
						|
*>\endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>           The number of rows X11 plus the number of rows in X21.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] P
 | 
						|
*> \verbatim
 | 
						|
*>          P is INTEGER
 | 
						|
*>           The number of rows in X11. 0 <= P <= M.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] Q
 | 
						|
*> \verbatim
 | 
						|
*>          Q is INTEGER
 | 
						|
*>           The number of columns in X11 and X21. 0 <= Q <= M and
 | 
						|
*>           M-Q <= min(P,M-P,Q).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X11
 | 
						|
*> \verbatim
 | 
						|
*>          X11 is REAL array, dimension (LDX11,Q)
 | 
						|
*>           On entry, the top block of the matrix X to be reduced. On
 | 
						|
*>           exit, the columns of tril(X11) specify reflectors for P1 and
 | 
						|
*>           the rows of triu(X11,1) specify reflectors for Q1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX11
 | 
						|
*> \verbatim
 | 
						|
*>          LDX11 is INTEGER
 | 
						|
*>           The leading dimension of X11. LDX11 >= P.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] X21
 | 
						|
*> \verbatim
 | 
						|
*>          X21 is REAL array, dimension (LDX21,Q)
 | 
						|
*>           On entry, the bottom block of the matrix X to be reduced. On
 | 
						|
*>           exit, the columns of tril(X21) specify reflectors for P2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDX21
 | 
						|
*> \verbatim
 | 
						|
*>          LDX21 is INTEGER
 | 
						|
*>           The leading dimension of X21. LDX21 >= M-P.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] THETA
 | 
						|
*> \verbatim
 | 
						|
*>          THETA is REAL array, dimension (Q)
 | 
						|
*>           The entries of the bidiagonal blocks B11, B21 are defined by
 | 
						|
*>           THETA and PHI. See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] PHI
 | 
						|
*> \verbatim
 | 
						|
*>          PHI is REAL array, dimension (Q-1)
 | 
						|
*>           The entries of the bidiagonal blocks B11, B21 are defined by
 | 
						|
*>           THETA and PHI. See Further Details.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAUP1
 | 
						|
*> \verbatim
 | 
						|
*>          TAUP1 is REAL array, dimension (M-Q)
 | 
						|
*>           The scalar factors of the elementary reflectors that define
 | 
						|
*>           P1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAUP2
 | 
						|
*> \verbatim
 | 
						|
*>          TAUP2 is REAL array, dimension (M-Q)
 | 
						|
*>           The scalar factors of the elementary reflectors that define
 | 
						|
*>           P2.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] TAUQ1
 | 
						|
*> \verbatim
 | 
						|
*>          TAUQ1 is REAL array, dimension (Q)
 | 
						|
*>           The scalar factors of the elementary reflectors that define
 | 
						|
*>           Q1.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] PHANTOM
 | 
						|
*> \verbatim
 | 
						|
*>          PHANTOM is REAL array, dimension (M)
 | 
						|
*>           The routine computes an M-by-1 column vector Y that is
 | 
						|
*>           orthogonal to the columns of [ X11; X21 ]. PHANTOM(1:P) and
 | 
						|
*>           PHANTOM(P+1:M) contain Householder vectors for Y(1:P) and
 | 
						|
*>           Y(P+1:M), respectively.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is REAL array, dimension (LWORK)
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LWORK
 | 
						|
*> \verbatim
 | 
						|
*>          LWORK is INTEGER
 | 
						|
*>           The dimension of the array WORK. LWORK >= M-Q.
 | 
						|
*>
 | 
						|
*>           If LWORK = -1, then a workspace query is assumed; the routine
 | 
						|
*>           only calculates the optimal size of the WORK array, returns
 | 
						|
*>           this value as the first entry of the WORK array, and no error
 | 
						|
*>           message related to LWORK is issued by XERBLA.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] INFO
 | 
						|
*> \verbatim
 | 
						|
*>          INFO is INTEGER
 | 
						|
*>           = 0:  successful exit.
 | 
						|
*>           < 0:  if INFO = -i, the i-th argument had an illegal value.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee
 | 
						|
*> \author Univ. of California Berkeley
 | 
						|
*> \author Univ. of Colorado Denver
 | 
						|
*> \author NAG Ltd.
 | 
						|
*
 | 
						|
*> \ingroup realOTHERcomputational
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*>  The upper-bidiagonal blocks B11, B21 are represented implicitly by
 | 
						|
*>  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
 | 
						|
*>  in each bidiagonal band is a product of a sine or cosine of a THETA
 | 
						|
*>  with a sine or cosine of a PHI. See [1] or SORCSD for details.
 | 
						|
*>
 | 
						|
*>  P1, P2, and Q1 are represented as products of elementary reflectors.
 | 
						|
*>  See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR
 | 
						|
*>  and SORGLQ.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*> \par References:
 | 
						|
*  ================
 | 
						|
*>
 | 
						|
*>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
 | 
						|
*>      Algorithms, 50(1):33-65, 2009.
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE SORBDB4( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
 | 
						|
     $                    TAUP1, TAUP2, TAUQ1, PHANTOM, WORK, LWORK,
 | 
						|
     $                    INFO )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      REAL               PHI(*), THETA(*)
 | 
						|
      REAL               PHANTOM(*), TAUP1(*), TAUP2(*), TAUQ1(*),
 | 
						|
     $                   WORK(*), X11(LDX11,*), X21(LDX21,*)
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  ====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      REAL               NEGONE, ONE, ZERO
 | 
						|
      PARAMETER          ( NEGONE = -1.0E0, ONE = 1.0E0, ZERO = 0.0E0 )
 | 
						|
*     ..
 | 
						|
*     .. Local Scalars ..
 | 
						|
      REAL               C, S
 | 
						|
      INTEGER            CHILDINFO, I, ILARF, IORBDB5, J, LLARF,
 | 
						|
     $                   LORBDB5, LWORKMIN, LWORKOPT
 | 
						|
      LOGICAL            LQUERY
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           SLARF, SLARFGP, SORBDB5, SROT, SSCAL, XERBLA
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      REAL               SNRM2
 | 
						|
      EXTERNAL           SNRM2
 | 
						|
*     ..
 | 
						|
*     .. Intrinsic Function ..
 | 
						|
      INTRINSIC          ATAN2, COS, MAX, SIN, SQRT
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
*     Test input arguments
 | 
						|
*
 | 
						|
      INFO = 0
 | 
						|
      LQUERY = LWORK .EQ. -1
 | 
						|
*
 | 
						|
      IF( M .LT. 0 ) THEN
 | 
						|
         INFO = -1
 | 
						|
      ELSE IF( P .LT. M-Q .OR. M-P .LT. M-Q ) THEN
 | 
						|
         INFO = -2
 | 
						|
      ELSE IF( Q .LT. M-Q .OR. Q .GT. M ) THEN
 | 
						|
         INFO = -3
 | 
						|
      ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
 | 
						|
         INFO = -5
 | 
						|
      ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
 | 
						|
         INFO = -7
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Compute workspace
 | 
						|
*
 | 
						|
      IF( INFO .EQ. 0 ) THEN
 | 
						|
         ILARF = 2
 | 
						|
         LLARF = MAX( Q-1, P-1, M-P-1 )
 | 
						|
         IORBDB5 = 2
 | 
						|
         LORBDB5 = Q
 | 
						|
         LWORKOPT = ILARF + LLARF - 1
 | 
						|
         LWORKOPT = MAX( LWORKOPT, IORBDB5 + LORBDB5 - 1 )
 | 
						|
         LWORKMIN = LWORKOPT
 | 
						|
         WORK(1) = LWORKOPT
 | 
						|
         IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
 | 
						|
           INFO = -14
 | 
						|
         END IF
 | 
						|
      END IF
 | 
						|
      IF( INFO .NE. 0 ) THEN
 | 
						|
         CALL XERBLA( 'SORBDB4', -INFO )
 | 
						|
         RETURN
 | 
						|
      ELSE IF( LQUERY ) THEN
 | 
						|
         RETURN
 | 
						|
      END IF
 | 
						|
*
 | 
						|
*     Reduce columns 1, ..., M-Q of X11 and X21
 | 
						|
*
 | 
						|
      DO I = 1, M-Q
 | 
						|
*
 | 
						|
         IF( I .EQ. 1 ) THEN
 | 
						|
            DO J = 1, M
 | 
						|
               PHANTOM(J) = ZERO
 | 
						|
            END DO
 | 
						|
            CALL SORBDB5( P, M-P, Q, PHANTOM(1), 1, PHANTOM(P+1), 1,
 | 
						|
     $                    X11, LDX11, X21, LDX21, WORK(IORBDB5),
 | 
						|
     $                    LORBDB5, CHILDINFO )
 | 
						|
            CALL SSCAL( P, NEGONE, PHANTOM(1), 1 )
 | 
						|
            CALL SLARFGP( P, PHANTOM(1), PHANTOM(2), 1, TAUP1(1) )
 | 
						|
            CALL SLARFGP( M-P, PHANTOM(P+1), PHANTOM(P+2), 1, TAUP2(1) )
 | 
						|
            THETA(I) = ATAN2( PHANTOM(1), PHANTOM(P+1) )
 | 
						|
            C = COS( THETA(I) )
 | 
						|
            S = SIN( THETA(I) )
 | 
						|
            PHANTOM(1) = ONE
 | 
						|
            PHANTOM(P+1) = ONE
 | 
						|
            CALL SLARF( 'L', P, Q, PHANTOM(1), 1, TAUP1(1), X11, LDX11,
 | 
						|
     $                  WORK(ILARF) )
 | 
						|
            CALL SLARF( 'L', M-P, Q, PHANTOM(P+1), 1, TAUP2(1), X21,
 | 
						|
     $                  LDX21, WORK(ILARF) )
 | 
						|
         ELSE
 | 
						|
            CALL SORBDB5( P-I+1, M-P-I+1, Q-I+1, X11(I,I-1), 1,
 | 
						|
     $                    X21(I,I-1), 1, X11(I,I), LDX11, X21(I,I),
 | 
						|
     $                    LDX21, WORK(IORBDB5), LORBDB5, CHILDINFO )
 | 
						|
            CALL SSCAL( P-I+1, NEGONE, X11(I,I-1), 1 )
 | 
						|
            CALL SLARFGP( P-I+1, X11(I,I-1), X11(I+1,I-1), 1, TAUP1(I) )
 | 
						|
            CALL SLARFGP( M-P-I+1, X21(I,I-1), X21(I+1,I-1), 1,
 | 
						|
     $                    TAUP2(I) )
 | 
						|
            THETA(I) = ATAN2( X11(I,I-1), X21(I,I-1) )
 | 
						|
            C = COS( THETA(I) )
 | 
						|
            S = SIN( THETA(I) )
 | 
						|
            X11(I,I-1) = ONE
 | 
						|
            X21(I,I-1) = ONE
 | 
						|
            CALL SLARF( 'L', P-I+1, Q-I+1, X11(I,I-1), 1, TAUP1(I),
 | 
						|
     $                  X11(I,I), LDX11, WORK(ILARF) )
 | 
						|
            CALL SLARF( 'L', M-P-I+1, Q-I+1, X21(I,I-1), 1, TAUP2(I),
 | 
						|
     $                  X21(I,I), LDX21, WORK(ILARF) )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
         CALL SROT( Q-I+1, X11(I,I), LDX11, X21(I,I), LDX21, S, -C )
 | 
						|
         CALL SLARFGP( Q-I+1, X21(I,I), X21(I,I+1), LDX21, TAUQ1(I) )
 | 
						|
         C = X21(I,I)
 | 
						|
         X21(I,I) = ONE
 | 
						|
         CALL SLARF( 'R', P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
 | 
						|
     $               X11(I+1,I), LDX11, WORK(ILARF) )
 | 
						|
         CALL SLARF( 'R', M-P-I, Q-I+1, X21(I,I), LDX21, TAUQ1(I),
 | 
						|
     $               X21(I+1,I), LDX21, WORK(ILARF) )
 | 
						|
         IF( I .LT. M-Q ) THEN
 | 
						|
            S = SQRT( SNRM2( P-I, X11(I+1,I), 1 )**2
 | 
						|
     $              + SNRM2( M-P-I, X21(I+1,I), 1 )**2 )
 | 
						|
            PHI(I) = ATAN2( S, C )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END DO
 | 
						|
*
 | 
						|
*     Reduce the bottom-right portion of X11 to [ I 0 ]
 | 
						|
*
 | 
						|
      DO I = M - Q + 1, P
 | 
						|
         CALL SLARFGP( Q-I+1, X11(I,I), X11(I,I+1), LDX11, TAUQ1(I) )
 | 
						|
         X11(I,I) = ONE
 | 
						|
         CALL SLARF( 'R', P-I, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
 | 
						|
     $               X11(I+1,I), LDX11, WORK(ILARF) )
 | 
						|
         CALL SLARF( 'R', Q-P, Q-I+1, X11(I,I), LDX11, TAUQ1(I),
 | 
						|
     $               X21(M-Q+1,I), LDX21, WORK(ILARF) )
 | 
						|
      END DO
 | 
						|
*
 | 
						|
*     Reduce the bottom-right portion of X21 to [ 0 I ]
 | 
						|
*
 | 
						|
      DO I = P + 1, Q
 | 
						|
         CALL SLARFGP( Q-I+1, X21(M-Q+I-P,I), X21(M-Q+I-P,I+1), LDX21,
 | 
						|
     $                 TAUQ1(I) )
 | 
						|
         X21(M-Q+I-P,I) = ONE
 | 
						|
         CALL SLARF( 'R', Q-I, Q-I+1, X21(M-Q+I-P,I), LDX21, TAUQ1(I),
 | 
						|
     $               X21(M-Q+I-P+1,I), LDX21, WORK(ILARF) )
 | 
						|
      END DO
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of SORBDB4
 | 
						|
*
 | 
						|
      END
 | 
						|
 |