579 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			579 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b DDRVPT
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
 | |
| *                          E, B, X, XACT, WORK, RWORK, NOUT )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            TSTERR
 | |
| *       INTEGER            NN, NOUT, NRHS
 | |
| *       DOUBLE PRECISION   THRESH
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            DOTYPE( * )
 | |
| *       INTEGER            NVAL( * )
 | |
| *       DOUBLE PRECISION   A( * ), B( * ), D( * ), E( * ), RWORK( * ),
 | |
| *      $                   WORK( * ), X( * ), XACT( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> DDRVPT tests DPTSV and -SVX.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] DOTYPE
 | |
| *> \verbatim
 | |
| *>          DOTYPE is LOGICAL array, dimension (NTYPES)
 | |
| *>          The matrix types to be used for testing.  Matrices of type j
 | |
| *>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
 | |
| *>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NN
 | |
| *> \verbatim
 | |
| *>          NN is INTEGER
 | |
| *>          The number of values of N contained in the vector NVAL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NVAL
 | |
| *> \verbatim
 | |
| *>          NVAL is INTEGER array, dimension (NN)
 | |
| *>          The values of the matrix dimension N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand side vectors to be generated for
 | |
| *>          each linear system.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] THRESH
 | |
| *> \verbatim
 | |
| *>          THRESH is DOUBLE PRECISION
 | |
| *>          The threshold value for the test ratios.  A result is
 | |
| *>          included in the output file if RESULT >= THRESH.  To have
 | |
| *>          every test ratio printed, use THRESH = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TSTERR
 | |
| *> \verbatim
 | |
| *>          TSTERR is LOGICAL
 | |
| *>          Flag that indicates whether error exits are to be tested.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] A
 | |
| *> \verbatim
 | |
| *>          A is DOUBLE PRECISION array, dimension (NMAX*2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (NMAX*2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (NMAX*2)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] B
 | |
| *> \verbatim
 | |
| *>          B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] X
 | |
| *> \verbatim
 | |
| *>          X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] XACT
 | |
| *> \verbatim
 | |
| *>          XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension
 | |
| *>                      (NMAX*max(3,NRHS))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension
 | |
| *>                      (max(NMAX,2*NRHS))
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NOUT
 | |
| *> \verbatim
 | |
| *>          NOUT is INTEGER
 | |
| *>          The unit number for output.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date November 2011
 | |
| *
 | |
| *> \ingroup double_lin
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
 | |
|      $                   E, B, X, XACT, WORK, RWORK, NOUT )
 | |
| *
 | |
| *  -- LAPACK test routine (version 3.4.0) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     November 2011
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            TSTERR
 | |
|       INTEGER            NN, NOUT, NRHS
 | |
|       DOUBLE PRECISION   THRESH
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            DOTYPE( * )
 | |
|       INTEGER            NVAL( * )
 | |
|       DOUBLE PRECISION   A( * ), B( * ), D( * ), E( * ), RWORK( * ),
 | |
|      $                   WORK( * ), X( * ), XACT( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
|       INTEGER            NTYPES
 | |
|       PARAMETER          ( NTYPES = 12 )
 | |
|       INTEGER            NTESTS
 | |
|       PARAMETER          ( NTESTS = 6 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ZEROT
 | |
|       CHARACTER          DIST, FACT, TYPE
 | |
|       CHARACTER*3        PATH
 | |
|       INTEGER            I, IA, IFACT, IMAT, IN, INFO, IX, IZERO, J, K,
 | |
|      $                   K1, KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT,
 | |
|      $                   NRUN, NT
 | |
|       DOUBLE PRECISION   AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISEED( 4 ), ISEEDY( 4 )
 | |
|       DOUBLE PRECISION   RESULT( NTESTS ), Z( 3 )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            IDAMAX
 | |
|       DOUBLE PRECISION   DASUM, DGET06, DLANST
 | |
|       EXTERNAL           IDAMAX, DASUM, DGET06, DLANST
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ALADHD, ALAERH, ALASVM, DCOPY, DERRVX, DGET04,
 | |
|      $                   DLACPY, DLAPTM, DLARNV, DLASET, DLATB4, DLATMS,
 | |
|      $                   DPTSV, DPTSVX, DPTT01, DPTT02, DPTT05, DPTTRF,
 | |
|      $                   DPTTRS, DSCAL
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. Scalars in Common ..
 | |
|       LOGICAL            LERR, OK
 | |
|       CHARACTER*32       SRNAMT
 | |
|       INTEGER            INFOT, NUNIT
 | |
| *     ..
 | |
| *     .. Common blocks ..
 | |
|       COMMON             / INFOC / INFOT, NUNIT, OK, LERR
 | |
|       COMMON             / SRNAMC / SRNAMT
 | |
| *     ..
 | |
| *     .. Data statements ..
 | |
|       DATA               ISEEDY / 0, 0, 0, 1 /
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       PATH( 1: 1 ) = 'Double precision'
 | |
|       PATH( 2: 3 ) = 'PT'
 | |
|       NRUN = 0
 | |
|       NFAIL = 0
 | |
|       NERRS = 0
 | |
|       DO 10 I = 1, 4
 | |
|          ISEED( I ) = ISEEDY( I )
 | |
|    10 CONTINUE
 | |
| *
 | |
| *     Test the error exits
 | |
| *
 | |
|       IF( TSTERR )
 | |
|      $   CALL DERRVX( PATH, NOUT )
 | |
|       INFOT = 0
 | |
| *
 | |
|       DO 120 IN = 1, NN
 | |
| *
 | |
| *        Do for each value of N in NVAL.
 | |
| *
 | |
|          N = NVAL( IN )
 | |
|          LDA = MAX( 1, N )
 | |
|          NIMAT = NTYPES
 | |
|          IF( N.LE.0 )
 | |
|      $      NIMAT = 1
 | |
| *
 | |
|          DO 110 IMAT = 1, NIMAT
 | |
| *
 | |
| *           Do the tests only if DOTYPE( IMAT ) is true.
 | |
| *
 | |
|             IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
 | |
|      $         GO TO 110
 | |
| *
 | |
| *           Set up parameters with DLATB4.
 | |
| *
 | |
|             CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
 | |
|      $                   COND, DIST )
 | |
| *
 | |
|             ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
 | |
|             IF( IMAT.LE.6 ) THEN
 | |
| *
 | |
| *              Type 1-6:  generate a symmetric tridiagonal matrix of
 | |
| *              known condition number in lower triangular band storage.
 | |
| *
 | |
|                SRNAMT = 'DLATMS'
 | |
|                CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
 | |
|      $                      ANORM, KL, KU, 'B', A, 2, WORK, INFO )
 | |
| *
 | |
| *              Check the error code from DLATMS.
 | |
| *
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', N, N, KL,
 | |
|      $                         KU, -1, IMAT, NFAIL, NERRS, NOUT )
 | |
|                   GO TO 110
 | |
|                END IF
 | |
|                IZERO = 0
 | |
| *
 | |
| *              Copy the matrix to D and E.
 | |
| *
 | |
|                IA = 1
 | |
|                DO 20 I = 1, N - 1
 | |
|                   D( I ) = A( IA )
 | |
|                   E( I ) = A( IA+1 )
 | |
|                   IA = IA + 2
 | |
|    20          CONTINUE
 | |
|                IF( N.GT.0 )
 | |
|      $            D( N ) = A( IA )
 | |
|             ELSE
 | |
| *
 | |
| *              Type 7-12:  generate a diagonally dominant matrix with
 | |
| *              unknown condition number in the vectors D and E.
 | |
| *
 | |
|                IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
 | |
| *
 | |
| *                 Let D and E have values from [-1,1].
 | |
| *
 | |
|                   CALL DLARNV( 2, ISEED, N, D )
 | |
|                   CALL DLARNV( 2, ISEED, N-1, E )
 | |
| *
 | |
| *                 Make the tridiagonal matrix diagonally dominant.
 | |
| *
 | |
|                   IF( N.EQ.1 ) THEN
 | |
|                      D( 1 ) = ABS( D( 1 ) )
 | |
|                   ELSE
 | |
|                      D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
 | |
|                      D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
 | |
|                      DO 30 I = 2, N - 1
 | |
|                         D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
 | |
|      $                           ABS( E( I-1 ) )
 | |
|    30                CONTINUE
 | |
|                   END IF
 | |
| *
 | |
| *                 Scale D and E so the maximum element is ANORM.
 | |
| *
 | |
|                   IX = IDAMAX( N, D, 1 )
 | |
|                   DMAX = D( IX )
 | |
|                   CALL DSCAL( N, ANORM / DMAX, D, 1 )
 | |
|                   IF( N.GT.1 )
 | |
|      $               CALL DSCAL( N-1, ANORM / DMAX, E, 1 )
 | |
| *
 | |
|                ELSE IF( IZERO.GT.0 ) THEN
 | |
| *
 | |
| *                 Reuse the last matrix by copying back the zeroed out
 | |
| *                 elements.
 | |
| *
 | |
|                   IF( IZERO.EQ.1 ) THEN
 | |
|                      D( 1 ) = Z( 2 )
 | |
|                      IF( N.GT.1 )
 | |
|      $                  E( 1 ) = Z( 3 )
 | |
|                   ELSE IF( IZERO.EQ.N ) THEN
 | |
|                      E( N-1 ) = Z( 1 )
 | |
|                      D( N ) = Z( 2 )
 | |
|                   ELSE
 | |
|                      E( IZERO-1 ) = Z( 1 )
 | |
|                      D( IZERO ) = Z( 2 )
 | |
|                      E( IZERO ) = Z( 3 )
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
| *              For types 8-10, set one row and column of the matrix to
 | |
| *              zero.
 | |
| *
 | |
|                IZERO = 0
 | |
|                IF( IMAT.EQ.8 ) THEN
 | |
|                   IZERO = 1
 | |
|                   Z( 2 ) = D( 1 )
 | |
|                   D( 1 ) = ZERO
 | |
|                   IF( N.GT.1 ) THEN
 | |
|                      Z( 3 ) = E( 1 )
 | |
|                      E( 1 ) = ZERO
 | |
|                   END IF
 | |
|                ELSE IF( IMAT.EQ.9 ) THEN
 | |
|                   IZERO = N
 | |
|                   IF( N.GT.1 ) THEN
 | |
|                      Z( 1 ) = E( N-1 )
 | |
|                      E( N-1 ) = ZERO
 | |
|                   END IF
 | |
|                   Z( 2 ) = D( N )
 | |
|                   D( N ) = ZERO
 | |
|                ELSE IF( IMAT.EQ.10 ) THEN
 | |
|                   IZERO = ( N+1 ) / 2
 | |
|                   IF( IZERO.GT.1 ) THEN
 | |
|                      Z( 1 ) = E( IZERO-1 )
 | |
|                      Z( 3 ) = E( IZERO )
 | |
|                      E( IZERO-1 ) = ZERO
 | |
|                      E( IZERO ) = ZERO
 | |
|                   END IF
 | |
|                   Z( 2 ) = D( IZERO )
 | |
|                   D( IZERO ) = ZERO
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           Generate NRHS random solution vectors.
 | |
| *
 | |
|             IX = 1
 | |
|             DO 40 J = 1, NRHS
 | |
|                CALL DLARNV( 2, ISEED, N, XACT( IX ) )
 | |
|                IX = IX + LDA
 | |
|    40       CONTINUE
 | |
| *
 | |
| *           Set the right hand side.
 | |
| *
 | |
|             CALL DLAPTM( N, NRHS, ONE, D, E, XACT, LDA, ZERO, B, LDA )
 | |
| *
 | |
|             DO 100 IFACT = 1, 2
 | |
|                IF( IFACT.EQ.1 ) THEN
 | |
|                   FACT = 'F'
 | |
|                ELSE
 | |
|                   FACT = 'N'
 | |
|                END IF
 | |
| *
 | |
| *              Compute the condition number for comparison with
 | |
| *              the value returned by DPTSVX.
 | |
| *
 | |
|                IF( ZEROT ) THEN
 | |
|                   IF( IFACT.EQ.1 )
 | |
|      $               GO TO 100
 | |
|                   RCONDC = ZERO
 | |
| *
 | |
|                ELSE IF( IFACT.EQ.1 ) THEN
 | |
| *
 | |
| *                 Compute the 1-norm of A.
 | |
| *
 | |
|                   ANORM = DLANST( '1', N, D, E )
 | |
| *
 | |
|                   CALL DCOPY( N, D, 1, D( N+1 ), 1 )
 | |
|                   IF( N.GT.1 )
 | |
|      $               CALL DCOPY( N-1, E, 1, E( N+1 ), 1 )
 | |
| *
 | |
| *                 Factor the matrix A.
 | |
| *
 | |
|                   CALL DPTTRF( N, D( N+1 ), E( N+1 ), INFO )
 | |
| *
 | |
| *                 Use DPTTRS to solve for one column at a time of
 | |
| *                 inv(A), computing the maximum column sum as we go.
 | |
| *
 | |
|                   AINVNM = ZERO
 | |
|                   DO 60 I = 1, N
 | |
|                      DO 50 J = 1, N
 | |
|                         X( J ) = ZERO
 | |
|    50                CONTINUE
 | |
|                      X( I ) = ONE
 | |
|                      CALL DPTTRS( N, 1, D( N+1 ), E( N+1 ), X, LDA,
 | |
|      $                            INFO )
 | |
|                      AINVNM = MAX( AINVNM, DASUM( N, X, 1 ) )
 | |
|    60             CONTINUE
 | |
| *
 | |
| *                 Compute the 1-norm condition number of A.
 | |
| *
 | |
|                   IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
 | |
|                      RCONDC = ONE
 | |
|                   ELSE
 | |
|                      RCONDC = ( ONE / ANORM ) / AINVNM
 | |
|                   END IF
 | |
|                END IF
 | |
| *
 | |
|                IF( IFACT.EQ.2 ) THEN
 | |
| *
 | |
| *                 --- Test DPTSV --
 | |
| *
 | |
|                   CALL DCOPY( N, D, 1, D( N+1 ), 1 )
 | |
|                   IF( N.GT.1 )
 | |
|      $               CALL DCOPY( N-1, E, 1, E( N+1 ), 1 )
 | |
|                   CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
 | |
| *
 | |
| *                 Factor A as L*D*L' and solve the system A*X = B.
 | |
| *
 | |
|                   SRNAMT = 'DPTSV '
 | |
|                   CALL DPTSV( N, NRHS, D( N+1 ), E( N+1 ), X, LDA,
 | |
|      $                        INFO )
 | |
| *
 | |
| *                 Check error code from DPTSV .
 | |
| *
 | |
|                   IF( INFO.NE.IZERO )
 | |
|      $               CALL ALAERH( PATH, 'DPTSV ', INFO, IZERO, ' ', N,
 | |
|      $                            N, 1, 1, NRHS, IMAT, NFAIL, NERRS,
 | |
|      $                            NOUT )
 | |
|                   NT = 0
 | |
|                   IF( IZERO.EQ.0 ) THEN
 | |
| *
 | |
| *                    Check the factorization by computing the ratio
 | |
| *                       norm(L*D*L' - A) / (n * norm(A) * EPS )
 | |
| *
 | |
|                      CALL DPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
 | |
|      $                            RESULT( 1 ) )
 | |
| *
 | |
| *                    Compute the residual in the solution.
 | |
| *
 | |
|                      CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | |
|                      CALL DPTT02( N, NRHS, D, E, X, LDA, WORK, LDA,
 | |
|      $                            RESULT( 2 ) )
 | |
| *
 | |
| *                    Check solution from generated exact solution.
 | |
| *
 | |
|                      CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | |
|      $                            RESULT( 3 ) )
 | |
|                      NT = 3
 | |
|                   END IF
 | |
| *
 | |
| *                 Print information about the tests that did not pass
 | |
| *                 the threshold.
 | |
| *
 | |
|                   DO 70 K = 1, NT
 | |
|                      IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                         IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                     CALL ALADHD( NOUT, PATH )
 | |
|                         WRITE( NOUT, FMT = 9999 )'DPTSV ', N, IMAT, K,
 | |
|      $                     RESULT( K )
 | |
|                         NFAIL = NFAIL + 1
 | |
|                      END IF
 | |
|    70             CONTINUE
 | |
|                   NRUN = NRUN + NT
 | |
|                END IF
 | |
| *
 | |
| *              --- Test DPTSVX ---
 | |
| *
 | |
|                IF( IFACT.GT.1 ) THEN
 | |
| *
 | |
| *                 Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero.
 | |
| *
 | |
|                   DO 80 I = 1, N - 1
 | |
|                      D( N+I ) = ZERO
 | |
|                      E( N+I ) = ZERO
 | |
|    80             CONTINUE
 | |
|                   IF( N.GT.0 )
 | |
|      $               D( N+N ) = ZERO
 | |
|                END IF
 | |
| *
 | |
|                CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
 | |
| *
 | |
| *              Solve the system and compute the condition number and
 | |
| *              error bounds using DPTSVX.
 | |
| *
 | |
|                SRNAMT = 'DPTSVX'
 | |
|                CALL DPTSVX( FACT, N, NRHS, D, E, D( N+1 ), E( N+1 ), B,
 | |
|      $                      LDA, X, LDA, RCOND, RWORK, RWORK( NRHS+1 ),
 | |
|      $                      WORK, INFO )
 | |
| *
 | |
| *              Check the error code from DPTSVX.
 | |
| *
 | |
|                IF( INFO.NE.IZERO )
 | |
|      $            CALL ALAERH( PATH, 'DPTSVX', INFO, IZERO, FACT, N, N,
 | |
|      $                         1, 1, NRHS, IMAT, NFAIL, NERRS, NOUT )
 | |
|                IF( IZERO.EQ.0 ) THEN
 | |
|                   IF( IFACT.EQ.2 ) THEN
 | |
| *
 | |
| *                    Check the factorization by computing the ratio
 | |
| *                       norm(L*D*L' - A) / (n * norm(A) * EPS )
 | |
| *
 | |
|                      K1 = 1
 | |
|                      CALL DPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
 | |
|      $                            RESULT( 1 ) )
 | |
|                   ELSE
 | |
|                      K1 = 2
 | |
|                   END IF
 | |
| *
 | |
| *                 Compute the residual in the solution.
 | |
| *
 | |
|                   CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
 | |
|                   CALL DPTT02( N, NRHS, D, E, X, LDA, WORK, LDA,
 | |
|      $                         RESULT( 2 ) )
 | |
| *
 | |
| *                 Check solution from generated exact solution.
 | |
| *
 | |
|                   CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
 | |
|      $                         RESULT( 3 ) )
 | |
| *
 | |
| *                 Check error bounds from iterative refinement.
 | |
| *
 | |
|                   CALL DPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
 | |
|      $                         RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
 | |
|                ELSE
 | |
|                   K1 = 6
 | |
|                END IF
 | |
| *
 | |
| *              Check the reciprocal of the condition number.
 | |
| *
 | |
|                RESULT( 6 ) = DGET06( RCOND, RCONDC )
 | |
| *
 | |
| *              Print information about the tests that did not pass
 | |
| *              the threshold.
 | |
| *
 | |
|                DO 90 K = K1, 6
 | |
|                   IF( RESULT( K ).GE.THRESH ) THEN
 | |
|                      IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
 | |
|      $                  CALL ALADHD( NOUT, PATH )
 | |
|                      WRITE( NOUT, FMT = 9998 )'DPTSVX', FACT, N, IMAT,
 | |
|      $                  K, RESULT( K )
 | |
|                      NFAIL = NFAIL + 1
 | |
|                   END IF
 | |
|    90          CONTINUE
 | |
|                NRUN = NRUN + 7 - K1
 | |
|   100       CONTINUE
 | |
|   110    CONTINUE
 | |
|   120 CONTINUE
 | |
| *
 | |
| *     Print a summary of the results.
 | |
| *
 | |
|       CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
 | |
| *
 | |
|  9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
 | |
|      $      ', ratio = ', G12.5 )
 | |
|  9998 FORMAT( 1X, A, ', FACT=''', A1, ''', N =', I5, ', type ', I2,
 | |
|      $      ', test ', I2, ', ratio = ', G12.5 )
 | |
|       RETURN
 | |
| *
 | |
| *     End of DDRVPT
 | |
| *
 | |
|       END
 |