163 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			163 lines
		
	
	
		
			3.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
!> \brief \b DLARTG generates a plane rotation with real cosine and real sine.
 | 
						|
!
 | 
						|
!  =========== DOCUMENTATION ===========
 | 
						|
!
 | 
						|
! Online html documentation available at
 | 
						|
!            http://www.netlib.org/lapack/explore-html/
 | 
						|
!
 | 
						|
!  Definition:
 | 
						|
!  ===========
 | 
						|
!
 | 
						|
!       SUBROUTINE DLARTG( F, G, C, S, R )
 | 
						|
!
 | 
						|
!       .. Scalar Arguments ..
 | 
						|
!       REAL(wp)          C, F, G, R, S
 | 
						|
!       ..
 | 
						|
!
 | 
						|
!> \par Purpose:
 | 
						|
!  =============
 | 
						|
!>
 | 
						|
!> \verbatim
 | 
						|
!>
 | 
						|
!> DLARTG generates a plane rotation so that
 | 
						|
!>
 | 
						|
!>    [  C  S  ]  .  [ F ]  =  [ R ]
 | 
						|
!>    [ -S  C  ]     [ G ]     [ 0 ]
 | 
						|
!>
 | 
						|
!> where C**2 + S**2 = 1.
 | 
						|
!>
 | 
						|
!> The mathematical formulas used for C and S are
 | 
						|
!>    R = sign(F) * sqrt(F**2 + G**2)
 | 
						|
!>    C = F / R
 | 
						|
!>    S = G / R
 | 
						|
!> Hence C >= 0. The algorithm used to compute these quantities
 | 
						|
!> incorporates scaling to avoid overflow or underflow in computing the
 | 
						|
!> square root of the sum of squares.
 | 
						|
!>
 | 
						|
!> This version is discontinuous in R at F = 0 but it returns the same
 | 
						|
!> C and S as ZLARTG for complex inputs (F,0) and (G,0).
 | 
						|
!>
 | 
						|
!> This is a more accurate version of the BLAS1 routine DROTG,
 | 
						|
!> with the following other differences:
 | 
						|
!>    F and G are unchanged on return.
 | 
						|
!>    If G=0, then C=1 and S=0.
 | 
						|
!>    If F=0 and (G .ne. 0), then C=0 and S=sign(1,G) without doing any
 | 
						|
!>       floating point operations (saves work in DBDSQR when
 | 
						|
!>       there are zeros on the diagonal).
 | 
						|
!>
 | 
						|
!> Below, wp=>dp stands for double precision from LA_CONSTANTS module.
 | 
						|
!> \endverbatim
 | 
						|
!
 | 
						|
!  Arguments:
 | 
						|
!  ==========
 | 
						|
!
 | 
						|
!> \param[in] F
 | 
						|
!> \verbatim
 | 
						|
!>          F is REAL(wp)
 | 
						|
!>          The first component of vector to be rotated.
 | 
						|
!> \endverbatim
 | 
						|
!>
 | 
						|
!> \param[in] G
 | 
						|
!> \verbatim
 | 
						|
!>          G is REAL(wp)
 | 
						|
!>          The second component of vector to be rotated.
 | 
						|
!> \endverbatim
 | 
						|
!>
 | 
						|
!> \param[out] C
 | 
						|
!> \verbatim
 | 
						|
!>          C is REAL(wp)
 | 
						|
!>          The cosine of the rotation.
 | 
						|
!> \endverbatim
 | 
						|
!>
 | 
						|
!> \param[out] S
 | 
						|
!> \verbatim
 | 
						|
!>          S is REAL(wp)
 | 
						|
!>          The sine of the rotation.
 | 
						|
!> \endverbatim
 | 
						|
!>
 | 
						|
!> \param[out] R
 | 
						|
!> \verbatim
 | 
						|
!>          R is REAL(wp)
 | 
						|
!>          The nonzero component of the rotated vector.
 | 
						|
!> \endverbatim
 | 
						|
!
 | 
						|
!  Authors:
 | 
						|
!  ========
 | 
						|
!
 | 
						|
!> \author Edward Anderson, Lockheed Martin
 | 
						|
!
 | 
						|
!> \date July 2016
 | 
						|
!
 | 
						|
!> \ingroup OTHERauxiliary
 | 
						|
!
 | 
						|
!> \par Contributors:
 | 
						|
!  ==================
 | 
						|
!>
 | 
						|
!> Weslley Pereira, University of Colorado Denver, USA
 | 
						|
!
 | 
						|
!> \par Further Details:
 | 
						|
!  =====================
 | 
						|
!>
 | 
						|
!> \verbatim
 | 
						|
!>
 | 
						|
!>  Anderson E. (2017)
 | 
						|
!>  Algorithm 978: Safe Scaling in the Level 1 BLAS
 | 
						|
!>  ACM Trans Math Softw 44:1--28
 | 
						|
!>  https://doi.org/10.1145/3061665
 | 
						|
!>
 | 
						|
!> \endverbatim
 | 
						|
!
 | 
						|
subroutine DLARTG( f, g, c, s, r )
 | 
						|
   use LA_CONSTANTS, &
 | 
						|
   only: wp=>dp, zero=>dzero, half=>dhalf, one=>done, &
 | 
						|
         safmin=>dsafmin, safmax=>dsafmax
 | 
						|
!
 | 
						|
!  -- LAPACK auxiliary routine --
 | 
						|
!  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
!     February 2021
 | 
						|
!
 | 
						|
!  .. Scalar Arguments ..
 | 
						|
   real(wp) :: c, f, g, r, s
 | 
						|
!  ..
 | 
						|
!  .. Local Scalars ..
 | 
						|
   real(wp) :: d, f1, fs, g1, gs, u, rtmin, rtmax
 | 
						|
!  ..
 | 
						|
!  .. Intrinsic Functions ..
 | 
						|
   intrinsic :: abs, sign, sqrt
 | 
						|
!  ..
 | 
						|
!  .. Constants ..
 | 
						|
   rtmin = sqrt( safmin )
 | 
						|
   rtmax = sqrt( safmax/2 )
 | 
						|
!  ..
 | 
						|
!  .. Executable Statements ..
 | 
						|
!
 | 
						|
   f1 = abs( f )
 | 
						|
   g1 = abs( g )
 | 
						|
   if( g == zero ) then
 | 
						|
      c = one
 | 
						|
      s = zero
 | 
						|
      r = f
 | 
						|
   else if( f == zero ) then
 | 
						|
      c = zero
 | 
						|
      s = sign( one, g )
 | 
						|
      r = g1
 | 
						|
   else if( f1 > rtmin .and. f1 < rtmax .and. &
 | 
						|
            g1 > rtmin .and. g1 < rtmax ) then
 | 
						|
      d = sqrt( f*f + g*g )
 | 
						|
      c = f1 / d
 | 
						|
      r = sign( d, f )
 | 
						|
      s = g / r
 | 
						|
   else
 | 
						|
      u = min( safmax, max( safmin, f1, g1 ) )
 | 
						|
      fs = f / u
 | 
						|
      gs = g / u
 | 
						|
      d = sqrt( fs*fs + gs*gs )
 | 
						|
      c = abs( fs ) / d
 | 
						|
      r = sign( d, f )
 | 
						|
      s = gs / r
 | 
						|
      r = r*u
 | 
						|
   end if
 | 
						|
   return
 | 
						|
end subroutine
 |