315 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			315 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SLAQZ2
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SLAQZ2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqz2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqz2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqz2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *      SUBROUTINE SLAQZ2( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
 | |
| *     $    LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
 | |
| *      IMPLICIT NONE
 | |
| *
 | |
| *      Arguments
 | |
| *      LOGICAL, INTENT( IN ) :: ILQ, ILZ
 | |
| *      INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
 | |
| *     $    NQ, NZ, QSTART, ZSTART, IHI
 | |
| *      REAL :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>      SLAQZ2 chases a 2x2 shift bulge in a matrix pencil down a single position
 | |
| *> \endverbatim
 | |
| *
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *>
 | |
| *> \param[in] ILQ
 | |
| *> \verbatim
 | |
| *>          ILQ is LOGICAL
 | |
| *>              Determines whether or not to update the matrix Q
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILZ
 | |
| *> \verbatim
 | |
| *>          ILZ is LOGICAL
 | |
| *>              Determines whether or not to update the matrix Z
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>              Index indicating the position of the bulge.
 | |
| *>              On entry, the bulge is located in
 | |
| *>              (A(k+1:k+2,k:k+1),B(k+1:k+2,k:k+1)).
 | |
| *>              On exit, the bulge is located in
 | |
| *>              (A(k+2:k+3,k+1:k+2),B(k+2:k+3,k+1:k+2)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ISTARTM
 | |
| *> \verbatim
 | |
| *>          ISTARTM is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ISTOPM
 | |
| *> \verbatim
 | |
| *>          ISTOPM is INTEGER
 | |
| *>              Updates to (A,B) are restricted to
 | |
| *>              (istartm:k+3,k:istopm). It is assumed
 | |
| *>              without checking that istartm <= k+1 and
 | |
| *>              k+2 <= istopm
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[inout] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>              The leading dimension of A as declared in
 | |
| *>              the calling procedure.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \param[inout] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>              The leading dimension of B as declared in
 | |
| *>              the calling procedure.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NQ
 | |
| *> \verbatim
 | |
| *>          NQ is INTEGER
 | |
| *>              The order of the matrix Q
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] QSTART
 | |
| *> \verbatim
 | |
| *>          QSTART is INTEGER
 | |
| *>              Start index of the matrix Q. Rotations are applied
 | |
| *>              To columns k+2-qStart:k+4-qStart of Q.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \param[inout] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDQ,NQ)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>              The leading dimension of Q as declared in
 | |
| *>              the calling procedure.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NZ
 | |
| *> \verbatim
 | |
| *>          NZ is INTEGER
 | |
| *>              The order of the matrix Z
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ZSTART
 | |
| *> \verbatim
 | |
| *>          ZSTART is INTEGER
 | |
| *>              Start index of the matrix Z. Rotations are applied
 | |
| *>              To columns k+1-qStart:k+3-qStart of Z.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \param[inout] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ,NZ)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>              The leading dimension of Q as declared in
 | |
| *>              the calling procedure.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Thijs Steel, KU Leuven
 | |
| *
 | |
| *> \date May 2020
 | |
| *
 | |
| *> \ingroup doubleGEcomputational
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SLAQZ2( ILQ, ILZ, K, ISTARTM, ISTOPM, IHI, A, LDA, B,
 | |
|      $                   LDB, NQ, QSTART, Q, LDQ, NZ, ZSTART, Z, LDZ )
 | |
|       IMPLICIT NONE
 | |
| *
 | |
| *     Arguments
 | |
|       LOGICAL, INTENT( IN ) :: ILQ, ILZ
 | |
|       INTEGER, INTENT( IN ) :: K, LDA, LDB, LDQ, LDZ, ISTARTM, ISTOPM,
 | |
|      $         NQ, NZ, QSTART, ZSTART, IHI
 | |
|       REAL :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ), Z( LDZ, * )
 | |
| *
 | |
| *     Parameters
 | |
|       REAL :: ZERO, ONE, HALF
 | |
|       PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
 | |
| *
 | |
| *     Local variables
 | |
|       REAL :: H( 2, 3 ), C1, S1, C2, S2, TEMP
 | |
| *
 | |
| *     External functions
 | |
|       EXTERNAL :: SLARTG, SROT
 | |
| *
 | |
|       IF( K+2 .EQ. IHI ) THEN
 | |
| *        Shift is located on the edge of the matrix, remove it
 | |
|          H = B( IHI-1:IHI, IHI-2:IHI )
 | |
| *        Make H upper triangular
 | |
|          CALL SLARTG( H( 1, 1 ), H( 2, 1 ), C1, S1, TEMP )
 | |
|          H( 2, 1 ) = ZERO
 | |
|          H( 1, 1 ) = TEMP
 | |
|          CALL SROT( 2, H( 1, 2 ), 2, H( 2, 2 ), 2, C1, S1 )
 | |
| *
 | |
|          CALL SLARTG( H( 2, 3 ), H( 2, 2 ), C1, S1, TEMP )
 | |
|          CALL SROT( 1, H( 1, 3 ), 1, H( 1, 2 ), 1, C1, S1 )
 | |
|          CALL SLARTG( H( 1, 2 ), H( 1, 1 ), C2, S2, TEMP )
 | |
| *
 | |
|          CALL SROT( IHI-ISTARTM+1, B( ISTARTM, IHI ), 1, B( ISTARTM,
 | |
|      $              IHI-1 ), 1, C1, S1 )
 | |
|          CALL SROT( IHI-ISTARTM+1, B( ISTARTM, IHI-1 ), 1, B( ISTARTM,
 | |
|      $              IHI-2 ), 1, C2, S2 )
 | |
|          B( IHI-1, IHI-2 ) = ZERO
 | |
|          B( IHI, IHI-2 ) = ZERO
 | |
|          CALL SROT( IHI-ISTARTM+1, A( ISTARTM, IHI ), 1, A( ISTARTM,
 | |
|      $              IHI-1 ), 1, C1, S1 )
 | |
|          CALL SROT( IHI-ISTARTM+1, A( ISTARTM, IHI-1 ), 1, A( ISTARTM,
 | |
|      $              IHI-2 ), 1, C2, S2 )
 | |
|          IF ( ILZ ) THEN
 | |
|             CALL SROT( NZ, Z( 1, IHI-ZSTART+1 ), 1, Z( 1, IHI-1-ZSTART+
 | |
|      $                 1 ), 1, C1, S1 )
 | |
|             CALL SROT( NZ, Z( 1, IHI-1-ZSTART+1 ), 1, Z( 1,
 | |
|      $                 IHI-2-ZSTART+1 ), 1, C2, S2 )
 | |
|          END IF
 | |
| *
 | |
|          CALL SLARTG( A( IHI-1, IHI-2 ), A( IHI, IHI-2 ), C1, S1,
 | |
|      $                TEMP )
 | |
|          A( IHI-1, IHI-2 ) = TEMP
 | |
|          A( IHI, IHI-2 ) = ZERO
 | |
|          CALL SROT( ISTOPM-IHI+2, A( IHI-1, IHI-1 ), LDA, A( IHI,
 | |
|      $              IHI-1 ), LDA, C1, S1 )
 | |
|          CALL SROT( ISTOPM-IHI+2, B( IHI-1, IHI-1 ), LDB, B( IHI,
 | |
|      $              IHI-1 ), LDB, C1, S1 )
 | |
|          IF ( ILQ ) THEN
 | |
|             CALL SROT( NQ, Q( 1, IHI-1-QSTART+1 ), 1, Q( 1, IHI-QSTART+
 | |
|      $                 1 ), 1, C1, S1 )
 | |
|          END IF
 | |
| *
 | |
|          CALL SLARTG( B( IHI, IHI ), B( IHI, IHI-1 ), C1, S1, TEMP )
 | |
|          B( IHI, IHI ) = TEMP
 | |
|          B( IHI, IHI-1 ) = ZERO
 | |
|          CALL SROT( IHI-ISTARTM, B( ISTARTM, IHI ), 1, B( ISTARTM,
 | |
|      $              IHI-1 ), 1, C1, S1 )
 | |
|          CALL SROT( IHI-ISTARTM+1, A( ISTARTM, IHI ), 1, A( ISTARTM,
 | |
|      $              IHI-1 ), 1, C1, S1 )
 | |
|          IF ( ILZ ) THEN
 | |
|             CALL SROT( NZ, Z( 1, IHI-ZSTART+1 ), 1, Z( 1, IHI-1-ZSTART+
 | |
|      $                 1 ), 1, C1, S1 )
 | |
|          END IF
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Normal operation, move bulge down
 | |
| *
 | |
|          H = B( K+1:K+2, K:K+2 )
 | |
| *
 | |
| *        Make H upper triangular
 | |
| *
 | |
|          CALL SLARTG( H( 1, 1 ), H( 2, 1 ), C1, S1, TEMP )
 | |
|          H( 2, 1 ) = ZERO
 | |
|          H( 1, 1 ) = TEMP
 | |
|          CALL SROT( 2, H( 1, 2 ), 2, H( 2, 2 ), 2, C1, S1 )
 | |
| *
 | |
| *        Calculate Z1 and Z2
 | |
| *
 | |
|          CALL SLARTG( H( 2, 3 ), H( 2, 2 ), C1, S1, TEMP )
 | |
|          CALL SROT( 1, H( 1, 3 ), 1, H( 1, 2 ), 1, C1, S1 )
 | |
|          CALL SLARTG( H( 1, 2 ), H( 1, 1 ), C2, S2, TEMP )
 | |
| *
 | |
| *        Apply transformations from the right
 | |
| *
 | |
|          CALL SROT( K+3-ISTARTM+1, A( ISTARTM, K+2 ), 1, A( ISTARTM,
 | |
|      $              K+1 ), 1, C1, S1 )
 | |
|          CALL SROT( K+3-ISTARTM+1, A( ISTARTM, K+1 ), 1, A( ISTARTM,
 | |
|      $              K ), 1, C2, S2 )
 | |
|          CALL SROT( K+2-ISTARTM+1, B( ISTARTM, K+2 ), 1, B( ISTARTM,
 | |
|      $              K+1 ), 1, C1, S1 )
 | |
|          CALL SROT( K+2-ISTARTM+1, B( ISTARTM, K+1 ), 1, B( ISTARTM,
 | |
|      $              K ), 1, C2, S2 )
 | |
|          IF ( ILZ ) THEN
 | |
|             CALL SROT( NZ, Z( 1, K+2-ZSTART+1 ), 1, Z( 1, K+1-ZSTART+
 | |
|      $                 1 ), 1, C1, S1 )
 | |
|             CALL SROT( NZ, Z( 1, K+1-ZSTART+1 ), 1, Z( 1, K-ZSTART+1 ),
 | |
|      $                 1, C2, S2 )
 | |
|          END IF
 | |
|          B( K+1, K ) = ZERO
 | |
|          B( K+2, K ) = ZERO
 | |
| *
 | |
| *        Calculate Q1 and Q2
 | |
| *
 | |
|          CALL SLARTG( A( K+2, K ), A( K+3, K ), C1, S1, TEMP )
 | |
|          A( K+2, K ) = TEMP
 | |
|          A( K+3, K ) = ZERO
 | |
|          CALL SLARTG( A( K+1, K ), A( K+2, K ), C2, S2, TEMP )
 | |
|          A( K+1, K ) = TEMP
 | |
|          A( K+2, K ) = ZERO
 | |
| *
 | |
| *     Apply transformations from the left
 | |
| *
 | |
|          CALL SROT( ISTOPM-K, A( K+2, K+1 ), LDA, A( K+3, K+1 ), LDA,
 | |
|      $              C1, S1 )
 | |
|          CALL SROT( ISTOPM-K, A( K+1, K+1 ), LDA, A( K+2, K+1 ), LDA,
 | |
|      $              C2, S2 )
 | |
| *
 | |
|          CALL SROT( ISTOPM-K, B( K+2, K+1 ), LDB, B( K+3, K+1 ), LDB,
 | |
|      $              C1, S1 )
 | |
|          CALL SROT( ISTOPM-K, B( K+1, K+1 ), LDB, B( K+2, K+1 ), LDB,
 | |
|      $              C2, S2 )
 | |
|          IF ( ILQ ) THEN
 | |
|             CALL SROT( NQ, Q( 1, K+2-QSTART+1 ), 1, Q( 1, K+3-QSTART+
 | |
|      $                 1 ), 1, C1, S1 )
 | |
|             CALL SROT( NQ, Q( 1, K+1-QSTART+1 ), 1, Q( 1, K+2-QSTART+
 | |
|      $                 1 ), 1, C2, S2 )
 | |
|          END IF
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     End of SLAQZ2
 | |
| *
 | |
|       END SUBROUTINE |