242 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			242 lines
		
	
	
		
			6.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
*> \brief \b ZLARZ applies an elementary reflector (as returned by stzrzf) to a general matrix.
 | 
						|
*
 | 
						|
*  =========== DOCUMENTATION ===========
 | 
						|
*
 | 
						|
* Online html documentation available at 
 | 
						|
*            http://www.netlib.org/lapack/explore-html/ 
 | 
						|
*
 | 
						|
*> \htmlonly
 | 
						|
*> Download ZLARZ + dependencies 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarz.f"> 
 | 
						|
*> [TGZ]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarz.f"> 
 | 
						|
*> [ZIP]</a> 
 | 
						|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarz.f"> 
 | 
						|
*> [TXT]</a>
 | 
						|
*> \endhtmlonly 
 | 
						|
*
 | 
						|
*  Definition:
 | 
						|
*  ===========
 | 
						|
*
 | 
						|
*       SUBROUTINE ZLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
 | 
						|
* 
 | 
						|
*       .. Scalar Arguments ..
 | 
						|
*       CHARACTER          SIDE
 | 
						|
*       INTEGER            INCV, L, LDC, M, N
 | 
						|
*       COMPLEX*16         TAU
 | 
						|
*       ..
 | 
						|
*       .. Array Arguments ..
 | 
						|
*       COMPLEX*16         C( LDC, * ), V( * ), WORK( * )
 | 
						|
*       ..
 | 
						|
*  
 | 
						|
*
 | 
						|
*> \par Purpose:
 | 
						|
*  =============
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*>
 | 
						|
*> ZLARZ applies a complex elementary reflector H to a complex
 | 
						|
*> M-by-N matrix C, from either the left or the right. H is represented
 | 
						|
*> in the form
 | 
						|
*>
 | 
						|
*>       H = I - tau * v * v**H
 | 
						|
*>
 | 
						|
*> where tau is a complex scalar and v is a complex vector.
 | 
						|
*>
 | 
						|
*> If tau = 0, then H is taken to be the unit matrix.
 | 
						|
*>
 | 
						|
*> To apply H**H (the conjugate transpose of H), supply conjg(tau) instead
 | 
						|
*> tau.
 | 
						|
*>
 | 
						|
*> H is a product of k elementary reflectors as returned by ZTZRZF.
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Arguments:
 | 
						|
*  ==========
 | 
						|
*
 | 
						|
*> \param[in] SIDE
 | 
						|
*> \verbatim
 | 
						|
*>          SIDE is CHARACTER*1
 | 
						|
*>          = 'L': form  H * C
 | 
						|
*>          = 'R': form  C * H
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] M
 | 
						|
*> \verbatim
 | 
						|
*>          M is INTEGER
 | 
						|
*>          The number of rows of the matrix C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] N
 | 
						|
*> \verbatim
 | 
						|
*>          N is INTEGER
 | 
						|
*>          The number of columns of the matrix C.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] L
 | 
						|
*> \verbatim
 | 
						|
*>          L is INTEGER
 | 
						|
*>          The number of entries of the vector V containing
 | 
						|
*>          the meaningful part of the Householder vectors.
 | 
						|
*>          If SIDE = 'L', M >= L >= 0, if SIDE = 'R', N >= L >= 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] V
 | 
						|
*> \verbatim
 | 
						|
*>          V is COMPLEX*16 array, dimension (1+(L-1)*abs(INCV))
 | 
						|
*>          The vector v in the representation of H as returned by
 | 
						|
*>          ZTZRZF. V is not used if TAU = 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] INCV
 | 
						|
*> \verbatim
 | 
						|
*>          INCV is INTEGER
 | 
						|
*>          The increment between elements of v. INCV <> 0.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] TAU
 | 
						|
*> \verbatim
 | 
						|
*>          TAU is COMPLEX*16
 | 
						|
*>          The value tau in the representation of H.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in,out] C
 | 
						|
*> \verbatim
 | 
						|
*>          C is COMPLEX*16 array, dimension (LDC,N)
 | 
						|
*>          On entry, the M-by-N matrix C.
 | 
						|
*>          On exit, C is overwritten by the matrix H * C if SIDE = 'L',
 | 
						|
*>          or C * H if SIDE = 'R'.
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[in] LDC
 | 
						|
*> \verbatim
 | 
						|
*>          LDC is INTEGER
 | 
						|
*>          The leading dimension of the array C. LDC >= max(1,M).
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*> \param[out] WORK
 | 
						|
*> \verbatim
 | 
						|
*>          WORK is COMPLEX*16 array, dimension
 | 
						|
*>                         (N) if SIDE = 'L'
 | 
						|
*>                      or (M) if SIDE = 'R'
 | 
						|
*> \endverbatim
 | 
						|
*
 | 
						|
*  Authors:
 | 
						|
*  ========
 | 
						|
*
 | 
						|
*> \author Univ. of Tennessee 
 | 
						|
*> \author Univ. of California Berkeley 
 | 
						|
*> \author Univ. of Colorado Denver 
 | 
						|
*> \author NAG Ltd. 
 | 
						|
*
 | 
						|
*> \date September 2012
 | 
						|
*
 | 
						|
*> \ingroup complex16OTHERcomputational
 | 
						|
*
 | 
						|
*> \par Contributors:
 | 
						|
*  ==================
 | 
						|
*>
 | 
						|
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
 | 
						|
*
 | 
						|
*> \par Further Details:
 | 
						|
*  =====================
 | 
						|
*>
 | 
						|
*> \verbatim
 | 
						|
*> \endverbatim
 | 
						|
*>
 | 
						|
*  =====================================================================
 | 
						|
      SUBROUTINE ZLARZ( SIDE, M, N, L, V, INCV, TAU, C, LDC, WORK )
 | 
						|
*
 | 
						|
*  -- LAPACK computational routine (version 3.4.2) --
 | 
						|
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | 
						|
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | 
						|
*     September 2012
 | 
						|
*
 | 
						|
*     .. Scalar Arguments ..
 | 
						|
      CHARACTER          SIDE
 | 
						|
      INTEGER            INCV, L, LDC, M, N
 | 
						|
      COMPLEX*16         TAU
 | 
						|
*     ..
 | 
						|
*     .. Array Arguments ..
 | 
						|
      COMPLEX*16         C( LDC, * ), V( * ), WORK( * )
 | 
						|
*     ..
 | 
						|
*
 | 
						|
*  =====================================================================
 | 
						|
*
 | 
						|
*     .. Parameters ..
 | 
						|
      COMPLEX*16         ONE, ZERO
 | 
						|
      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
 | 
						|
     $                   ZERO = ( 0.0D+0, 0.0D+0 ) )
 | 
						|
*     ..
 | 
						|
*     .. External Subroutines ..
 | 
						|
      EXTERNAL           ZAXPY, ZCOPY, ZGEMV, ZGERC, ZGERU, ZLACGV
 | 
						|
*     ..
 | 
						|
*     .. External Functions ..
 | 
						|
      LOGICAL            LSAME
 | 
						|
      EXTERNAL           LSAME
 | 
						|
*     ..
 | 
						|
*     .. Executable Statements ..
 | 
						|
*
 | 
						|
      IF( LSAME( SIDE, 'L' ) ) THEN
 | 
						|
*
 | 
						|
*        Form  H * C
 | 
						|
*
 | 
						|
         IF( TAU.NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*           w( 1:n ) = conjg( C( 1, 1:n ) )
 | 
						|
*
 | 
						|
            CALL ZCOPY( N, C, LDC, WORK, 1 )
 | 
						|
            CALL ZLACGV( N, WORK, 1 )
 | 
						|
*
 | 
						|
*           w( 1:n ) = conjg( w( 1:n ) + C( m-l+1:m, 1:n )**H * v( 1:l ) )
 | 
						|
*
 | 
						|
            CALL ZGEMV( 'Conjugate transpose', L, N, ONE, C( M-L+1, 1 ),
 | 
						|
     $                  LDC, V, INCV, ONE, WORK, 1 )
 | 
						|
            CALL ZLACGV( N, WORK, 1 )
 | 
						|
*
 | 
						|
*           C( 1, 1:n ) = C( 1, 1:n ) - tau * w( 1:n )
 | 
						|
*
 | 
						|
            CALL ZAXPY( N, -TAU, WORK, 1, C, LDC )
 | 
						|
*
 | 
						|
*           C( m-l+1:m, 1:n ) = C( m-l+1:m, 1:n ) - ...
 | 
						|
*                               tau * v( 1:l ) * w( 1:n )**H
 | 
						|
*
 | 
						|
            CALL ZGERU( L, N, -TAU, V, INCV, WORK, 1, C( M-L+1, 1 ),
 | 
						|
     $                  LDC )
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      ELSE
 | 
						|
*
 | 
						|
*        Form  C * H
 | 
						|
*
 | 
						|
         IF( TAU.NE.ZERO ) THEN
 | 
						|
*
 | 
						|
*           w( 1:m ) = C( 1:m, 1 )
 | 
						|
*
 | 
						|
            CALL ZCOPY( M, C, 1, WORK, 1 )
 | 
						|
*
 | 
						|
*           w( 1:m ) = w( 1:m ) + C( 1:m, n-l+1:n, 1:n ) * v( 1:l )
 | 
						|
*
 | 
						|
            CALL ZGEMV( 'No transpose', M, L, ONE, C( 1, N-L+1 ), LDC,
 | 
						|
     $                  V, INCV, ONE, WORK, 1 )
 | 
						|
*
 | 
						|
*           C( 1:m, 1 ) = C( 1:m, 1 ) - tau * w( 1:m )
 | 
						|
*
 | 
						|
            CALL ZAXPY( M, -TAU, WORK, 1, C, 1 )
 | 
						|
*
 | 
						|
*           C( 1:m, n-l+1:n ) = C( 1:m, n-l+1:n ) - ...
 | 
						|
*                               tau * w( 1:m ) * v( 1:l )**H
 | 
						|
*
 | 
						|
            CALL ZGERC( M, L, -TAU, WORK, 1, V, INCV, C( 1, N-L+1 ),
 | 
						|
     $                  LDC )
 | 
						|
*
 | 
						|
         END IF
 | 
						|
*
 | 
						|
      END IF
 | 
						|
*
 | 
						|
      RETURN
 | 
						|
*
 | 
						|
*     End of ZLARZ
 | 
						|
*
 | 
						|
      END
 |