OpenBLAS/lapack-netlib/SRC/cgetsls.c

1065 lines
29 KiB
C

#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <complex.h>
#ifdef complex
#undef complex
#endif
#ifdef I
#undef I
#endif
#if defined(_WIN64)
typedef long long BLASLONG;
typedef unsigned long long BLASULONG;
#else
typedef long BLASLONG;
typedef unsigned long BLASULONG;
#endif
#ifdef LAPACK_ILP64
typedef BLASLONG blasint;
#if defined(_WIN64)
#define blasabs(x) llabs(x)
#else
#define blasabs(x) labs(x)
#endif
#else
typedef int blasint;
#define blasabs(x) abs(x)
#endif
typedef blasint integer;
typedef unsigned int uinteger;
typedef char *address;
typedef short int shortint;
typedef float real;
typedef double doublereal;
typedef struct { real r, i; } complex;
typedef struct { doublereal r, i; } doublecomplex;
#ifdef _MSC_VER
static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
#else
static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
#endif
#define pCf(z) (*_pCf(z))
#define pCd(z) (*_pCd(z))
typedef blasint logical;
typedef char logical1;
typedef char integer1;
#define TRUE_ (1)
#define FALSE_ (0)
/* Extern is for use with -E */
#ifndef Extern
#define Extern extern
#endif
/* I/O stuff */
typedef int flag;
typedef int ftnlen;
typedef int ftnint;
/*external read, write*/
typedef struct
{ flag cierr;
ftnint ciunit;
flag ciend;
char *cifmt;
ftnint cirec;
} cilist;
/*internal read, write*/
typedef struct
{ flag icierr;
char *iciunit;
flag iciend;
char *icifmt;
ftnint icirlen;
ftnint icirnum;
} icilist;
/*open*/
typedef struct
{ flag oerr;
ftnint ounit;
char *ofnm;
ftnlen ofnmlen;
char *osta;
char *oacc;
char *ofm;
ftnint orl;
char *oblnk;
} olist;
/*close*/
typedef struct
{ flag cerr;
ftnint cunit;
char *csta;
} cllist;
/*rewind, backspace, endfile*/
typedef struct
{ flag aerr;
ftnint aunit;
} alist;
/* inquire */
typedef struct
{ flag inerr;
ftnint inunit;
char *infile;
ftnlen infilen;
ftnint *inex; /*parameters in standard's order*/
ftnint *inopen;
ftnint *innum;
ftnint *innamed;
char *inname;
ftnlen innamlen;
char *inacc;
ftnlen inacclen;
char *inseq;
ftnlen inseqlen;
char *indir;
ftnlen indirlen;
char *infmt;
ftnlen infmtlen;
char *inform;
ftnint informlen;
char *inunf;
ftnlen inunflen;
ftnint *inrecl;
ftnint *innrec;
char *inblank;
ftnlen inblanklen;
} inlist;
#define VOID void
union Multitype { /* for multiple entry points */
integer1 g;
shortint h;
integer i;
/* longint j; */
real r;
doublereal d;
complex c;
doublecomplex z;
};
typedef union Multitype Multitype;
struct Vardesc { /* for Namelist */
char *name;
char *addr;
ftnlen *dims;
int type;
};
typedef struct Vardesc Vardesc;
struct Namelist {
char *name;
Vardesc **vars;
int nvars;
};
typedef struct Namelist Namelist;
#define abs(x) ((x) >= 0 ? (x) : -(x))
#define dabs(x) (fabs(x))
#define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
#define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
#define dmin(a,b) (f2cmin(a,b))
#define dmax(a,b) (f2cmax(a,b))
#define bit_test(a,b) ((a) >> (b) & 1)
#define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
#define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
#define abort_() { sig_die("Fortran abort routine called", 1); }
#define c_abs(z) (cabsf(Cf(z)))
#define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
#ifdef _MSC_VER
#define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
#define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
#else
#define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
#define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
#endif
#define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
#define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
#define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
//#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
#define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
#define d_abs(x) (fabs(*(x)))
#define d_acos(x) (acos(*(x)))
#define d_asin(x) (asin(*(x)))
#define d_atan(x) (atan(*(x)))
#define d_atn2(x, y) (atan2(*(x),*(y)))
#define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
#define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
#define d_cos(x) (cos(*(x)))
#define d_cosh(x) (cosh(*(x)))
#define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
#define d_exp(x) (exp(*(x)))
#define d_imag(z) (cimag(Cd(z)))
#define r_imag(z) (cimagf(Cf(z)))
#define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
#define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
#define d_log(x) (log(*(x)))
#define d_mod(x, y) (fmod(*(x), *(y)))
#define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
#define d_nint(x) u_nint(*(x))
#define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
#define d_sign(a,b) u_sign(*(a),*(b))
#define r_sign(a,b) u_sign(*(a),*(b))
#define d_sin(x) (sin(*(x)))
#define d_sinh(x) (sinh(*(x)))
#define d_sqrt(x) (sqrt(*(x)))
#define d_tan(x) (tan(*(x)))
#define d_tanh(x) (tanh(*(x)))
#define i_abs(x) abs(*(x))
#define i_dnnt(x) ((integer)u_nint(*(x)))
#define i_len(s, n) (n)
#define i_nint(x) ((integer)u_nint(*(x)))
#define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
#define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
#define pow_si(B,E) spow_ui(*(B),*(E))
#define pow_ri(B,E) spow_ui(*(B),*(E))
#define pow_di(B,E) dpow_ui(*(B),*(E))
#define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
#define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
#define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
#define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
#define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
#define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
#define sig_die(s, kill) { exit(1); }
#define s_stop(s, n) {exit(0);}
static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
#define z_abs(z) (cabs(Cd(z)))
#define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
#define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
#define myexit_() break;
#define mycycle() continue;
#define myceiling(w) {ceil(w)}
#define myhuge(w) {HUGE_VAL}
//#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
#define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
/* procedure parameter types for -A and -C++ */
#ifdef __cplusplus
typedef logical (*L_fp)(...);
#else
typedef logical (*L_fp)();
#endif
static float spow_ui(float x, integer n) {
float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static double dpow_ui(double x, integer n) {
double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#ifdef _MSC_VER
static _Fcomplex cpow_ui(complex x, integer n) {
complex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
for(u = n; ; ) {
if(u & 01) pow.r *= x.r, pow.i *= x.i;
if(u >>= 1) x.r *= x.r, x.i *= x.i;
else break;
}
}
_Fcomplex p={pow.r, pow.i};
return p;
}
#else
static _Complex float cpow_ui(_Complex float x, integer n) {
_Complex float pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
#ifdef _MSC_VER
static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
_Dcomplex pow={1.0,0.0}; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
for(u = n; ; ) {
if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
else break;
}
}
_Dcomplex p = {pow._Val[0], pow._Val[1]};
return p;
}
#else
static _Complex double zpow_ui(_Complex double x, integer n) {
_Complex double pow=1.0; unsigned long int u;
if(n != 0) {
if(n < 0) n = -n, x = 1/x;
for(u = n; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
#endif
static integer pow_ii(integer x, integer n) {
integer pow; unsigned long int u;
if (n <= 0) {
if (n == 0 || x == 1) pow = 1;
else if (x != -1) pow = x == 0 ? 1/x : 0;
else n = -n;
}
if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
u = n;
for(pow = 1; ; ) {
if(u & 01) pow *= x;
if(u >>= 1) x *= x;
else break;
}
}
return pow;
}
static integer dmaxloc_(double *w, integer s, integer e, integer *n)
{
double m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static integer smaxloc_(float *w, integer s, integer e, integer *n)
{
float m; integer i, mi;
for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
if (w[i-1]>m) mi=i ,m=w[i-1];
return mi-s+1;
}
static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Fcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
}
}
pCf(z) = zdotc;
}
#else
_Complex float zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i]) * Cf(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
}
}
pCf(z) = zdotc;
}
#endif
static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
integer n = *n_, incx = *incx_, incy = *incy_, i;
#ifdef _MSC_VER
_Dcomplex zdotc = {0.0, 0.0};
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
}
}
pCd(z) = zdotc;
}
#else
_Complex double zdotc = 0.0;
if (incx == 1 && incy == 1) {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i]) * Cd(&y[i]);
}
} else {
for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
}
}
pCd(z) = zdotc;
}
#endif
/* -- translated by f2c (version 20000121).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
/* Table of constant values */
static complex c_b1 = {0.f,0.f};
static integer c_n1 = -1;
static integer c_n2 = -2;
static integer c__0 = 0;
/* > \brief \b CGETSLS */
/* Definition: */
/* =========== */
/* SUBROUTINE CGETSLS( TRANS, M, N, NRHS, A, LDA, B, LDB, */
/* $ WORK, LWORK, INFO ) */
/* CHARACTER TRANS */
/* INTEGER INFO, LDA, LDB, LWORK, M, N, NRHS */
/* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * ) */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > CGETSLS solves overdetermined or underdetermined complex linear systems */
/* > involving an M-by-N matrix A, using a tall skinny QR or short wide LQ */
/* > factorization of A. It is assumed that A has full rank. */
/* > */
/* > */
/* > */
/* > The following options are provided: */
/* > */
/* > 1. If TRANS = 'N' and m >= n: find the least squares solution of */
/* > an overdetermined system, i.e., solve the least squares problem */
/* > minimize || B - A*X ||. */
/* > */
/* > 2. If TRANS = 'N' and m < n: find the minimum norm solution of */
/* > an underdetermined system A * X = B. */
/* > */
/* > 3. If TRANS = 'C' and m >= n: find the minimum norm solution of */
/* > an undetermined system A**T * X = B. */
/* > */
/* > 4. If TRANS = 'C' and m < n: find the least squares solution of */
/* > an overdetermined system, i.e., solve the least squares problem */
/* > minimize || B - A**T * X ||. */
/* > */
/* > Several right hand side vectors b and solution vectors x can be */
/* > handled in a single call; they are stored as the columns of the */
/* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution */
/* > matrix X. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > = 'N': the linear system involves A; */
/* > = 'C': the linear system involves A**H. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of */
/* > columns of the matrices B and X. NRHS >=0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is COMPLEX array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix A. */
/* > On exit, */
/* > A is overwritten by details of its QR or LQ */
/* > factorization as returned by CGEQR or CGELQ. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= f2cmax(1,M). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is COMPLEX array, dimension (LDB,NRHS) */
/* > On entry, the matrix B of right hand side vectors, stored */
/* > columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS */
/* > if TRANS = 'C'. */
/* > On exit, if INFO = 0, B is overwritten by the solution */
/* > vectors, stored columnwise: */
/* > if TRANS = 'N' and m >= n, rows 1 to n of B contain the least */
/* > squares solution vectors. */
/* > if TRANS = 'N' and m < n, rows 1 to N of B contain the */
/* > minimum norm solution vectors; */
/* > if TRANS = 'C' and m >= n, rows 1 to M of B contain the */
/* > minimum norm solution vectors; */
/* > if TRANS = 'C' and m < n, rows 1 to M of B contain the */
/* > least squares solution vectors. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= MAX(1,M,N). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > (workspace) COMPLEX array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) contains optimal (or either minimal */
/* > or optimal, if query was assumed) LWORK. */
/* > See LWORK for details. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If LWORK = -1 or -2, then a workspace query is assumed. */
/* > If LWORK = -1, the routine calculates optimal size of WORK for the */
/* > optimal performance and returns this value in WORK(1). */
/* > If LWORK = -2, the routine calculates minimal size of WORK and */
/* > returns this value in WORK(1). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, the i-th diagonal element of the */
/* > triangular factor of A is zero, so that A does not have */
/* > full rank; the least squares solution could not be */
/* > computed. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \date June 2017 */
/* > \ingroup complexGEsolve */
/* ===================================================================== */
/* Subroutine */ void cgetsls_(char *trans, integer *m, integer *n, integer *
nrhs, complex *a, integer *lda, complex *b, integer *ldb, complex *
work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
real r__1;
/* Local variables */
real anrm, bnrm;
logical tran;
integer brow, tszm, tszo, info2, i__, j, iascl, ibscl;
extern /* Subroutine */ void cgelq_(integer *, integer *, complex *,
integer *, complex *, integer *, complex *, integer *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ void cgeqr_(integer *, integer *, complex *,
integer *, complex *, integer *, complex *, integer *, integer *);
integer minmn, maxmn;
complex workq[1];
extern /* Subroutine */ void slabad_(real *, real *);
extern real clange_(char *, integer *, integer *, complex *, integer *,
real *);
extern /* Subroutine */ void clascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, complex *, integer *, integer *);
complex tq[5];
extern real slamch_(char *);
extern /* Subroutine */ void cgemlq_(char *, char *, integer *, integer *,
integer *, complex *, integer *, complex *, integer *, complex *,
integer *, complex *, integer *, integer *),
claset_(char *, integer *, integer *, complex *, complex *,
complex *, integer *);
extern int xerbla_(char *, integer *, ftnlen);
extern void cgemqr_(char *, char *, integer *, integer *, integer *, complex
*, integer *, complex *, integer *, complex *, integer *, complex
*, integer *, integer *);
integer scllen;
real bignum, smlnum;
integer wsizem, wsizeo;
logical lquery;
extern /* Subroutine */ void ctrtrs_(char *, char *, char *, integer *,
integer *, complex *, integer *, complex *, integer *, integer *);
integer lw1, lw2, mnk;
real dum[1];
integer lwm, lwo;
/* -- LAPACK driver routine (version 3.7.1) -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* June 2017 */
/* ===================================================================== */
/* Test the input arguments. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--work;
/* Function Body */
*info = 0;
minmn = f2cmin(*m,*n);
maxmn = f2cmax(*m,*n);
mnk = f2cmax(minmn,*nrhs);
tran = lsame_(trans, "C");
lquery = *lwork == -1 || *lwork == -2;
if (! (lsame_(trans, "N") || lsame_(trans, "C"))) {
*info = -1;
} else if (*m < 0) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*lda < f2cmax(1,*m)) {
*info = -6;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = f2cmax(1,*m);
if (*ldb < f2cmax(i__1,*n)) {
*info = -8;
}
}
if (*info == 0) {
/* Determine the block size and minimum LWORK */
if (*m >= *n) {
cgeqr_(m, n, &a[a_offset], lda, tq, &c_n1, workq, &c_n1, &info2);
tszo = (integer) tq[0].r;
lwo = (integer) workq[0].r;
cgemqr_("L", trans, m, nrhs, n, &a[a_offset], lda, tq, &tszo, &b[
b_offset], ldb, workq, &c_n1, &info2);
/* Computing MAX */
i__1 = lwo, i__2 = (integer) workq[0].r;
lwo = f2cmax(i__1,i__2);
cgeqr_(m, n, &a[a_offset], lda, tq, &c_n2, workq, &c_n2, &info2);
tszm = (integer) tq[0].r;
lwm = (integer) workq[0].r;
cgemqr_("L", trans, m, nrhs, n, &a[a_offset], lda, tq, &tszm, &b[
b_offset], ldb, workq, &c_n1, &info2);
/* Computing MAX */
i__1 = lwm, i__2 = (integer) workq[0].r;
lwm = f2cmax(i__1,i__2);
wsizeo = tszo + lwo;
wsizem = tszm + lwm;
} else {
cgelq_(m, n, &a[a_offset], lda, tq, &c_n1, workq, &c_n1, &info2);
tszo = (integer) tq[0].r;
lwo = (integer) workq[0].r;
cgemlq_("L", trans, n, nrhs, m, &a[a_offset], lda, tq, &tszo, &b[
b_offset], ldb, workq, &c_n1, &info2);
/* Computing MAX */
i__1 = lwo, i__2 = (integer) workq[0].r;
lwo = f2cmax(i__1,i__2);
cgelq_(m, n, &a[a_offset], lda, tq, &c_n2, workq, &c_n2, &info2);
tszm = (integer) tq[0].r;
lwm = (integer) workq[0].r;
cgemlq_("L", trans, n, nrhs, m, &a[a_offset], lda, tq, &tszm, &b[
b_offset], ldb, workq, &c_n1, &info2);
/* Computing MAX */
i__1 = lwm, i__2 = (integer) workq[0].r;
lwm = f2cmax(i__1,i__2);
wsizeo = tszo + lwo;
wsizem = tszm + lwm;
}
if (*lwork < wsizem && ! lquery) {
*info = -10;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGETSLS", &i__1, (ftnlen)7);
r__1 = (real) wsizeo;
work[1].r = r__1, work[1].i = 0.f;
return;
}
if (lquery) {
if (*lwork == -1) {
r__1 = (real) wsizeo;
work[1].r = r__1, work[1].i = 0.f;
}
if (*lwork == -2) {
r__1 = (real) wsizem;
work[1].r = r__1, work[1].i = 0.f;
}
return;
}
if (*lwork < wsizeo) {
lw1 = tszm;
lw2 = lwm;
} else {
lw1 = tszo;
lw2 = lwo;
}
/* Quick return if possible */
/* Computing MIN */
i__1 = f2cmin(*m,*n);
if (f2cmin(i__1,*nrhs) == 0) {
i__1 = f2cmax(*m,*n);
claset_("FULL", &i__1, nrhs, &c_b1, &c_b1, &b[b_offset], ldb);
return;
}
/* Get machine parameters */
smlnum = slamch_("S") / slamch_("P");
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);
/* Scale A, B if f2cmax element outside range [SMLNUM,BIGNUM] */
anrm = clange_("M", m, n, &a[a_offset], lda, dum);
iascl = 0;
if (anrm > 0.f && anrm < smlnum) {
/* Scale matrix norm up to SMLNUM */
clascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda,
info);
iascl = 1;
} else if (anrm > bignum) {
/* Scale matrix norm down to BIGNUM */
clascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda,
info);
iascl = 2;
} else if (anrm == 0.f) {
/* Matrix all zero. Return zero solution. */
claset_("F", &maxmn, nrhs, &c_b1, &c_b1, &b[b_offset], ldb)
;
goto L50;
}
brow = *m;
if (tran) {
brow = *n;
}
bnrm = clange_("M", &brow, nrhs, &b[b_offset], ldb, dum);
ibscl = 0;
if (bnrm > 0.f && bnrm < smlnum) {
/* Scale matrix norm up to SMLNUM */
clascl_("G", &c__0, &c__0, &bnrm, &smlnum, &brow, nrhs, &b[b_offset],
ldb, info);
ibscl = 1;
} else if (bnrm > bignum) {
/* Scale matrix norm down to BIGNUM */
clascl_("G", &c__0, &c__0, &bnrm, &bignum, &brow, nrhs, &b[b_offset],
ldb, info);
ibscl = 2;
}
if (*m >= *n) {
/* compute QR factorization of A */
cgeqr_(m, n, &a[a_offset], lda, &work[lw2 + 1], &lw1, &work[1], &lw2,
info);
if (! tran) {
/* Least-Squares Problem f2cmin || A * X - B || */
/* B(1:M,1:NRHS) := Q**T * B(1:M,1:NRHS) */
cgemqr_("L", "C", m, nrhs, n, &a[a_offset], lda, &work[lw2 + 1], &
lw1, &b[b_offset], ldb, &work[1], &lw2, info);
/* B(1:N,1:NRHS) := inv(R) * B(1:N,1:NRHS) */
ctrtrs_("U", "N", "N", n, nrhs, &a[a_offset], lda, &b[b_offset],
ldb, info);
if (*info > 0) {
return;
}
scllen = *n;
} else {
/* Overdetermined system of equations A**T * X = B */
/* B(1:N,1:NRHS) := inv(R**T) * B(1:N,1:NRHS) */
ctrtrs_("U", "C", "N", n, nrhs, &a[a_offset], lda, &b[b_offset],
ldb, info);
if (*info > 0) {
return;
}
/* B(N+1:M,1:NRHS) = CZERO */
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = *n + 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * b_dim1;
b[i__3].r = 0.f, b[i__3].i = 0.f;
/* L10: */
}
/* L20: */
}
/* B(1:M,1:NRHS) := Q(1:N,:) * B(1:N,1:NRHS) */
cgemqr_("L", "N", m, nrhs, n, &a[a_offset], lda, &work[lw2 + 1], &
lw1, &b[b_offset], ldb, &work[1], &lw2, info);
scllen = *m;
}
} else {
/* Compute LQ factorization of A */
cgelq_(m, n, &a[a_offset], lda, &work[lw2 + 1], &lw1, &work[1], &lw2,
info);
/* workspace at least M, optimally M*NB. */
if (! tran) {
/* underdetermined system of equations A * X = B */
/* B(1:M,1:NRHS) := inv(L) * B(1:M,1:NRHS) */
ctrtrs_("L", "N", "N", m, nrhs, &a[a_offset], lda, &b[b_offset],
ldb, info);
if (*info > 0) {
return;
}
/* B(M+1:N,1:NRHS) = 0 */
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = *m + 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * b_dim1;
b[i__3].r = 0.f, b[i__3].i = 0.f;
/* L30: */
}
/* L40: */
}
/* B(1:N,1:NRHS) := Q(1:N,:)**T * B(1:M,1:NRHS) */
cgemlq_("L", "C", n, nrhs, m, &a[a_offset], lda, &work[lw2 + 1], &
lw1, &b[b_offset], ldb, &work[1], &lw2, info);
/* workspace at least NRHS, optimally NRHS*NB */
scllen = *n;
} else {
/* overdetermined system f2cmin || A**T * X - B || */
/* B(1:N,1:NRHS) := Q * B(1:N,1:NRHS) */
cgemlq_("L", "N", n, nrhs, m, &a[a_offset], lda, &work[lw2 + 1], &
lw1, &b[b_offset], ldb, &work[1], &lw2, info);
/* workspace at least NRHS, optimally NRHS*NB */
/* B(1:M,1:NRHS) := inv(L**T) * B(1:M,1:NRHS) */
ctrtrs_("L", "C", "N", m, nrhs, &a[a_offset], lda, &b[b_offset],
ldb, info);
if (*info > 0) {
return;
}
scllen = *m;
}
}
/* Undo scaling */
if (iascl == 1) {
clascl_("G", &c__0, &c__0, &anrm, &smlnum, &scllen, nrhs, &b[b_offset]
, ldb, info);
} else if (iascl == 2) {
clascl_("G", &c__0, &c__0, &anrm, &bignum, &scllen, nrhs, &b[b_offset]
, ldb, info);
}
if (ibscl == 1) {
clascl_("G", &c__0, &c__0, &smlnum, &bnrm, &scllen, nrhs, &b[b_offset]
, ldb, info);
} else if (ibscl == 2) {
clascl_("G", &c__0, &c__0, &bignum, &bnrm, &scllen, nrhs, &b[b_offset]
, ldb, info);
}
L50:
r__1 = (real) (tszo + lwo);
work[1].r = r__1, work[1].i = 0.f;
return;
/* End of ZGETSLS */
} /* cgetsls_ */