OpenBLAS/lapack-netlib/TESTING/MATGEN/zlaror.c

665 lines
19 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef int logical;
typedef short int shortlogical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle_() continue;
#define myceiling_(w) {ceil(w)}
#define myhuge_(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc_(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#define F2C_proc_par_types 1
/* Table of constant values */
static doublecomplex c_b1 = {0.,0.};
static doublecomplex c_b2 = {1.,0.};
static integer c__3 = 3;
static integer c__1 = 1;
/* > \brief \b ZLAROR */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE ZLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO ) */
/* CHARACTER INIT, SIDE */
/* INTEGER INFO, LDA, M, N */
/* INTEGER ISEED( 4 ) */
/* COMPLEX*16 A( LDA, * ), X( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZLAROR pre- or post-multiplies an M by N matrix A by a random */
/* > unitary matrix U, overwriting A. A may optionally be */
/* > initialized to the identity matrix before multiplying by U. */
/* > U is generated using the method of G.W. Stewart */
/* > ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ). */
/* > (BLAS-2 version) */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > SIDE specifies whether A is multiplied on the left or right */
/* > by U. */
/* > SIDE = 'L' Multiply A on the left (premultiply) by U */
/* > SIDE = 'R' Multiply A on the right (postmultiply) by UC> SIDE = 'C' Multiply A on the lef
t by U and the right by UC> SIDE = 'T' Multiply A on the left by U and the right by U' */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] INIT */
/* > \verbatim */
/* > INIT is CHARACTER*1 */
/* > INIT specifies whether or not A should be initialized to */
/* > the identity matrix. */
/* > INIT = 'I' Initialize A to (a section of) the */
/* > identity matrix before applying U. */
/* > INIT = 'N' No initialization. Apply U to the */
/* > input matrix A. */
/* > */
/* > INIT = 'I' may be used to generate square (i.e., unitary) */
/* > or rectangular orthogonal matrices (orthogonality being */
/* > in the sense of ZDOTC): */
/* > */
/* > For square matrices, M=N, and SIDE many be either 'L' or */
/* > 'R'; the rows will be orthogonal to each other, as will the */
/* > columns. */
/* > For rectangular matrices where M < N, SIDE = 'R' will */
/* > produce a dense matrix whose rows will be orthogonal and */
/* > whose columns will not, while SIDE = 'L' will produce a */
/* > matrix whose rows will be orthogonal, and whose first M */
/* > columns will be orthogonal, the remaining columns being */
/* > zero. */
/* > For matrices where M > N, just use the previous */
/* > explanation, interchanging 'L' and 'R' and "rows" and */
/* > "columns". */
/* > */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > Number of rows of A. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > Number of columns of A. Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension ( LDA, N ) */
/* > Input and output array. Overwritten by U A ( if SIDE = 'L' ) */
/* > or by A U ( if SIDE = 'R' ) */
/* > or by U A U* ( if SIDE = 'C') */
/* > or by U A U' ( if SIDE = 'T') on exit. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > Leading dimension of A. Must be at least MAX ( 1, M ). */
/* > Not modified. */
/* > \endverbatim */
/* > */
/* > \param[in,out] ISEED */
/* > \verbatim */
/* > ISEED is INTEGER array, dimension ( 4 ) */
/* > On entry ISEED specifies the seed of the random number */
/* > generator. The array elements should be between 0 and 4095; */
/* > if not they will be reduced mod 4096. Also, ISEED(4) must */
/* > be odd. The random number generator uses a linear */
/* > congruential sequence limited to small integers, and so */
/* > should produce machine independent random numbers. The */
/* > values of ISEED are changed on exit, and can be used in the */
/* > next call to ZLAROR to continue the same random number */
/* > sequence. */
/* > Modified. */
/* > \endverbatim */
/* > */
/* > \param[out] X */
/* > \verbatim */
/* > X is COMPLEX*16 array, dimension ( 3*MAX( M, N ) ) */
/* > Workspace. Of length: */
/* > 2*M + N if SIDE = 'L', */
/* > 2*N + M if SIDE = 'R', */
/* > 3*N if SIDE = 'C' or 'T'. */
/* > Modified. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > An error flag. It is set to: */
/* > 0 if no error. */
/* > 1 if ZLARND returned a bad random number (installation */
/* > problem) */
/* > -1 if SIDE is not L, R, C, or T. */
/* > -3 if M is negative. */
/* > -4 if N is negative or if SIDE is C or T and N is not equal */
/* > to M. */
/* > -6 if LDA is less than M. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date December 2016 */
/* > \ingroup complex16_matgen */
/* ===================================================================== */
/* Subroutine */ void zlaror_(char *side, char *init, integer *m, integer *n,
doublecomplex *a, integer *lda, integer *iseed, doublecomplex *x,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
doublecomplex z__1, z__2;
/* Local variables */
integer kbeg, jcol;
doublereal xabs;
integer irow, j;
extern logical lsame_(char *, char *);
doublecomplex csign;
extern /* Subroutine */ void zgerc_(integer *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *,
doublecomplex *, integer *), zscal_(integer *, doublecomplex *,
doublecomplex *, integer *);
integer ixfrm;
extern /* Subroutine */ void zgemv_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, integer *, doublecomplex *,
integer *, doublecomplex *, doublecomplex *, integer *);
integer itype, nxfrm;
doublereal xnorm;
extern doublereal dznrm2_(integer *, doublecomplex *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
doublereal factor;
extern /* Subroutine */ void zlacgv_(integer *, doublecomplex *, integer *)
;
//extern /* Double Complex */ VOID zlarnd_(doublecomplex *, integer *,
extern doublecomplex zlarnd_(integer *,
integer *);
extern /* Subroutine */ void zlaset_(char *, integer *, integer *,
doublecomplex *, doublecomplex *, doublecomplex *, integer *);
doublecomplex xnorms;
/* -- LAPACK auxiliary routine (version 3.7.0) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* December 2016 */
/* ===================================================================== */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--iseed;
--x;
/* Function Body */
*info = 0;
if (*n == 0 || *m == 0) {
return;
}
itype = 0;
if (lsame_(side, "L")) {
itype = 1;
} else if (lsame_(side, "R")) {
itype = 2;
} else if (lsame_(side, "C")) {
itype = 3;
} else if (lsame_(side, "T")) {
itype = 4;
}
/* Check for argument errors. */
if (itype == 0) {
*info = -1;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0 || itype == 3 && *n != *m) {
*info = -4;
} else if (*lda < *m) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("ZLAROR", &i__1, 6);
return;
}
if (itype == 1) {
nxfrm = *m;
} else {
nxfrm = *n;
}
/* Initialize A to the identity matrix if desired */
if (lsame_(init, "I")) {
zlaset_("Full", m, n, &c_b1, &c_b2, &a[a_offset], lda);
}
/* If no rotation possible, still multiply by */
/* a random complex number from the circle |x| = 1 */
/* 2) Compute Rotation by computing Householder */
/* Transformations H(2), H(3), ..., H(n). Note that the */
/* order in which they are computed is irrelevant. */
i__1 = nxfrm;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
x[i__2].r = 0., x[i__2].i = 0.;
/* L10: */
}
i__1 = nxfrm;
for (ixfrm = 2; ixfrm <= i__1; ++ixfrm) {
kbeg = nxfrm - ixfrm + 1;
/* Generate independent normal( 0, 1 ) random numbers */
i__2 = nxfrm;
for (j = kbeg; j <= i__2; ++j) {
i__3 = j;
//zlarnd_(&z__1, &c__3, &iseed[1]);
z__1=zlarnd_(&c__3, &iseed[1]);
x[i__3].r = z__1.r, x[i__3].i = z__1.i;
/* L20: */
}
/* Generate a Householder transformation from the random vector X */
xnorm = dznrm2_(&ixfrm, &x[kbeg], &c__1);
xabs = z_abs(&x[kbeg]);
if (xabs != 0.) {
i__2 = kbeg;
z__1.r = x[i__2].r / xabs, z__1.i = x[i__2].i / xabs;
csign.r = z__1.r, csign.i = z__1.i;
} else {
csign.r = 1., csign.i = 0.;
}
z__1.r = xnorm * csign.r, z__1.i = xnorm * csign.i;
xnorms.r = z__1.r, xnorms.i = z__1.i;
i__2 = nxfrm + kbeg;
z__1.r = -csign.r, z__1.i = -csign.i;
x[i__2].r = z__1.r, x[i__2].i = z__1.i;
factor = xnorm * (xnorm + xabs);
if (abs(factor) < 1e-20) {
*info = 1;
i__2 = -(*info);
xerbla_("ZLAROR", &i__2, 6);
return;
} else {
factor = 1. / factor;
}
i__2 = kbeg;
i__3 = kbeg;
z__1.r = x[i__3].r + xnorms.r, z__1.i = x[i__3].i + xnorms.i;
x[i__2].r = z__1.r, x[i__2].i = z__1.i;
/* Apply Householder transformation to A */
if (itype == 1 || itype == 3 || itype == 4) {
/* Apply H(k) on the left of A */
zgemv_("C", &ixfrm, n, &c_b2, &a[kbeg + a_dim1], lda, &x[kbeg], &
c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1);
z__2.r = factor, z__2.i = 0.;
z__1.r = -z__2.r, z__1.i = -z__2.i;
zgerc_(&ixfrm, n, &z__1, &x[kbeg], &c__1, &x[(nxfrm << 1) + 1], &
c__1, &a[kbeg + a_dim1], lda);
}
if (itype >= 2 && itype <= 4) {
/* Apply H(k)* (or H(k)') on the right of A */
if (itype == 4) {
zlacgv_(&ixfrm, &x[kbeg], &c__1);
}
zgemv_("N", m, &ixfrm, &c_b2, &a[kbeg * a_dim1 + 1], lda, &x[kbeg]
, &c__1, &c_b1, &x[(nxfrm << 1) + 1], &c__1);
z__2.r = factor, z__2.i = 0.;
z__1.r = -z__2.r, z__1.i = -z__2.i;
zgerc_(m, &ixfrm, &z__1, &x[(nxfrm << 1) + 1], &c__1, &x[kbeg], &
c__1, &a[kbeg * a_dim1 + 1], lda);
}
/* L30: */
}
//zlarnd_(&z__1, &c__3, &iseed[1]);
z__1=zlarnd_(&c__3, &iseed[1]);
x[1].r = z__1.r, x[1].i = z__1.i;
xabs = z_abs(&x[1]);
if (xabs != 0.) {
z__1.r = x[1].r / xabs, z__1.i = x[1].i / xabs;
csign.r = z__1.r, csign.i = z__1.i;
} else {
csign.r = 1., csign.i = 0.;
}
i__1 = nxfrm << 1;
x[i__1].r = csign.r, x[i__1].i = csign.i;
/* Scale the matrix A by D. */
if (itype == 1 || itype == 3 || itype == 4) {
i__1 = *m;
for (irow = 1; irow <= i__1; ++irow) {
d_cnjg(&z__1, &x[nxfrm + irow]);
zscal_(n, &z__1, &a[irow + a_dim1], lda);
/* L40: */
}
}
if (itype == 2 || itype == 3) {
i__1 = *n;
for (jcol = 1; jcol <= i__1; ++jcol) {
zscal_(m, &x[nxfrm + jcol], &a[jcol * a_dim1 + 1], &c__1);
/* L50: */
}
}
if (itype == 4) {
i__1 = *n;
for (jcol = 1; jcol <= i__1; ++jcol) {
d_cnjg(&z__1, &x[nxfrm + jcol]);
zscal_(m, &z__1, &a[jcol * a_dim1 + 1], &c__1);
/* L60: */
}
}
return;
/* End of ZLAROR */
} /* zlaror_ */